Skip to main content
Log in

Modeling of the 2011 Japan Tsunami: Lessons for Near-Field Forecast

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

During the devastating 11 March 2011 Japanese tsunami, data from two tsunami detectors were used to determine the tsunami source within 1.5 h of earthquake origin time. For the first time, multiple near-field tsunami measurements of the 2011 Japanese tsunami were used to demonstrate the accuracy of the National Oceanic and Atmospheric Administration (NOAA) real-time flooding forecast system in the far field. To test the accuracy of the same forecast system in the near field, a total of 11 numerical models with grids telescoped to 2 arcsec (~60 m) were developed to hindcast the propagation and coastal inundation of the 2011 Japanese tsunami along the entire east coastline of Japan. Using the NOAA tsunami source computed in near real-time, the model results of tsunami propagation are validated with tsunami time series measured at different water depths offshore and near shore along Japan’s coastline. The computed tsunami runup height and spatial distribution are highly consistent with post-tsunami survey data collected along the Japanese coastline. The computed inundation penetration also agrees well with survey data, giving a modeling accuracy of 85.5 % for the inundation areas along 800 km of coastline between Ibaraki Prefecture (north of Kashima) and Aomori Prefecture (south of Rokkasho). The inundation model results highlighted the variability of tsunami impact in response to different offshore bathymetry and flooded terrain. Comparison of tsunami sources inferred from different indirect methods shows the crucial importance of deep-ocean tsunami measurements for real-time tsunami forecasts. The agreement between model results and observations along Japan’s coastline demonstrate the ability and potential of NOAA’s methodology for real-time near-field tsunami flooding forecasts. An accurate tsunami flooding forecast within 30 min may now be possible using the NOAA forecast methodology with carefully placed tsunameters and large-scale high-resolution inundation models with powerful computing capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Ammon, C.J., Thorne, L., Kanamori, H., and Cleveland, M. (2011). A rupture model of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63(7), 675–679.

  • Beavan, J., Wang, X., Holden, C., Wilson, K., Power, K., Prasetya, G., Bevis, M. and Kautoke, R. (2010). Near-simultaneous great earthquakes at Tongan megathrust and outer rise in September 2009, Nature, 466, 959–963.

  • Blewitt, G., Kreemer, C., Hammond, W.C., Plag, H.P., Stein, S., and Okal, E. (2006). Rapid determination of earthquake magnitude using GPS for tsunami warning system, Geophys. Res. Lett., 33, L11309, doi:10.1029/2006GL026145.

  • Burwell, D., Tolkova, E., and Chawla, A. (2007). Diffusion and dispersion characterization of a numerical tsunami model, Ocean Modeling, 19(1–2), 10–30.

  • Chow, V.T. (1959). Open-channel hydraulics, New York, McGraw–Hill Book co., 680 p.

  • Eble, M.C. and González, F.I. (1991). Deep-ocean bottom pressure measurements in the northeast Pacific, J. Atmos. Ocean. Tech., 8(2), 221–233.

  • Fujii, Y. and Satake, K. (2008). Tsunami sources of the November 2006 and January 2007 Great Kuril Earthquakes, Bull. Seismol. Soc. of Amer., 98(3), 1559–1571.

  • Fujii, Y., Sataki, K., Sakai, S., Shinohara, M. and Kanazawa, T. (2011). Tsunami source of the 2011 off the Pacific coast of Tohoku, Japan earthquake, Earth Planets Space, Special Issue: First Results of the 2011 Off the Pacific Coast of Tohoku Earthquake, 63(7), 815–820.

  • Geist, E.L., Lynett, P.J., and Chaytor, J.D. (2009). Hydrodynamic modeling of tsunamis from the Currituck landslide, Mar. Geol. 264, 41–52.

  • Gica, E., Spillane, M., Titov, V.V., Chamberlin, C., and Newman, J.C. (2008). Development of the forecast propagation database for NOAA’s Short-term Inundation Forecast for Tsunamis (SIFT), NOAA Tech. Memo. OAR PMEL-139, 89 pp.

