Skip to main content
Log in

Life on the edge: physiological problems in penaeid prawns Litopenaeus stylirostris, living on the low side of their thermopreferendum

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The underlying physiological mechanisms explaining why the adult penaeid prawn Litopenaeus stylirostris cannot successfully face heavy stressful events on the low edge of its thermopreferendum (20–22°C) were studied during the austral winter. Prawns were studied during recovery from net fishing and rapid transfer from outdoor earthen ponds into indoor facilities. This was assimilated to a predator–prey interaction. O2-consumption, hemolymph osmotic pressure (OPh), arterial O2 partial pressure (PO2), a–v O2-capacitance and mortality rates were analysed. Data were compared to similar challenges performed at 28°C during the austral summer. At 20–22°C, mortality of up to 70% was observed after 2 days whereas at 28°C, maximum mortality was 3–5%. Mortality occurred when OPh shifted towards equilibrium with seawater, the resting O2-consumption, the a–v O2-capacitance and the arterial PO2 went down to minimal values. These events can be counterbalanced by transiently hyper-oxygenating the hemolymph or by blocking the OPh shift in isosmotic water (Wabete et al. in Aquaculture 260:181–193, 2006): both led to a dramatic decrease in mortality. It is concluded that in penaeid prawns L. stylirostris, a mismatch between O2-demand and O2-supply contributes to setting the geographical limits for this animal species through an impairment of their hemolymph O2-carrying capacity during heavy stressful events like chasing by predators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Böcking D, Dircksen H, Keller R (2002) The crustacean neuropeptides of the CHH/MIH/GIH family: structures and biological activities. In: Wiese K (ed) The crustacean nervous system. Springer, Berlin, pp 84–97

    Google Scholar 

  • Bridges CR (1983) PO2 and oxygen content measurements in hemolymph samples using polarographic oxygen sensor. In: Gnaiger E, Forstner H (eds) Polarographic oxygen sensors. Springer, Heidelberg, pp 219–233

    Google Scholar 

  • Butler PJ, Taylor EW, McMahon BR (1978) Respiratory and circulatory changes in the lobster (Homarus vulgaris) during long term exposure to moderate hypoxia. J Exp Biol 73:131–146

    Google Scholar 

  • Carvalho PSM, Phan VN (1997) Oxygen consumption and ammonia excretion of Xiphopenaeus kroyeri Séller (Penaeidae) in relation to mass temperature and experimental procedures, shrimp oxygen uptake and ammonia excretion. J Exp Mar Biol Ecol 209:143–156

    Article  CAS  Google Scholar 

  • Chang ES (2005) Stressed-out lobster: crustacean hyperglycemic hormone and stress proteins. Integr Comp Biol 45:43–50

    Article  CAS  Google Scholar 

  • Charmantier G, Charmantier-Daures M, Aiken DE (1984) Neuroendocrine control hydromineral regulation in the American lobster, Homarus americanus (H. Milne-Edwards, 1837) (Crustacea, Decapoda). Juv Gen Comp Endocrinol 54:8–19

    Article  CAS  Google Scholar 

  • Charmantier-Daures M, Charmantier G, Van Deijnen JE, Van Herp F, Thuet P, Trilles J-P, Aiken DE (1988a) Isolement d’un facteur pédonculaire intervenant dans le contrôle neuroendocrine du métabolisme hydrominéral de Homarus americanus (Crustacea, Decapoda). Premiers résultats. CR Acad Sci 307:439–444

    CAS  Google Scholar 

  • Charmantier-Daures M, Thuet P, Charmantier G, Trilles J-P (1988b) Tolérance à la salinité et osmorégulation chez les post-larves de Penaeus japonicus et P. chinensis. Effet de la température. Aquat Living Ressour 1:267–276

    Article  Google Scholar 

  • Charmantier G, Bouaricha N, Charmantier-Daures M, Thuet P, Trilles J-P (1989) Salinity tolerance and osmoregulatory capacity as indicators of the physiological state of penaeid shrimps. Eur Aquac Soc Spec Publ 10:65–66

