Skip to main content

Dust Production Mechanisms

  • Chapter
  • First Online:
Book cover Mineral Dust

Abstract

This chapter is concerned with dust production mechanisms, that is, the interactions between the wind and the surface that lead to the emission of fine soil particles. Mineral dust emissions mainly result from wind erosion in the arid and semi-arid regions of the world. Wind is thus the main driver of emissions, but surface characteristics also play a key role for their spatial distribution, intensity and frequency. This chapter describes the main stages involved in dust emission: the erosion threshold, the saltation flux and the dust production by sandblasting, with a focus on the influence of the surface characteristics. For each of these stages, the involved physical processes and their parameterisations are described with a discussion on their limitations. The first stage, the erosion threshold, corresponds to the minimum wind velocity that must be reached for the initiation of soil particle movement. This threshold depends on the soil properties (size distribution and moisture) and surface roughness. It is a key parameter for dust emission, since it controls the frequency of dust emission events. The horizontal motion of soil particles close to the surface is mainly a saltation motion, where soil particles rebound on the surface and initiate the movement of other soil particles. These rebounds also lead to the ejection of fine dust particles from the surface or the saltating aggregates, which correspond to the sandblasting process. Recent field measurements show that saltation is a prerequisite for intense dust emissions. While the erosion threshold and the saltation flux are well understood and reasonably quantified, the amount and size of the dust emitted by sandblasting and their dependence on soil properties and wind intensity are still insufficiently described to provide reliable parameterisations. Significant progresses in the description and parameterisation of dust emission processes have been achieved in the last 20 years, which allow a better understanding of the properties that makes specific areas active or non-active dust sources. However, additional investigation on the saltation and sandblasting processes, both from a theoretical and experimental point of view, is still needed. Special attention must be paid to the link with soil properties and its implications on the size distribution of the emitted dust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agier L, Deroubaix A, Martiny N, Yaka P, Djibo A, Broutin H (2013) Seasonality of meningitis in Africa and climate forcing: aerosols stand out. J R Soc Interface 10(79):20120814. doi:10.1098/rsif.2012.0814

    Google Scholar 

  • Alfaro SC (1997) Simulation expérimentale et modélisation de la production d'aérosol minéral par érosion éolienne. Thèse de doctorat, Université Paris 12 Val-de-Marne, 176 pp

    Google Scholar 

  • Alfaro SC, Gomes L (2001) Modeling mineral aerosol production by wind erosion: emission intensities and aerosol distributions in source areas. J Geophys Res 106:18075–18084

    Google Scholar 

  • Alfaro SC, Gaudichet A, Gomes L, Maillé M (1997) Modeling the size distribution of a soil aerosol produced by sandblasting. J Geophys Res 102(D10):11239–11249

    Google Scholar 

  • Alfaro SC, Gaudichet A, Gomes L, Maillé M (1998) Mineral aerosol production by wind erosion: aerosol particle sizes and binding energies. Geophys Res Lett 25(7):991–994

    Google Scholar 

  • Alfaro SC, Rajot JL, Nickling W (2004) Estimation of PM20 emissions by wind erosion: main sources of uncertainties. Geomorphology 59:63–74

    Google Scholar 

  • Alfaro SC, Flores-Aqueveque V, Foret G, Caquineau S, Vargas G, Rutllant JA (2011) A simple model accounting for the uptake, transport, and deposition of wind-eroded mineral particles in the hyperarid coastal Atacama Desert of northern Chile. Earth Surf Process Landf 36:923–932. doi:10.1002/esp.2122

    Google Scholar 

  • Arya SPS (1975) A drag partition theory for determining the large-scale roughness parameter and wind stress on Arctic pack ice. J Geophys Res 80:3447–3454

    Google Scholar 

  • Bagnold RA (1941) The physics of blown sand and desert dunes. Methuen, London, 265 pp

    Google Scholar 

  • Belnap J, Gillette DA (1997) Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance. J Arid Environ 39:133–142, Article No. ae980388, 1998

    Google Scholar 

  • Bisal F, Hsieh J (1966) Influence of moisture on erodibility of soil by wind. Soil Sci 102:143–146