  • Glimsdal, S., Pedersen, G. K., Atakan, K., Harbitz, C.B., Langtangen, H.P., and Lovholt, F. (2006). Propagation of the Dec. 26, 2004, Indian Ocean Tsunami: effects of dispersion and source characteristics, Int. J. Fluid Mech. Res, 33, 15–43.

  • González, F.I., Bernard, E.N., Meinig, C., Eble, M., Mofjeld, H.O., and Stalin, S. (2005). The NTHMP tsunameter network, Nat. Hazards. 35(1), Special Issue, U.S. National Tsunami Hazard Mitigation Program, pp. 25–39.

  • González, F.I., Milburn, H.M., Bernard, E.N. and Newman, J.C. (1998). Deep-ocean Assessment and Reporting of Tsunamis (DART): Brief Overview and Status Report. In Proceedings of the International Workshop on Tsunami Disaster Mitigation, 19–22 January 1998, Tokyo, Japan.

  • Grue, J., Peliovshy, E.N., Fructus, D., Talipova, T., and Kharif, C. (2008). Formulation of undular bores and solitary waves in the strait of Malacca caused by the 26 December 2004 Indian Ocean tsunami, J. Geophys. Res., 113, C05008, doi:10.1029/2007JC004343.

  • Hayes, G. (2011). Rapid source characterization of the 03-11-2011 M w 9.0 off the Pacific coast of Tohoku earthquake, Earth Planets Space, Special Issue: First Results of the 2011 Off the Pacific Coast of Tohoku Earthquake, 63(7), 525–528.

  • Hayes, G.P., Earle, P.S., Benz, H.M., Wald, D.J., Briggs, R., and the USGS/NEIC Earthquake Response Team (2011). 88 hours: the U.S. Geological Survey National Earthquake Information Center response to the March 11, 2011 M w 9.0 Tohoku earthquake, Seismol. Res. Lett., 82(4), 481–493, doi:10.1785/gssrl.82.4.481.

  • Hirata, K., Aoyagi, M., Mikada, H., Kawaguchi, K., Kaiho, Y., Iwase, R., Morita, S., Fuhisawa, I., Sugioka, H., Mitsuzawa, K., Suyehiro, K., Kinoshita, H., and Fujiwara, N. (2002). Real-time geophysical measurements on the deep seafloor using submarine cable in the southern Kurile subduction zone, IEEE J. Oceanic Eng., 27, 170–181, doi:10.1109/JOE.202.1002471.

  • Ji, C., Wald, D.J., and Helmberger, D.V. (2002). Source description of the 1999 Hector Mine, California earthquake; Part 1: Wavelet domain inversion theory and resolution analysis, Bull. Seism. Soc. Am., 92(4), 1192–1207.

  • Kânoğlu, U., Titov, V.V., Aydin, B., Moore, C., Spillane, M., and Synolakis, C.E. (2012). Propagation of long waves with finite-crest length over a flat bottom, Proc. Roy. Soc. Lond. A., in review.

  • Kato, T., Terada, Y., Kinoshita, M., Kakimoto, H., Isshiki, H., Matsuishi, M., Yokoyama, A., and Tanno, T. (2000). Real-time observation of tsunami by RTK-GPS, Earth Planets Space, 52, 841–845.

  • Kato, T., Terada, Y., Nagai, T., Shimizu, K., Tomita, T. and Koshimura, S. (2008). Development of a new tsunami monitoring system using a GPS buoy, American Geophysical Union, Fall Meeting 2008, abstract #G43B-03.

  • Kerr, R. (2005). Failure to gauge the quake crippled the warning effort, Science, 307, 201.

  • Kuwayama, T. (2007). Quantitative tsunami forecast system. ICG/PTWS Tsunami Warning Center Coordination Meeting, Honolulu, HI, 17–19 January 2007.

