Skip to main content

Evaluating Different Automated Operational Modal Analysis Techniques for the Continuous Monitoring of Offshore Wind Turbines

  • Conference paper
  • First Online:
Dynamics of Civil Structures, Volume 4

Abstract

This paper will evaluate different automated operational modal analysis techniques for the continuous monitoring of offshore wind turbines. The experimental data has been obtained during a long-term monitoring campaign on an offshore wind turbine in the Belgian North Sea. State-of-the art operational modal analysis techniques and the use of appropriate vibration measurement equipment can provide accurate estimates of natural frequencies, damping ratios and mode shapes of offshore wind turbines. To allow a proper continuous monitoring the methods have been automated and their reliability improved. The advanced modal analysis tools, which will be used, include the poly-reference Least Squares Complex Frequency-domain estimator (pLSCF), commercially known as PolyMAX, the polyreference maximum likelihood estimator (pMLE), and the frequency-domain subspace identification (FSSI) technique. The robustness of these estimators with respect to a possible change in the implementation options that could be defined by the user (e.g. type of polynomial coefficients used, parameter constraint used…) will be investigated. In order to improve the automation of the techniques, an alternative representation for the stabilization charts as well as robust cluster algorithms will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhattacharya S, Adhikari S (2011) Experimental validation of soil–structure interaction of offshore wind turbines. Soil Dyn Earthq Eng 31(5–6):805–816

    Article  Google Scholar 

  2. Junginger M, Faaij A, Turkenburg WC (2004) Cost reduction prospects for offshore wind farms. Wind Eng 28(1):97–118

    Article  Google Scholar 

  3. van der Zwaan B, Rivera-Tinoco R, Lensink S, van den Oosterkamp P (2012) Cost reductions for offshore wind power: exploring the balance between scaling, learning and R&D. Renew Energy 41:389–393

    Article  Google Scholar 

  4. Germanischer L (2005) Overall damping for piled offshore support structures. Guideline for the certification of offshore wind turbines, Edition, Windenergie

    Google Scholar 

  5. Devriendt C, Magalhaes F, Weijtjens W, De Sitter G, Cunha A, Guillaume P (2013) Automatic identification of the modal parameters of an offshore wind turbine using state-of-the-art operational modal analysis techniques. In: Proceedings of the 5th international operational modal analysis conference (IOMAC), Guimaraes

    Google Scholar 

  6. Devriendt C, El-Kafafy M, De Sitter G, Cunha A, Guillaume P (2013) Long-term dynamic monitoring of an offshore wind turbine. In: IMAC-XXXI, California

    Google Scholar 

  7. Devriendt C, El-Kafafy M, De Sitter G, Jordaens PJ, Guillaume P (2012) Continuous dynamic monitoring of an offshore wind turbine on a monopile foundation. In: ISMA2012, Leuven

    Google Scholar 

  8. Cauberghe B (2004) Applied frequency-domain system identification in the field of experimental and operational modal analysis. Mechanical Engineering Department, Vrije Universiteit Brussel, Brussels

    Google Scholar 

  9. Cauberghe B, Guillaume P, Verboven P (2004) A frequency domain poly-reference maximum likelihood implementation for modal analysis. In: 22th international modal analysis conference, Dearborn (Detroit)

    Google Scholar 

  10. Guillaume P, Verboven P, Vanlanduit S, Van der Auweraer H, Peeters B (2003) A poly-reference implementation of the least-squares complex frequency domain-estimator. In: 21th international modal analysis conference (IMAC), Kissimmee

    Google Scholar 

  11. Peeters B, Van der Auweraer H, Guillaume P, Leuridan J (2004) The PolyMAX frequency-domain method: a new standard for modal parameter estimation? Shock Vib 11(3–4):395–409

    Article  Google Scholar 

  12. Cauberghe B, Guillaume P, Pintelon R, Verboven P (2006) Frequency-domain subspace identification using FRF data from arbitrary signals. J Sound Vib 290(3–5):555–571

