Skip to main content
Log in

Effect of food concentration and type of diet on Acartia survival and naupliar development

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

We have performed life table experiments to investigate the effects of different food types and concentrations on the larval development and survival up to adulthood of Acartia tonsa. The food species offered comprised a wide taxonomic spectrum: the pigmented flagellates Isochrysis galbana, Emiliania huxleyi, Rhodomonas sp., Prorocentrum minimum, the diatom Thalassiosira weissflogii, grown on medium offering enriched macronutrient concentrations and the ciliate Euplotes sp. initially cultured on Rhodomonas. For the ciliate species, also the functional response was studied. In order to avoid limitation by mineral nutrients, food algae have been taken from the exponential growth phase of the nutrient replete cultures. The suitability of Rhodomonas as a food source throughout the entire life cycle was not a surprise. However, in contrast to much of the recent literature about the inadequacy or even toxicity of diatoms, we found that also Thalassiosira could support Acartia-development through the entire life cycle. On the other hand, Acartia could not complete its life cycle when fed with the other food items, Prorocentrum having adverse effects even when mixed with Rhodomonas and Thalassiosira. Isochrysis well supported naupliar survival and development, but was insufficient to support further development until reproduction. With Emiliania and Euplotes, nauplii died off before most of them could reach the first copepodite stages. Acartia-nauplii showed a behavioral preference for Euplotes-feeding over diatom feeding, but nevertheless Euplotes was an insufficient diet to complete development beyond the naupliar stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Carotenuto Y, Ianora A, Buttino I et al (2002) Is postembryonic development in the copepod Temora stylifera negatively affected by diatom diets? J Exp Mar Biol Ecol 276:49–66

    Article  Google Scholar 

  • Chaudron Y, Poulet SA, Laabir M et al (1996) Is hatching success of copepod eggs diatom density-dependent? Mar Ecol Prog Ser 144:185–193

    Article  Google Scholar 

  • Chinnery FE, Williams JA (2004) The influence of temperature and salinity on Acartia (Copepoda: Calanoida) nauplii survival. Mar Biol 145:733–738

    Google Scholar 

  • Dam HG, Colin SP (2005) Prorocentrum minimum (clone Exuv) is nutritionally insufficient, but not toxic to the copepod Acartia tonsa. Harmful Algae 4:575–584

    Article  CAS  Google Scholar 

  • Durbin AG, Durbin EG, Wlodarczyk E (1990) Diel feeding behaviour in the marine copepod Acartia tonsa in relation to food availability. Mar Ecol Prog Ser 68:23–45

    Article  Google Scholar 

  • Fontana A, d’Ippolito G, Cutignano A et al (2007) LOX-Induced lipid peroxidation mechanism responsible for the detrimental effect of marine diatoms on zooplankton grazers. ChemBioChem 8:1810–1818

    Article  CAS  Google Scholar 

  • Goldman JC, McCarthy JJ, Peavey DG (1979) Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279:210–215

    Article  CAS  Google Scholar 

  • Houde SEL, Roman MR (1987) Effects of food quality on the functional ingestion response of the copepod Acartia tonsa. Mar Ecol Prog Ser 40:69–77

    Article  Google Scholar 

  • Ianora A, Poulet SA, Miralto A (1995) A comparative study of the inhibitory effect of diatoms on the reproductive biology of the copepod Temora stylifera. Mar Biol 125:279–286

    Article  Google Scholar 

  • Ianora A, Poulet SA, Miralto A (2003) The effects of diatoms on copepod reproduction. A review. Phycologia 42:351–363

    Article  Google Scholar 

  • Ianora A, Miralto A, Poulet SA et al (2004) Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature 429:403–407

    Article  CAS  Google Scholar 

  • Irigoien X, Head RN, Harris RP et al (2000) Feeding selectivity and egg production of Calanus helgolandicus in the English Channel. Limnol Oceanogr 45:44–54

    Article  Google Scholar 

  • Irigoien X, Harris RP, Verheye HM et al (2002) Copepod hatching success in marine ecosystems with high diatom concentrations. Nature 419:387–389

    Article  CAS  Google Scholar 

  • Irigoien X, Titelman J, Harris RP et al (2003) Feeding of Calanus finmarchicus nauplii in the Irminger Sea. Mar Ecol Prog Ser 262:193–200

    Article  Google Scholar 

  • Jónasdottir SH, Kiørboe T (1996) Copepod recruitment and food composition: do diatoms affect hatching success? Mar Biol 125:743–750

    Article  Google Scholar 

  • Jones RH, Flynn KJ (2005) Nutritional status and diet composition affect the value of diatoms as copepod prey. Science 307:1457–1459

    Article  CAS  Google Scholar 

  • Jones RH, Flynn KJ, Anderson TR (2002) Effect of food quality on carbon and nitrogen growth efficiency in the copepod Acartia tonsa. Mar Ecol Prog Ser 235:147–156

    Article  Google Scholar 

  • Jonsson PR, Tiselius P (1990) Feeding-behavior, prey detection and capture efficiency of the copepod Acartia tonsa feeding on planktonic ciliates. Mar Ecol Prog Ser 60:35–44

    Article  Google Scholar 

  • Katechakis A, Stibor H, Sommer U, Hansen T (2004) Feeding selectivities and food-niche separation of Acartia clausi, Penilia avirostris (Crustacea) and Doliolum denticulatum (Thaliacea) in Blanes Bay (Catalan Sea, NW Mediterranean). J Plankton Res 26(6):589–603

    Article  Google Scholar 

  • Kiørboe T, Saiz E, Viitasalo M (1996) Prey switching behaviour in the planktonic copepod Acartia tonsa. Mar Ecol Prog Ser 143:65–75

    Article  Google Scholar 

  • Klein Breteler WCM, Schogt N, Rampen S (2005) Effect of diatom nutrient limitation on copepod development: role of essential lipids. Mar Ecol Prog Ser 219:125–130

    Article  Google Scholar 

  • Kleppel GS (1993) On the diet of calanoid copepods. Mar Ecol Prog Ser 99:183–195

    Article  Google Scholar 

  • Kleppel GS, Burkart CA (1995) Egg production and the nutritional environment of Acartia tonsa: the role of food quality in copepod nutrition. ICES J Mar Sci 52:297–304

    Article  Google Scholar 

  • Kleppel GS, Holliday DV, Pieper RE (1991) Trophic interactions between copepods and microzooplankton: a question about the role of diatoms. Limnol Oceanogr 45:569–579

    Google Scholar 

  • Knuckey RM, Semmens GL, Mayer RJ et al (2005) Development of an optimal microalgal diet for the culture of the calanoid copepod Acartia sinjiensis: effect of algal species and feed concentration on copepod development. Aquaculture 249:339–351

    Article  Google Scholar 

  • Koski M, Klein Breteler WCM (2003) Influence of diet on copepod survival in the laboratory. Mar Ecol Prog Ser 264:73–82

    Article  Google Scholar 

  • Legendre L (1990) The significance of microalgal blooms for fisheries and export of particulate organic carbon in the oceans. J Plankton Res 12:681–699

    Article  CAS  Google Scholar 

  • Lonsdale DJ, Cosper EM, Kim WS, Doall M, Divadeenam A, Jonasdottir SH (1996) Food web interactions of Long Island bays, with preliminary observations on brown tide effects. Mar Ecol Prog Ser 134:247–263

    Article  Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and of the protist plankton. Limnol Oceanogr 45:559–579

    Article  Google Scholar 

  • Meyer-Harms B, Irigoien X et al (1999) Selective feeding on natural phytoplankton by Calanus finmarchicus before, during, and after the 1997 spring bloom in the Norwegian Sea. Limnol Oceanogr 44:154–165

    Article  Google Scholar 

  • Miralto A, Barone G, Romano G et al (1999) The insidious effect of diatoms on copepod reproduction. Nature 402:173–176

    Article  CAS  Google Scholar 

  • Miralto A, Guglielmo L, Zagami G et al (2003) Inhibition of population growth in the copepods Acartia clausi and Calanus helgolandicus during diatom blooms. Mar Ecol Prog Ser 254:253–268

    Article  Google Scholar 

  • Møller EF, Nielsen TG (2001) Production of bacterial substrate by marine copepods: effect of phytoplantkon biomass and cell size. J Plankton Res 23:527–536

    Article  Google Scholar 

  • Paffenhöfer GA, Ianora A, Miralto A et al (2005) Colloquium on diatom–copepod interactions. Mar Ecol Prog Ser 286:293–305

    Article  Google Scholar 

  • Pierson JJ, Halsband-Lenk C, Leising AW (2005) Reproductive success of Calanus pacificus during diatom blooms in Dabob Bay, Washington. Prog Oceanogr 67:314–331

    Article  Google Scholar 

  • Poulet SA, Ianora A et al (1994) Do diatoms arrest embryonic development in copepods? Mar Ecol Prog Ser 111:79–96

    Article  Google Scholar 

  • Poulet SA, Wichard T, Ledoux JB et al (2006) Influence of diatoms on copepod reproduction. I. Field and laboratory observations related to Calanus helgolandicus egg production. Mar Ecol Prog Ser 308:129–142

    Article  CAS  Google Scholar 

  • Poulet SA, Escribano R, Hidalgo P et al (2007) Collapse of Calanus chilensis production in a marine environment with high diatom concentration. J Exp Mar Biol Ecol 352:187–199

    Article  Google Scholar 

  • Putt M, Stoecker DK (1989) An experimentally determined carbon:volume ratio for marine ‘oligotrichous’ ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097–1103

    Article  Google Scholar 

  • Rey C, Harris R, Irigoien X et al (2001) Influence of algal diet on growth and ingestion of Calanus helgolandicus nauplii. Mar Ecol Prog Ser 216:151–165

    Article  Google Scholar 

  • Saiz E, Kiørboe T (1995) Predatory and suspension feeding of the copepod Acartia tonsa in turbulent environments. Mar Ecol Prog Ser 122:147–158

    Article  Google Scholar 

  • Sommer U (1991a) The application of the droop-model of nutrient limitation to natural phytoplankton. Verh Int Verein Limnol 24:791–794

    CAS  Google Scholar 

  • Sommer U (1991b) A comparison of the Droop and the Monod models of nutrient limited growth applied to natural populations of phytoplankton. Funct Ecol 5:535–544

    Article  Google Scholar 

  • Sommer U, Sommer F (2006) Cladocerans versus copepods: the cause of contrasting top-down controls in freshwater and marine phytoplankton. Oecologia 147:183–194

    Article  Google Scholar 

  • Sommer F, Stibor H, Sommer U, Velimirov B (2000) Grazing by mesozooplankton from Kiel Bight, Baltic Sea, on different sized algae and natural seston size fractions. Mar Ecol Prog Ser 199:43–53

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry. Princeton University Press, Princeton

  • Stoecker DK, Egloff DA (1987) Predation by Acartia tonsa on planktonic ciliates and rotifers. J Exp Mar Biol Ecol 141:87–105

    Google Scholar 

  • Støttrup JG, Jensen J (1990) Influence of algal diet on feeding and egg-production of the calanoid copepod Acartia tonsa Dana. J Exp Mar Biol Ecol 141:87–103

    Article  Google Scholar 

  • Swadling KM, Marcus NH (1994) Selectivity in the natural diets of Acartia tonsa Dana (Copepoda: Calanoida): comparison of juveniles and adults. J Exp Mar Biol Ecol 181:91–103

    Article  Google Scholar 

  • Takahashi K, Tiselius P (2005) Ontogenetic change of foraging behaviour during copepodite development of Acartia clausii. Mar Ecol Prog Ser 303:213–223

    Article  Google Scholar 

  • Tokle NE (2006) Are the ubiquitous marine copepods limited by food or predation? Experimental and field-based studies with main focus on Calanus finmarchicus. Ph.D. thesis, NTNU, Trondheim, p 48

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitt Int Ver Theor Angew Limnol 9:263–272

    Google Scholar 

  • Villegas CT, Kanazawa A (1979) Relationship between diet composition and growth rate of the zoёal and mysis stages of Penaeus japonicus Bate. Fish Res J Philipp 4:32–40

    Google Scholar 

  • Von Stosch HA, Drebes G (1964) Entwicklungsgeschichtliche Untersuchungen an zentrischen Diatomeen IV. Die Planktondiatomee Stephanopyxis turris – ihre Behandlung und Entwicklungsgeschichte. Helgol Wiss Meeresunters 11:209–257

    Article  Google Scholar 

  • Wichard T, Poulet SA, Halsband-Lenk C et al (2005) Survey of the chemical defence potential of diatoms: screening of fifty one species for α, β, γ, δ-unsaturated aldehydes. J Chem Ecol 31(4):949–958

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Nicole Aberle-Malzahn for Acartia eggs, Andrea Saage for medium and for a stock culture of Euplotes, and Cordula Stielau for algal stock cultures. These experiments were carried out in the frame of the GLOBEC project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie M. H. Ismar.

Additional information

Communicated by X. Irigoien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ismar, S.M.H., Hansen, T. & Sommer, U. Effect of food concentration and type of diet on Acartia survival and naupliar development. Mar Biol 154, 335–343 (2008). https://doi.org/10.1007/s00227-008-0928-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-008-0928-9

Keywords

Navigation