  • Lay, T., Ammon, C.J., Kanamori, H., Rivera, L., Koper, K.D. and Hutko, A.R. (2010). The 2009 Samoa-Tonga great earthquake triggered doublet, Nature, 466, 964–968, doi:10.1038/nature09214.

  • Lay, T. and Kanamori, H. (2011). Insights from the great 2011 Japan earthquake, Physics Today, 64(12), 33–39.

  • Maeda, T., Furumura, T., Sakai, S., and Shinohara, M. (2011). Significant tsunami observed at ocean-bottom pressure gauges during the 2011 off the Pacific coast of Tohoku earthquake, Earth Planets Space, 63(7), 803–808.

  • Meinig, C., Stalin, S.E., Nakamura, A.I., González, F., and Milburn, H.G. (2005). Technology Developments in Real-Time Tsunami Measuring, Monitoring and Forecasting. In Oceans 2005 MTS/IEEE, 19–23 September 2005, Washington, D.C.

  • Ministry of Land, Infrastructure, Transport and Tourism of Japan (2011a). Status survey reports of the East Japan Earthquake, Ministry of Land, Infrastructure, Transport and Tourism Press Release (first report), pp 16.

  • Ministry of Land, Infrastructure, Transport and Tourism of Japan (2011b). The Great East Japan Earthquake (107th report): Outline, Ministry of Land, Infrastructure, Transport and Tourism, pp 1.

  • Mofjeld, H.O., Titov, V.V., González, F.I., and Newman, J.C. (2001). Tsunami scattering provinces in the Pacific Ocean, Geophys. Res. Lett., 28(2), 335–337.

  • Mori, N., Takahashi, T., Yasuda, T. and Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and run-up, Geophys. Res. Lett., 38, L00G14, doi:10.1029/2011GL049210.

  • Newman, A.V. (2011). Hidden depth, Nature, 474, 441–443.

  • Nettles, M., Ekstrom, G. and Koss, H.C. (2011). Centroid-momnet-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks, Earth Planets Space, 63(7), 519–523.

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half space, Bull. Seismol. Soc. Am. 75(4), 1135–1154.

  • Okal, E. A. and Synolakis, C.E. (2004). Source discriminants for near-field tsunamis, Geophys. J. Int. 158, 899–912, doi: 10.1111/j/1365-246X.2004.02347.

  • Percival, D.B., Denbo, D.W., Eble, M.C., Gica, E., Mofjeld, H.O., Spillane, M.C., Tang, L., and Titov, V.V. (2010). Extraction of tsunami source coefficients via inversion of DART® buoy data, Nat. Hazards, doi:10.1007/s11069-010-9688-1.

  • Pietrzek, J., Socquet, A., Ham, D., Simons, W., Vigny, C., Labeur, R.J., Schrama, E., Stelling, G., and Vatvani, D. (2007). Defining the source region of the Indian Ocean Tsunami from GPS, altimeters, tide gauges and tsunami models, Earth and Planetary Science Letters, 261(1–2), 49–64.

  • Satake, K. and Kanamori, H. (1991). Use of tsunami waveforms for earthquake source study, Nat. Hazards, 4, 193–208.

  • Satake, K. (1987). Inversion of tsunami waveforms for the estimation of a fault heterogeneity: methods and numerical experiments, J. Phys. Earth, 35, 241–254.

  • Sato, M, Ishikawa, T., Ujihara, N., Yoshid,a S., Fujita, M., Mochizuki, M., and Asada, A. (2011). Displacement above the hypocenter of the 2011 Tohoku-Oki earthquake, Science, 332, 1395.

  • Simons, M., Minson, S.E., Sladen, A., Ortega, F., Jiang, J., Owen, S.E., Meng, L.,. Ampuero, J-P, Wei, S., Chu, R., Helmberger, D.V., Kanamori, H., Hetland, E., Moore, A.W., and Webb, F.H. (2011). The 2011 magnitude 9.0 Tohoku-Oki earthquake: mosaicking the megethrust from seconds to centuries, Science, 332(6036), 1421–1425.