    Article  Google Scholar 

  13. Chauhan S, Tcherniak D, Basurko J, Salgado O, Urresti I, Carcangiu C, Rossetti M (2011) Operational modal analysis of operating wind turbines: application to measured data. In: Proulx T (ed) Rotating machinery, structural health monitoring, shock and vibration, vol 5. Springer, New York, pp 65–81

    Chapter  Google Scholar 

  14. Bendat J, Piersol A (1971) Random data: analysis and measurement procedures. Wiley, New York

    MATH  Google Scholar 

  15. Magalhaes F, Cunha A, Caetano E (2009) Online automatic identification of the modal parameters of a long span arch bridge. Mech Syst Signal Process 23(2):316–329

    Article  Google Scholar 

  16. Heylen W, Lammens S, Sas P (1997) Modal analysis theory and testing. Katholieke Universiteit Leuven, Department Werktuigkunde, Heverlee

    Google Scholar 

  17. Verboven P, Cauberghe B, Vanlanduit S, Parloo E, Guillaume P (2004) A new generation of frequency-domain system identification methods for the practicing mechanical engineer. In: Proceedings of international modal analysis conference (IMAC-XXII), USA

    Google Scholar 

  18. Reynders E (2012) System identification methods for (operational) modal analysis: review and comparison. Arch Comput Methods Eng 19(1):51–124

    Article  MathSciNet  Google Scholar 

  19. Cauberghe B, Guillaume P, Verboven P, Parloo E, Vanlanduit S (2004) A poly-reference implementation of the maximum likelihood complex frequency-domain estimator and some industrial applications. In: Proceedings of the international modal analysis conference (IMAC-XXII), USA

    Google Scholar 

  20. Pintelon R, Guillaume P, Rolain Y, Schoukens J, Van Hamme H (1994) Parametric identification of transfer functions in the frequency domain—a survey. IEEE Trans Automat Control 39(11):2245–2260

    Article  MATH  MathSciNet  Google Scholar 

  21. Van der Auweraer H, Guillaume P, Verboven P, Valanduit S (2001) Application of a fast-stabilization frequency domain parameter estimation method. J Dyn Sys Meas Control 123:651–652

    Article  Google Scholar 

  22. Guillaume P, Pintelon R, Schoukens J (1995) Robust parametric transfer-function estimation using complex logarithmic frequency-response data. IEEE Trans Automat Control 40(7):1180–1190

    Article  MATH  MathSciNet  Google Scholar 

  23. Peeters B, Van der Auweraer H, Vanhollebeke F, Guillaume P (2007) Operational modal analysis for estimating the dynamic properties of a stadium structure during a football game. Shock Vib 14(4):283–303

    Article  Google Scholar 

  24. Cauberghe B, Guillaume P, Verboven P, Vanlandult S, Parloo E (2005) The influence of the parameter constraint on the stability of the poles and the discrimination capabilities of the stabilisation diagrams. Mech Syst Signal Process 19(5):989–1014

    Article  Google Scholar 

  25. De Moor B, Gevers M, Goodwin GC (1994) L2-overbiased, L2-underbiased and L2-unbiased estimation of transfer functions. Automatica 30(5):893–898

    Article  MATH  MathSciNet  Google Scholar 

  26. Pintelon R, Schoukens J (2001) System identification: a frequency domain approach. IEEE Press, Piscataway

    Book  Google Scholar 

  27. De Troyer T (2009) Frequency-domain modal analysis with aeroelastic applications. In: Mechanical Engineering Department, Vrije universiteit Brussel (VUB), Brussels

    Google Scholar 

Download references

Acknowledgement

The authors gratefully thank the people of Belwind NV for their support before, during and after the installation of the measurement equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud El-Kafafy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

El-Kafafy, M., Devriendt, C., Weijtjens, W., De Sitter, G., Guillaume, P. (2014). Evaluating Different Automated Operational Modal Analysis Techniques for the Continuous Monitoring of Offshore Wind Turbines. In: Catbas, F. (eds) Dynamics of Civil Structures, Volume 4. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-04546-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04546-7_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04545-0

  • Online ISBN: 978-3-319-04546-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics