Skip to main content

Advertisement

Log in

Effects of long-term acclimation to environmental hypercapnia on extracellular acid–base status and metabolic capacity in Mediterranean fish Sparus aurata

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

In the context of future scenarios of anthropogenic CO2 accumulation in marine surface waters, the present study addresses the effects of long-term hypercapnia on a Mediterranean fish, Sparus aurata. By equilibration with elevated CO2 levels seawater pH was lowered to a value of 7.3, close to the maximum pH drop expected in marine surface waters from atmospheric CO2 accumulation. Intra- and extracellular acid–base parameters as well as changes in enzyme profiles were studied in red and white muscles and the heart under both normocapnia and hypercapnia. The activities of pyruvate kinase (PK), lactate dehydrogenase (L-LDH), citrate synthase (CS), malate dehydrogenase and and 3-hydroxyacyl CoA dehydrogenase (HOAD) reflect the pathways and capacity of oxidative processes in metabolism. Long-term hypercapnia caused a transient reduction in blood plasma pH (pHe) as well as in intracellular pH (pHi). Compensation of the acidosis occurred through increased plasma and cellular bicarbonate levels. Changes in enzymatic activities, especially the increase in the activity of L-LDH, paralleled by a drop in CS activity in white and red muscles reflect a shift from aerobic to anaerobic pathways of substrate oxidation during long-term acclimation under hypercapnia. The present results suggest that moderate environmental hypercapnia changes the metabolic profile in tissues of S. aurata. Consequences for slow processes like growth and reproduction potential as well as potential harm at population, species and ecosystem levels require further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Blancheton JP (2000) Developments in recirculation systems for Mediterranean fish species. Aquacult Eng 22:17–31

    Article  Google Scholar 

  • Burleson ML, Smatresk NJ (2000) Branchial chemoreceptors mediate ventilatory responses to hypercapnic acidosis in channel catfish. Comp Biochem Physiol 125A:403–414

    Article  CAS  Google Scholar 

  • Burleson ML, Smatresk NJ, Milsom WK (1992) Afferent inputs associated with cardiovascular control in fish. In: Hoar WS, Randall DJ (eds) Fish Physiology. Academic, New York, pp 389–426

    Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH Nature 425:365

    Article  CAS  Google Scholar 

  • Cameron JN (1971) Rapid method for determination of total carbon dioxide in small blood samples. J Appl Physiol 31:632–634

    Article  CAS  Google Scholar 

  • Claiborne JB, Evans DE (1992) Acid–base balance and ion transfers in the spiny dogfish (Squalus acanthias) during hypercapnia: a role for ammonia excretion. J Exp Zool 261:9–17

    Article  CAS  Google Scholar 

  • Crocker EC, Cech Jr JJ (1998) Effects of hypercapnia on blood-gas and acid–base status in the white sturgeon, Acipenser transmontanus. J Comp Physiol 168B:50–60

    Article  Google Scholar 

  • Cruz-Neto AP, Steffensen JF (1997) The effects of actute hypoxia and hypercapnia on oxygen consumption of the freshwater European eel. J Fish Biol 50:759–769

    Article  Google Scholar 

  • Driedzic RW, Almeida-Val VM F (1996) Enzymes of cardiac energy metabolism in Amazonian teleosts and fresh-water stingray (Potamotrygon hystrix). J Exp Zool 274:327–333

    Article  CAS  Google Scholar 

  • Driedzic RW, Sidell DB, Stowe D, Branscombe R (1987) Matching of vertebrate cardiac energy demand to energy metabolism. Am J Physiol 252:R930–R937

    CAS  PubMed  Google Scholar 

  • Fivelstad S, Olsen AB, Klùften H, Ski H, Stefansson S (1999) Effects of carbon dioxide on Atlantic salmon (Salmo salar L.) smolts, at constant pH in bicarbonate rich freshwater. Aquaculture 178:171–187

    Article  Google Scholar 

  • Fivelstad S, Olsen AB, Åsgård T, Baeverfjord G, Rasmussen T, Vindheim T Stefansson S (2003) Longterm sublethal effects of carbon dioxide on Atlantic salmon smolts (Salmo salar L.): ion regulation, haematology, element composition, nephrocalcinosis and growth parameters. Aquaculture 215:301–319

    Article  CAS  Google Scholar 

  • Gilmour MK (2001) The CO2/pH ventilatory drive in fish. Comp Biochem Physiol A 130:219–240

    Article  CAS  Google Scholar 

  • Gilmour KM, Perry SF (1994) The effects of hypoxia, hyperoxia or hypercapnia on the acid–base disequilibrium in the arterial blood of rainbow trout. J Exp Biol 192:269–284

    CAS  PubMed  Google Scholar 

  • Graham MS, Turner JD, Wood CM (1990) Control of ventilation in the hypercapnic skate Raja ocellata. I. Blood and extradural fluid. Respir Physiol 80:259–277

    Article  CAS  Google Scholar 

  • Hayashi M, Kita J, Ishimatsu A (2004) Acid–base responses to lethal aquatic hypercapnia in three marine fish. Mar Biol 144:153–160

    Article  CAS  Google Scholar 

  • Heisler N (1984) Acid–base regulation in fishes. In: Fish physiology Hoar WS, Randall DJ (eds) vol X, pp 315–392. Academic, Orlando

  • Heisler N (1986a) Comparative aspects of acid–base regulation. In: Heisler N (eds) Acid–base regulation in animals. Elsevier, Amsterdam

  • Heisler N (1986b) Buffering and transmembrane ion transfer processes. In: Heisler N (eds).Acid–base regulation in animals. Elsevier, Amsterdam, pp 3–47

    Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation. University Press, Princeton

    Google Scholar 

  • Hughes GM, Shelton G (1962) Respiratory mechanisms and their nervous control in fish. Adv Comp Physiol Biochem 1:275–364

    CAS  PubMed  Google Scholar 

  • Ibarz A, Fernadez-Borras J, Blasco J, Gallardo AM, Sanchez J (2003) Oxygen consumption and feeding rates of gilthead sea bream (Sparus aurata) reveal lack of acclimation to cold. Fish Physiol Biochem 29:313–321

    Article  CAS  Google Scholar 

  • International Panel on Climate Change (IPCC) (2001) Climate change: impacts, adaptations and vulnerability. Cambridge University Press, New York

  • Ishimatsu A, Kita J (1999) Effects of environmental hypercapnia on fish. Jpn J Ichthyol 46:1–13

    Google Scholar 

  • Ishimatsu A, Kikkawa T, Hayashi M, Lee K-S, Kita J (2004) Effects of CO2 on marine fish: larvae and adults. J Oceanogr 60:731–741

    Article  CAS  Google Scholar 

  • Johnston IA, Moon TW (1980a) Endurance exercise training in the fast and slow muscles of a teleost fish (Pollachius virens). J Comp Physiol 135:147–156

    Article  CAS  Google Scholar 

  • Johnston IA, Moon TW (1980b) Exercise training in skeletal muscle of brook trout (Salvelinus fontinalis). J Exp Biol 87:177–194

    CAS  Google Scholar 

  • Kinkead R, Perry SF (1991) The effects of catecholamines on ventilation in rainbow trout during hypoxia or hypercapnia. Respir Physiol 84:77–92

    Article  CAS  Google Scholar 

  • Lackner KSA (2003) A guide to CO2 sequestration. Science 300:1677–1678

    Article  CAS  Google Scholar 

  • Langenbuch M, Pörtner HO (2003) Energy budget of Antarctic fish hepatocytes (Pachycara brachycephalum and Lepidonotothen kempi) as a function of ambient CO2: pH dependent limitations of cellular protein biosynthesis? J Exp Biol 206:3895–3903

    Article  CAS  Google Scholar 

  • Larsen BK, Pörtner HO, Jensen FB (1997) Extra- and intracellular acid–base balance and ionic regulation in cod (Gadus morhua) during combined and isolated exposures to hypercapnia and copper. Mar Biol 128:337–346

    Article  CAS  Google Scholar 

  • Lee K-S, Kita J, Ishimatsu A (2003) Effects of lethal levels of environmental hypercapnia on cardiovascular and blood-gas status in yellowtail Seriola quinqueradiata. Zool Sci 20:417–422

    Article  Google Scholar 

  • Lowry OH, Passonneau JV (1972) A flexible system of enzymatic analysis. Academic, New York

    Google Scholar 

  • McKendry JE, Milsom WK, Perry SF (2001) Branchial CO2 receptors and cardiorespiratory ad- 2justments during hypercarbia in Pacific spiny dogfish (Squalus acanthias). J Exp Biol 204:1519–1527

    CAS  PubMed  Google Scholar 

  • McKenzie DJ, Taylor WE, Dalla Valle ZA, Steffensen FJ (2002) Tolerance of acute hypercapnic acidosis by the European eel (Anguilla anguilla). J Comp Physiol 172B:339–B346

    Google Scholar 

  • Moon TW, Mommsen TP (1987) Enzymes of intermediary metabolism in tissues of little skate (Raja erinacea). J Exp Zool 244:9–15

    Article  CAS  Google Scholar 

  • Mozeto AA, Krusche AV, Luccas PO (1997) Aspectos do ciclo biogeoquimico do enoxfre em uma lagoa marginal da area alagavel do Rio Moji-Estacao Ecologica de Jatai, Luiz Antonio, SP. Geochem Brail 11:231–241

    CAS  Google Scholar 

  • Perry SF (1982) The regulation of hypercapnic acidosis in two salmonids, the freshwater trout (Salmo gairdneri) and the seawater salmon (Oncorhynchus kisutch). Mar Behav Physiol 9:73–79

    Article  Google Scholar 

  • Perry SF, Reid SG (2002) Cardiorespiratory adjustments during hypercarbia in rainbow trout Oncorhynchus mykiss are initiated by external CO2 receptors on the first gill arch. J Exp Biol 202:2177–2190

    Google Scholar 

  • Perry SF, Walsh PJ, Mommsen TP, Moon TW (1988) Metabolic consequences of hypercapnia in the rainbow trout, Salmo gairdneri: b-adrenergic effects. Gen Comp Endocrinol 69:439–447

    Article  CAS  Google Scholar 

  • Pörtner HO (1990) An analysis of the effects of pH on oxygen binding by squid (Illexillecebrosus, Loligo pealei) haemocyanin. J Exp Biol 150:407–424

    Google Scholar 

  • Pörtner HO (2001) Climate change and temperature dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88:137–146

    Article  Google Scholar 

  • Pörtner HO (2002) Climate change and temperature dependent biogeography: systemic to molecular hierarchies of thermal tolerance in animals. Comp Biochem Physiol 132A:739–761

    Article  Google Scholar 

  • Pörtner HO, Boutilier GR, Tang Y, Towes PD (1990) Determination of intracellular pH and PCO2 after metabolic inhibition by fluoride and nitrilotriacetic acid. Resp Physiol 81:255–274

    Article  Google Scholar 

  • Pörtner HO, Reipschläger A, Heisler N (1998) Metabolism and acid–base regulation in Sipunculus nudus as a function of ambient carbon dioxide. J Exp Biol 201:43–55

    PubMed  Google Scholar 

  • Pörtner HO, Bock C, Reipschläger A (2000) Modulation of the cost of pHi regulation during metabolic depression: a 31P-NMR study in invertebrate (Sipunculus nudus) isolated muscle. J Exp Biol 203:2417–2428

    PubMed  Google Scholar 

  • Pörtner HO, Langenbuch M, Reipschläger A (2004) Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history? J Oceanogr 60:705–718

    Article  Google Scholar 

  • Pörtner HO, Langenbuch M, Michaelidis B (2005) Synergistic effects of temperature extremes, hypoxia and increases in CO2 on marine animals: from earth history to global change. J Geophys Res—Oceans: 110, C09S10, doi: 10.1029/2004JC002561

  • Reid GS, Sundin L, Kalinin AL, Rantin FT, Milsom WK (2000) Cardiovascular and respiratory reflexes in the tropical fish, traira (Hoplias malabaricus): CO2/pH chemoresponses. Resp Physiol 120:47–59

    Article  CAS  Google Scholar 

  • Ross RM, Krise WF, Redell LA, Bennett RM (2001) Effects of dissolved carbon dioxide on the physiology and behaviour of fish in artificial streams. Environ Toxicol 16:84–95

    Article  CAS  Google Scholar 

  • Sato T, Sato K (2002) Numerical prediction of the dilution process and its biological impacts in CO2 ocean sequestration. Mar Sci Technol 6:169–180

    Article  Google Scholar 

  • Scheid P, Shams H, Piiper J (1989) Gas exchange in vertebrates. Verh Dtsch Zool Ges 82:57–68

    Google Scholar 

  • Shirayama T, Thomton (2005) Effects of increased atmospheric CO2 on shallow-water marine benthos. J Geophys Res 110: C09S08, doi: 10.1029/2004JC002618

  • Sidell BD, Driedzic WR, Stowe DB, Johnston IA (1987) Biochemical correlations of power development and metabolic fuel preferenda in fish hearts. Physiol Zool 60:221–232

    Article  Google Scholar 

  • Singer TD, Ballantyne JS (1989) Absence of extrahepatic lipid oxidation in a freshwater elasmobranch, the dwarf stingray (Potamotrygon megdalenae): evidence from enzyme activites. J Exp Zool 251:355–360

    Article  CAS  Google Scholar 

  • Smart GR, Knox D, Harrison JG, Ralph JA, Richards RH, Cowey CB (1979) Nephrocalcinosis in rainbow trout Salmo gairdneri Richardson; the effect of exposure to elevated CO2 concentration. J Fish Diseases 2:279–289

    Article  CAS  Google Scholar 

  • Söderström V, Nilsson EG (2000) Brain blood flow during hypercapnia in fish: no role of nitric oxide. Brain Res 857:207–211

    Article  Google Scholar 

  • Toews DP, Holeton GF, Heisler N (1983) Regulation of the acid–base status during environmental hypercapnia in the marine teleost fish Conger conger. J Exp Biol 107:9–20

    CAS  PubMed  Google Scholar 

  • Tsikliras CA, Torre M, Stergiou IK (2005) Feeding habits and trophic level of round sardimella (Sardinella aurita) in the northeastern Mediterranean (Aegean Sea, Greece). J Biol Res 3:67–75

    Google Scholar 

  • Weber J-M, Haman F (1996) Pathways for Metabolic Fuels and Oxygen-in High Performance Fish. Comp Biochem Physiol 133A:33–38

    Article  Google Scholar 

  • Wedemeyer GA (1996) Physiology of fish in intensive culture systems. Chapman & Hall, New York, pp 60–98

    Google Scholar 

  • Wheatly MG (1989) Physiological response of the crayfish Pacifasticus leniusculus (Dana) to environmental hypoxia. I. Extracellular acid–base and electrolyte status and transbranchial exchange. J Exp Biol 57:673–680

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basile Michaelidis.

Additional information

Communicated by O. Kinne, Oldendorf/Luhe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michaelidis, B., Spring, A. & Pörtner, H.O. Effects of long-term acclimation to environmental hypercapnia on extracellular acid–base status and metabolic capacity in Mediterranean fish Sparus aurata . Mar Biol 150, 1417–1429 (2007). https://doi.org/10.1007/s00227-006-0436-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-006-0436-8

Keywords

Navigation