  • Synolakis, C.E., Liu, P., Philip, H.A., Carrier, G. and Yeh, H. (1997), Tsunamigenic Sea-Floor Deformations, Science, v. 278 no. 5338, pp. 598–600, doi:10.1126/science.278.5338.598.

  • Synolakis, C.E., Bernard, E.N., Titov, V.V., Kânoğlu, U., and González, F.I. (2008). Validation and verification of tsunami numerical models, Pure Appl. Geophys. 165(11–12), 2197–2228.

  • Tadepalli, S., and Synolakis, C.E. (1994). The Run-Up of N-Waves on Sloping Beaches. Proc. Roy. Soc. Lond. A 445(1923):99–112.

  • Tang, L., Titov, V.V., Bernard, E., Wei, Y., Chamberlin, C., Newman, J.C., Mofjeld, H., Arcas, D., Eble, M., Moore, C., Uslu, B., Pells, C., Spillane, M.C., Wright, L.M., and Gica, E. (2012). Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements, J. Geophys. Res., doi:10.1029/2011JC007635.

  • Tang, L., Titov, V. V., and Chamberlin, C. D. (2009). Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting, J. Geophys. Res., 114, C12025, doi:10.1029/2009JC005476.

  • Tang, L., Titov, V.V., Wei, Y., Mofjeld, H.O., Spillane, M., Arcas, D., Bernard, E.N., Chamberlin, C., Gica, E., and Newman, J. (2008). Tsunami forecast analysis for the May 2006 Tonga tsunami. J. Geophys. Res., 113, C12015, doi:10.1029/2008JC004922.

  • Tatehata, H. (1997). The new tsunami warning system of the Japan Meteorological Agency. In G. Hebenstreit (ed.), Perspectives of Tsunami Hazard Reduction, Kluwer Acad. Pub., 175–188.

  • Titov, V.V. (2009). Tsunami forecasting, Chapter 12 in The Sea, Volume 15: Tsunamis, Harvard University Press, Cambridge, MA and London, England, 371–400.

  • Titov, V.V. and González, F.I. (1997). Implementation and testing of the Method of Splitting Tsunami (MOST) model. NOAA Tech. Memo. ERL PMEL-112 (PB98-122773), NOAA/Pacific Marine Environmental Laboratory, Seattle, WA, 11 pp.

  • Titov, V.V., González, F.I., Bernard, E.N., Eble, M.C., Mofjeld, H.O., Newman, J.C., and Venturato, A.J. (2005). Real-time tsunami forecasting: challenges and solutions, Nat. Hazards, 35(1), Special Issue, U.S. National Tsunami Hazard Mitigation Program, pp. 41–58.

  • Titov, V.V. and Synolakis, C.E. (1995). Modeling of breaking and non-breaking long-wave evoluation and runup using VTCS-2, J. Waterway, Port, Coastal, and Ocean Eng., 121, 308–316.

  • Titov, V.V. and Synolakis, C.E. (1998). Numerical modeling of tidal wave runup, J. Waterway, Port Coastal Ocean Eng., 124(4), 157–171.

  • Tsushima, H., Hino, R., Fujimoto, H., Tanioka, Y., and Imamura, F. (2009). Near-field tsunami forecasting from cabled ocean bottom pressure data, J. Geophys. Res., 114, B06309, doi:10.1029/2008JB005988.

  • Tsushima, H., Hirata, K., Hayashi, Y., Tanioka, Y., Kimura, K., Sakai, S., Shimohara, M., Kanazawa, T., Hino, R., and Maeda, K. (2011). Near-field tsunami forecasting using offshore tsunami data from the 2011 off the Pacific coast of Tohoku earthquake, Earth, Palnets, and Space, Special Issue: First Results of the 2011 Off the Pacific Coast of Tohoku Earthquake, 63(7), 821–826.

  • Uslu, B., Power, W., Greeslade, D., Eble, M., and Titov, V.V. (2011). The July 15, 2009 Fiordland, New Zealand tsunami: real–time assessment. Pure Appl. Geophys., 168, 1963–1972.

  • Vigny C, Socquet A, Peyrat S, Ruegg JC, Métois M, Madariaga R, Morvan S, Lancieri M, Lacassin R, Campos J, Carrizo D, Bejar-Pizarro M, Barrientos S, Armijo R, Aranda C, Valderas-Bermejo MC, Ortega I, Bondoux F, Baize S, Lyon-Caen H, Pavez A, Vilotte JP, Bevis M, Brooks B, Smalley R, Parra H, Baez JC, Blanco M, Cimbaro S, Kendrick E. (2011). The 2010 M w 8.8 Maule megathrust earthquake of central Chile, monitored by GPS, Science, 332, 1417–1421.

  • Wei, Y., Bernard, E., Tang, L., Weiss, R., Titov, V., Moore, C., Spillane, M., Hopkins, M., and Kânoğlu, U. (2008). Real-time experimental forecast of the Peruvian tsunami of August 2007 for U.S. coastlines. Geophys. Res. Lett. 35, L04609, doi:10.1029/2007GL032250.

  • Wei, Y., Cheung, K.F., Curtis, G.D., and McCreery, C.S. (2003). Inverse algorithm for tsunami forecasts, J. Waterway, Port, Coastal and Ocean Eng., 129(2), 60–69.

  • Wei, Y., Titov, V.V., Newman, A.V., Hayes, G., Tang, L. and Chamberlin, C. (2011). Near-field hazard assessment of March 11, 2011 Japan tsunami sources inferred from different methods, In Proceedings of Oceans’ 11 MTS/IEEE, Kona, IEEE, Piscataway, NJ, 19–22 September 2011, No. 6107294, 9 pp.

  • Whitmore, P.M. (2009). Tsunami warning systems, Chapter 13 in The Sea, Volume 15: Tsunamis, Harvard University Press, Cambridge, MA and London, England, 401–442.

  • Yamazaki, Y., Lay, T., Cheung, K.F., Yue, H., and Kanamori, H. (2011). Modeling near-field tsunami observations to improve finite-fault slip models for the 11 March 2011 Tohoku earthquake, Geophys. Res. Lett., 38, L12605, doi:10.1029/2011GL047508.

  • Yeh, H., (1991). Tsunami bore runup. Natural Hazards, 4(2–3), 209–220.

  • Zhou, H., Moore, C.W., Wei, Y. and Titov, V.V. (2011). A nested-grid Boussinesq-type approach to modeling dispersive propagation and runup of landslide-generated tsunamis, Nat. Hazards Earth Syst. Sci., 11, 2677–2697, doi:10.519/nhess-11-2677-2011.

  • Zhou, H., Wei, Y. and Titov, V.V. (2012). Dispersive modeling of the 2009 Samoa tsunami, Geophys. Res. Lett., in press.

Download references

Acknowledgments

The authors are grateful to NOWPHAS for providing nearshore tsunami measurements that were used in this study. We thank L. Wright for her assistance in digitizing the inundation measurements. We are also grateful to Dr. Jose Borrero and two anonymous reviewers for their valuable comments and suggestions on improving the quality of this paper. This publication is partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA100AR4320148, JISAO Contribution 1826; PMEL Contribution 3795.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wei.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 26915 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Y., Chamberlin, C., Titov, V.V. et al. Modeling of the 2011 Japan Tsunami: Lessons for Near-Field Forecast. Pure Appl. Geophys. 170, 1309–1331 (2013). https://doi.org/10.1007/s00024-012-0519-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-012-0519-z

Keywords

Navigation