    Google Scholar 

  • Breuninger RH, Gillette DA, Khil R (1989) Formation of wind-erodible aggregates for salty soils and soils with less than 50 % sand composition in natural terrestrial environments. In: Leinen M, Sarthein M (eds) Paleoclimatology and paleometeorology: modern and past patterns of global atmospheric transport. Kluwer, Norwell, pp 31–63

    Google Scholar 

  • Bullard JE, Harrison SP, Baddock MC, Drake N, Gill TE, McTainsh G, Sun Y (2011) Preferential dust sources: a geomorphological classification designed for use in global dust-cycle models. J Geophys Res 116, F04034. doi:10.1029/2011JF002061

    Google Scholar 

  • Callot Y, Marticorena B, Bergametti G (2000) Geomorphologic approach for modelling the surface features of arid environments in a model of dust emissions: application to the Sahara desert. Geodin Acta 13:245–270

    Google Scholar 

  • Chatenet B, Marticorena B, Gomes L, Bergametti G (1996) Assessing the micropeds size-distributions of desert soils erodible by wind. Sedimentology 43:901–911

    Google Scholar 

  • Chepil WS (1951) Properties of soil which influence wind erosion: IV. State or dry aggregate structure. Soil Sci 72:387–401

    Google Scholar 

  • Chepil WS (1956) Influence of soil moisture on erodibility of soil by wind. Proc Soil Sci Soc Am 20:288–292

    Google Scholar 

  • Cornelis WM, Gabriels D, Hartmann R (2004) A parameterisation for the threshold shear velocity to initiate deflation of dry and wet sediment. Geomorphology 59:43–51

    Google Scholar 

  • d’Almeida GA, Schütz L (1983) Number, mass and volume distributions of mineral aerosol and soils of the Sahara. J Clim Appl Meteorol 22:233–243

    Google Scholar 

  • Darmenova K, Sokolik IN, Shao Y, Marticorena B, Bergametti G (2009) Development of a physically-based dust emission module within the Weather Research and Forecasting (WRF) model: assessment of dust emission parameterizations and input parameters for source regions in Central and East Asia. J Geophys Res 114, D14201

    Google Scholar 

  • Dupont S, Bergametti G, Marticorena B, Simoens S (2013) Modelling saltation intermittency. J Geophys Res 118:7109–7128

    Google Scholar 

  • Fécan F, Marticorena B, Bergametti G (1999) Soil-derived dust emissions from semi-arid lands: 1. Parameterization of the soils moisture effect on the threshold wind friction velocities. Ann Geophys 17:149–157

    Google Scholar 

  • Fletcher B (1976a) The erosion of dust by an airflow. J Phys Appl Phys 9(17):913–924

    Google Scholar 

  • Fletcher B (1976b) The incipient motion of granular materials. J Phys Appl Phys 9(17):2471–2478

    Google Scholar 

  • Flores-Aqueveque V, Alfaro SC, Muñoz R, Rutllant J, Caquineau S, LeRoux J, Vargas G (2010) Aeolian sand transport over the Pampa Mejillones in the coastal Atacama Desert of northern Chile. Geomorphology 120(3–4):312–325

    Google Scholar 

  • Fratini G, Ciccioli P, Febo A, Forgione A, Valentini R (1997) Size-segregated fluxes of mineral dust from a desert area of northern China by eddy covariance. Atmos Chem Phys 7:2839–2854

    Google Scholar 

  • Fryrear DW (1985) Soil cover and wind erosion. Trans ASAE 28:781–784

    Google Scholar 

  • Gillette DA (1974) On the production of soil wind erosion aerosols having the potential for long range transport. J Rech Atmos 8:735–744

    Google Scholar 

  • Gillette DA (1977) Fine particulate emissions due to wind erosion. Trans Am Soc Agric Eng 20:890–897

    Google Scholar 

  • Gillette DA (1979) Environmental factors affecting dust emission by wind erosion. In: Morales C (ed) Saharan dust. Wiley, New York, pp 71–94

    Google Scholar 

  • Gillette DA, Passi R (1988) Modeling dust emission caused by wind erosion. J Geophys Res 93:14233–14242

    Google Scholar 

  • Gillette DA, Pitchford A (2004) Sand flux in the northern Chihuahuan Desert, New Mexico, USA and the influence of mesquite‐dominated landscapes. J Geophys Res 109, F04003. doi:10.1029/2003JF000031

    Google Scholar 

  • Gillette DA, Stockton PH (1989) The effect of nonerodible particles on wind erosion of erodible surfaces. J Geophys Res 94:12885–12893

    Google Scholar 

  • Gillette DA, Adams J, Endo A, Smith D, Khil R (1980) Threshold velocities for input of soil particles into the air by desert soils. J Geophys Res 85:5621–5630

    Google Scholar 

  • Gillette DA, Adams J, Muhs DR, Khil R (1982) Threshold friction velocities and rupture moduli for crusted desert soils for the input of soil particles into the air. J Geophys Res 87:9003–9015

    Google Scholar 

  • Gillette DA, Herbert G, Stockton P, Owen P (1996) Causes of the fetch effect in wind erosion. Earth Surf Process Landf 21:641–659

    Google Scholar 

  • Gillette DA, Marticorena B, Bergametti G (1998) Changing the roughness length by saltating grains: experimental assessment, test of theory and operational parameterization. J Geophys Res 103:6203–6210

    Google Scholar 

  • Gillette DA, Niemeyer TC, Helm PJ (2001) Supply-limited horizontal sand drift at an ephemerally crusted, unvegetated saline playa. J Geophys Res 106(D16):P18085–P18098

    Google Scholar 

  • Gomes L, Bergametti G, Coudé-Gaussen G, Rognon P (1990) Submicron desert dust: a sandblasting process. J Geophys Res 95:13927–13935

    Google Scholar 

  • Gomes L, Rajot JL, Alfaro SC, Gaudichet A (2003) Validation of a dust production model from measurements performed in semi-arid agricultural areas of Spain and Niger. Catena 52:257–271

    Google Scholar 

  • Greeley R, Iversen JD (1985) Wind as a geological process, Cambridge planetary science series. Cambridge University Press, Cambridge, 333 pp

    Google Scholar 

  • Greeley R, Blumberg DG, Williams SH (1994) Field measurements of active windblown sand. In: Abstract of the workshop on response of eolian processes to global change. Occasional paper No. 2, The Desert Research Institute, Reno

    Google Scholar 

  • Huneeus N, Schulz M, Balkanski Y, Griesfeller J, Prospero J, Kinne S, Bauer S, Boucher O, Chin M, Dentener F, Diehl T, Easter R, Fillmore D, Ghan S, Ginoux P, Grini A, Horowitz L, Koch D, Krol MC, Landing W, Liu X, Mahowald N, Miller R, Morcrette J-J, Myhre G, Penner J, Perlwitz J, Stier P, Takemura T, Zender CS (2011) Global dust model intercomparison in AeroCom phase I. Atmos Chem Phys 11:7781–7816

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Fourth assessment report: climate change 2007. In: Solomon S et al (ed) Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Ishizuka M, Mikami M, Yamada Y, Zeng F, Gao W (2005) An observational study of soil moisture effects on wind erosion at a gobi site in the Taklimakan Desert. J Geophys Res 110, D18S03. doi:10.1029/2004JD004709

  • Ishizuka M, Mikami M, Leys J, Yamada Y, Heidenreich S, Shao Y, McTainsh GH (2008) Effects of soil moisture and dried raindroplet crust on saltation and dust emission. J Geophys Res 113, D24212. doi:10.1029/2008JD009955

    Google Scholar 

  • Iversen JD, White BR (1982) Saltation threshold on Earth, Mars and Venus. Sedimentology 29:111–119

    Google Scholar 

  • Iversen JD, Pollack JB, Greeley R, White BR (1976) Saltation threshold on Mars: The effect on interparticle force, surface roughness, and low atmospheric density. Icarus 29:381–393

    Google Scholar 

  • Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, Cao JJ, Boyd PW, Duce RA, Hunter KA, Kawahata H, Kubilay N, La Roche J, Liss PS, Mahowald N, Prospero JM, Ridgwell AJ, Tegen I, Torres R (2005) Global iron connections: between desert dust, ocean biogeochemistry and climate. Science 308(5708):67–71

    Google Scholar 

  • Kardous M, Bergametti G, Marticorena B (2005) Wind tunnel experiments on the effects of tillage ridge features on wind erosion horizontal fluxes. Ann Geophys 23:3195–3206

    Google Scholar 

  • Kawamura R (1964) Study of sand movement by wind. In: Hydraulic Engineering Laboratory Technical Report, HEL-2-8, University of California, Berkeley, pp 99–108

    Google Scholar 

  • Kocurek G, Lancaster N (1999) Aeolian system sediment state: theory and Mojave Desert Kelso dune field example. Sedimentology 46:505–515

    Google Scholar 

  • Kok JF (2011a) A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. Proc Natl Acad Sci U S A 108:1016–1021

    Google Scholar 

  • Kok JF (2011b) Does the size distribution of mineral dust aerosols depend on the wind speed at emission? Atmos Chem Phys 11:10149–10156. doi:10.5194/acp-11-10149-2011

    Google Scholar 

  • Kok JF, Renno NO (2009) A comprehensive numerical model of steady-state saltation (COMSALT). J Geophys Res 114, D17204. doi:10.1029/2009JD011702

    Google Scholar 

  • Kurosaki Y, Mikami M (2004) Effect of snow cover on threshold wind velocity of dust outbreak. Geophys Res Lett 31, L03106. doi:10.1029/2003GL018632

    Google Scholar 

  • Kurosaki Y, Mikami M (2007) Threshold wind speed for dust emission in east Asia and its seasonal variations. J Geophys Res 112, D17202. doi:10.1029/2006JD007988

    Google Scholar 

  • Laurent B, Marticorena B, Bergametti G, Chazette P, Maignan F, Schmechtig C (2005) Simulation of the mineral dust emission frequencies from desert areas of China and Mongolia using an aerodynamic roughness length map derived from the POLDER/ADEOS 1 surface products. J Geophys Res 110, D18S04. doi:10.1029/2004JD005013

  • Laurent B, Marticorena B, Bergametti G, Mei F (2006) Modeling mineral dust emissions from Chinese and Mongolian deserts. Glob Planet Change 52:121–141

    Google Scholar 

  • Laurent B, Marticorena B, Bergametti G, Léon JF, Mahowald NM (2008) Modeling mineral dust emissions from the Sahara desert using new surface properties and soil database. J Geophys Res 113, D14218. doi:10.1029/2007JD009484

    Google Scholar 

  • Leys JF, Raupach MR (1991) Soil flux measurements with a portable wind erosion tunnel. Aust J Soil Res 29:533–552

    Google Scholar 

  • Loosemore GA, Hunt JR (2000) Dust resuspension without saltation. J Geophys Res 105(D16):20663–20671

    Google Scholar 

  • Lopez MV (1998) Wind erosion in agricultural soil: an example of limited supply of particles available for erosion. Catena 33:17–28

    Google Scholar 

  • MacKinnon DJ, Clow GD, Tigges RK, Reynolds RL, Chaves PS Jr (2004) Comparison of aerodynamically and model-derived roughness lengths (z0) over diverse surfaces, central Mojave desert, California, USA. Geomorphology 63:103–113. doi:10.1016/j.geomorph.2004.03.009

    Google Scholar 

  • Mahowald N, Jickells TD, Baker AR, Artaxo P, Benitez-Nelson CR, Bergametti G, Bond TC, Chen Y, Cohen DD, Herut B, Kubilay N, Losno R, Luo C, Maenhaut W, McGee KA, Okin GS, Siefert RL, Tsukuda S (2008) The global distribution of atmospheric phosphorus sources, concentrations and deposition rates and anthropogenic impacts. Glob Biogeochem Cycles 22, GB4026. doi:10.1029/2008GB003240

    Google Scholar 

  • Marshall JK (1971) Drag measurements in roughness arrays of varying density and distribution. Agric Meteorol 8:269–292

    Google Scholar 

  • Marticorena B, Bergametti G (1995) Modeling the atmospheric dust cycle: 1. Design of a soil- derived dust production scheme. J Geophys Res 100:16415–16430

    Google Scholar 

  • Marticorena B, Bergametti G (1996) Two-year simulations of seasonal and interannual changes of the Saharan dust emissions. Geophys Res Lett 23:1921–1924

    Google Scholar 

  • Marticorena B, Formenti P (2013) Fundamentals of aeolian sediment transport: long-range transport of dust. In: Shroder JF (ed) Treatise on geomorphology, vol 11. Academic, San Diego, pp 64–84

    Google Scholar 

  • Marticorena B, Bergametti G, Gillette DA, Belnap J (1997a) Factors controlling threshold friction velocity in semi-arid and arid areas of the United States. J Geophys Res 102:23277–23287

    Google Scholar 

  • Marticorena B, Bergametti G, Aumont B, Callot Y, N’Doumé C, Legrand M (1997b) Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources. J Geophys Res 102:4387–4404

    Google Scholar 

  • Martiny N, Chiapello I (2013) Assessments for the impact of mineral dust on the meningitis incidence in West Africa. Atmos Environ 70:245–253. doi:10.1016/j.atmosenv.2013.01.016

    Google Scholar 

  • McKenna-Neuman C, Nickling WG (1989) A theoretical and wind tunnel investigation of the effect of capillarity water on the entrainment of sediment by wind. Can J Soil Sci 69:79–96

    Google Scholar 

  • Milton SF, Greed G, Brooks ME, Haywood J, Johnson B, Allan RP, Slingo A, Grey WMF (2008) Modeled and observed atmospheric radiation balance during the West African dry season: role of mineral dust, biomass burning aerosol, and surface albedo. J Geophys Res 103, D00C02. doi:10.1029/2007JD009741

  • Natsagdorj L, Jugder D, Chung YS (2003) Analysis of dust storms observed in Mongolia during 1937–1999. Atmos Environ 37:1401–1411

    Google Scholar 

  • Nickling WG (1983) Grain-size characteristics of sediment transported during dust storms. J Sediment Petrol 53:1011–1024

    Google Scholar 

  • Nickling WG, Gillies JA (1989) Emission of fine-grained particulates from desert soils. In: Leinen M, Sarnthein M (eds) Paleoclimatology and paleometeorology: modern and past patterns of global atmospheric transport. Kluwer, Dordrecht, pp 133–165

    Google Scholar 

  • Nickling WG, Gillies JA (1993) Dust emission and transport in Mali, West Africa. Sedimentology 40:859–868

    Google Scholar 

  • Nickling WG, McTainsh GH, Leys JF (1999) Dust emissions from the channel country of western Queensland, Australia. Z Geomorphol NF 116:1–17

    Google Scholar 

  • Owen PR (1964) Saltation of uniform grains in air. J Fluid Mech 20(2):225–242

    Google Scholar 

  • Pauley PM, Baker NL, Barker EH (1996) An observational study of the “Interstate 5” dust storm case. Bull Am Meteorol Soc 77:693–720

    Google Scholar 

  • Porch WM, Gillette DA (1977) A comparison of aerosol and momentum mixing in dust storms using fast-response instruments. J Appl Meteorol 16(12):1273–1281

    Google Scholar 

  • Priestley CHB (1959) Turbulent transfer in the lower atmosphere. University of Chicago Press, Chicago, 130 pp

    Google Scholar 

  • Rajot JL (2001) Wind blown sediment mass budget of Sahelian village land units in Niger. Bull Soc Géol France 172:523–531

    Google Scholar 

  • Rajot JL, Alfaro SC, Gomes L, Gaudichet A (2003) Soil crusting on sandy soils and its influence on wind erosion. Catena 53:1–16

    Google Scholar 

  • Raupach MR (1991) Saltation layers, vegetation canopies and roughness lengths. Acta Mech 1(Suppl):83–96

    Google Scholar 

  • Raupach MR (1992) Drag and drag partition on rough surfaces. Bound Layer Meteorol 60:375–395

    Google Scholar 

  • Raupach MR, Gillette DA, Leys JF (1993) The effect of roughness elements on wind erosion threshold. J Geophys Res 98:3023–3029

    Google Scholar 

  • Rice MA, Willetts BB, McEwan IK (1995) An experimental study of multiple grain-size ejecta produced by collisions of saltating grains with a flat bed. Sedimentology 42:695–706

    Google Scholar 

  • Rice MA, Willetts BB, McEwan IK (1996) Wind erosion of crusted sediments. Earth Surf Process Landf 21:279–293

    Google Scholar 

  • Saleh A, Fryrear DW (1995) Threshold wind velocities of wet soils as affected by wind blown sand. Soil Sci 160:304–309

    Google Scholar 

  • Shao Y (2000) Physics and modelling of wind erosion. Kluwer, Dordrecht, 393 pp

    Google Scholar 

  • Shao Y (2001) A model for mineral dust emission. J Geophys Res 106:20239–20254

    Google Scholar 

  • Shao Y (2004) Simplification of a dust emission scheme and comparison with data. J Geophys Res 109, D10202. doi:10.1029/2003JD004372

    Google Scholar 

  • Shao Y (2008) Physics and modelling of wind erosion. Springer, Heidelberg. 452 pp

    Google Scholar 

  • Shao Y, Li A (1999) Numerical modelling of saltation in the atmospheric surface layer. Bound Layer Meteorol 91:199–225

    Google Scholar 

  • Shao Y, Lu H (2000) A simplified expression for threshold friction velocity. J Geophys Res 105:22437–22443

    Google Scholar 

  • Shao Y, Raupach MR, Findlater PA (1993) Effect of saltation bombardment on the entrainment of dust by wind. J Geophys Res 98:12719–12726

    Google Scholar 

  • Shao Y, Raupach MR, Leys JF (1996) A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region. Aust J Soil Res 34:309–342

    Google Scholar 

  • Shao Y, Ishizuka M, Mikami M, Leys JF (2011) Parameterization of size‐resolved dust emission and validation with measurements. J Geophys Res 116, D08203. doi:10.1029/2010JD014527

    Google Scholar 

  • Sörensen M (1985) Estimation of some Aeolian saltation transport parameters from transport rate profiles. In: Barndorff-Nielsen OE, Möller JT, Römer Rasmussen K, Willets BB (eds) Proceedings of the international workshop on the physics of blown sand. University of Aarhus, Aarhus, pp 141–190

    Google Scholar 

  • Sow M, Alfaro SC, Rajot JL, Marticorena B (2009) Size resolved dust emission fluxes measured in Niger during 3 dust storms of the AMMA experiment. Atmos Chem Phys 9(12):3881–3891

    Google Scholar 

  • Thomson MC, Molesworth AM, Djingarey MH, Yameogo KR, Belanger F, Cuevas LE (2006) Potential of environmental models to predict meningitis epidemics in Africa. Trop Med Int Health 11(6):781–788

    Google Scholar 

  • Tompkins AM, Cardinali C, Morcrette J-J, Rodwell M (2005) Influence of aerosol climatology on forecasts of the African easterly jet. Geophys Res Lett 32, L10801. doi:10.1029/2004GL022189

    Google Scholar 

  • Valentin C, Bresson L-M (1992) Morphology, genesis and classification of surface crusts in loamy and sandy soils. Geoderma 55:225–245

    Google Scholar 

  • Wang X, Ma Y, Chen H, Wen G, Chen S, Tao Z, Chung YS (2003) The relation between sandstorms and strong winds in Xinjiang, China. Water Air Soil Pollut 3:67–79

    Google Scholar 

  • Warren A, Chappell A, Todd MC, Bristow C, Drake N, Engelstaedter S, Martins V, M’bainayel S, Washington R (2007) Dust-raising in the dustiest place on earth. Geomorphology 92:25–37

    Google Scholar 

  • White BR (1979) Soil transport by winds on Mars. J Geophys Res 84:4643–4651

    Google Scholar 

  • Wiggs GFS, Baird AJ, Atherton RJ (2004) The dynamic effects of moisture on the entrainment and transport of sand by wind. Geomorphology 59(1–4):13–30

    Google Scholar 

  • Williams G (1964) Some aspects of the aeolian saltation load. Sedimentology 3:253–256

    Google Scholar 

  • Wolfe SA, Nickling WG (1996) Shear stress partitioning in sparsely vegetated desert canopies. Earth Surf Process Landf 21:607–619

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Marticorena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marticorena, B. (2014). Dust Production Mechanisms. In: Knippertz, P., Stuut, JB. (eds) Mineral Dust. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8978-3_5

Download citation

Publish with us

Policies and ethics