    Google Scholar 

  • Charmantier-Daures M, Charmantier G, Janssen KPC, Aiken DE, Van Herp F (1994) Involvement of eyestalk factors in the neuroendocrine control of osmoregulation in adult lobster Homarus americanus. Gen Comp Endocrinol 94:281–293

    Article  PubMed  CAS  Google Scholar 

  • Cheng W, Liu C-H, Kuo C-M (2003) Effects of dissolved oxygen on hemolymph parameters of freshwater giant prawn, Macrobrachium rosenbergii (de Man). Aquaculture 220:843–856

    Article  CAS  Google Scholar 

  • Dall W, Smith DM (1986) Oxygen consumption an ammoni-N excretion in fed and starved tiger prawns, Penaeus esculentus Haswell. Aquaculture 55:23–33

    Article  CAS  Google Scholar 

  • Drach P (1939) Mue et cycle d’intermue chez les Crustacés Décapodes. Ann Inst Oceanogr Paris 19:103–391

    Google Scholar 

  • Eckhardt E, Pierrot C, Thuet P, Van Herp F, Charmantier-Daures M, Trilles JP, Charmantier G (1995) Stimulation of osmoregulating process in the perfused gill of the crab Pachygrapsus marmoratus (Crustacea, Decapoda) by a sinus gland peptide. Gen Comp Endocrinol 99:169–177

    Article  PubMed  CAS  Google Scholar 

  • Ergusa S (1961) Studies on the respiration of the kuruma prawns Penaeus japonicus (Bate). II. Preliminary experiments on its oxygen concentration. Bull Jpn Soc Sci Fish 27:650–659

    Google Scholar 

  • Forgue J, Burtin B, Massabuau J-C (1989) Maintenance of oxygen consumption in resting teleost Silurus glanis at various levels of oxygenation. J Exp Biol 143:305–319

    Google Scholar 

  • Forgue J, Truchot J-P, Massabuau J-C (1992) Low arterial PO2 in resting crustaceans is independent of blood O2 affinity. J Exp Biol 170:257–264

    Google Scholar 

  • Frederich M, Pörtner HO (2000) Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, Maja squinado. Am J Physiol 279:R1531–R1538

    CAS  Google Scholar 

  • Henry RP, Booth CE, Lallier FH, Walsh PJ (1994) Post-exercise lactate production and metabolism in three species of aquatic and terrestrial decapod crustaceans. J Exp Biol 186:215–234

    CAS  Google Scholar 

  • Hetz SK, Bradley TJ (2005) Insects breathe discontinuously to avoid oxygen toxicity. Nature 233:516–519

    Article  Google Scholar 

  • Keller R, Orth HP (1990) Hyperglycemic neuropetides in crustaceans. Prog Clin Biol Res 342:265–271

    PubMed  CAS  Google Scholar 

  • Korsmeyer KE, Dewar H, Lai NC, Graham JB (1996) The aerobic capacity of tunas: adaptation for multiple metabolic demands. Comp Biochem Physiol 113A:17–24

    Article  CAS  Google Scholar 

  • Kulkarni GK, Joshi PK (1980) Some aspects of repiratory metabolism of penaeid prawn, Penaeus japonicus (Bate) (Crustacea, Decapoda, Penaeidae). Hydrobiologia 75:27–32

    Article  Google Scholar 

  • Kurmaly K, Yule AB, Jones DA (1989) Effects of body size and temperature on the metabolic rate of Penaeus monodon. Mar Biol 103:25–30

    Article  Google Scholar 

  • Kutty MN (1969) Oxygen consumption of the prawns Penaeus indicus (H. Milne Edwards) and Penaeus semisulcatus De Haan. FAO Fish Rept 57:957–969

    Google Scholar 

  • Legeay A, Massabuau J-C (1999) Blood oxygen requirement in resting crab Carcinus maenas 24 hours after feeding. Can J Zool 77:784–794

    Article  Google Scholar 

  • Legeay A, Massabuau J-C (2000) Effect of salinity on hypoxia tolerance of resting green crabs, Carcinus maenas, after feeding. Mar Biol 136:387–396

    Article  CAS  Google Scholar 

  • Lemaire P, Bernard E, Martinez-Paz JA, Chim L (2002) Combined effect of temperature and salinity on osmoregulation of juvenile and subadult of Penaeus stylirostris. Aquaculture 209:307–317

    Article  Google Scholar 

  • Lignot JH, Spanings-Pierrot C, Charmantier G (2000) Osmoregulatory capacity as a tool in monitoring the physiological condition and the effect of stress in crustaceans. Aquaculture 191:209–245

    Article  CAS  Google Scholar 

  • Massabuau JC (2001) From a low blood- to low tissue-oxygenation strategy, an evolutionary theory. Respir Physiol 128:249–262

    Article  PubMed  CAS  Google Scholar 

  • Massabuau JC (2003) Primitive, and protective, our cellular oxygenation status? Mech Ageing Dev 124:857–863

    Article  PubMed  Google Scholar 

  • Massabuau JC, Burtin B (1984) Regulation of the oxygen consumption in the crayfish Astacus leptodactylus: role of the peripheral O2 chemoreception. J Comp Physiol B 155:43–49

    Article  Google Scholar 

  • Massabuau JC, Forgue J (1996) A field vs laboratory study of blood O2-status in normoxic crabs at different temperatures. Can J Zool 74(3):423–430

    Google Scholar 

  • Massabuau JC, Soyez C (2004) La gestion du flux d’oxygène chez les animaux aquatiques. Application au cas des crevettes pénéidés. In: Ifremer (ed) Styli 2003: trente ans de crevetticulture en Nouvelle Calédonie. Actes colloques (38), pp 66–74

  • Massabuau JC, Dejours P, Sakibara Y (1984) Ventilatory CO2 drive in the crayfish: influence of oxygen consumption level and water oxygenation. J Comp Physiol B 154:65–72

    Article  Google Scholar 

  • Maxime V, Peyraud-Waitzenegger M, Claireaux G, Peyraud C (1990) Effects of rapid transfer from sea water to fresh water on respiratory variables, blood acid-base status and O2 affinity of haemoglobin in Atlantic salmon (Salmo salar). J Comp Physiol B 160:31–39

    Article  Google Scholar 

  • Mente E, Legeay A, Houlihan D, Massabuau J-C (2003) Influence of oxygen partial pressures on protein synthesis in feeding crabs. Am J Physiol Regul Integr Comp Physiol 284:R500–R510

    PubMed  CAS  Google Scholar 

  • Metzger R, Sartoris FJ, Langenbuch M, Pörtner HO (2007) Influence of elevated CO2 concentrations on thermal tolerance of the edible crab Cancer pagurus. J Thermal Biol 32:144–151

    Article  Google Scholar 

  • Morris S (2001) Neuroendocrine regulation of osmoregulation and the evolutioin of air-breathing in decapod crustaceans. J Exp Biol 204:979–989

    PubMed  CAS  Google Scholar 

  • Ott ME, Heisler N, Ultsch GR (1980) A re-evaluation of the relationship between temperature and the critical oxygen tension in freshwater fishes. Comp Biochem Physiol 67A:337–340

    Article  Google Scholar 

  • Péqueux A, Gilles R (1988) NaCl transport in gills and related structures. In: Gregor R (ed) Comp Environ Physiol vol 1, NaCl transport in epithelia. Springer, Berlin, pp 2–73

    Google Scholar 

  • Pérez Farfante I, Kensley B (1997) Penaeoid and Sergestoid shrimps and prawns of the world: keys and diagnoses for the families and genera. Mémoires du Muséum Nationale d’Histoire Naturelle, tome 175:233p

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315(5808):49–50

    Article  Google Scholar 

  • Pörtner HO, Peck LS, Zielinski S, Conway LZ (1999) Intracellular pH and energy metabolism in the highly stenothermal Antarctic bivalve Limopsis marionensis as a function of ambient temperature. Polar Biol 22:17–30

    Article  Google Scholar 

  • Prosser CL, Heath JE (1991) Temperature. In: Prosser CL (ed) Environmental and metabolic animal physiology. Wilez-Liss, New York, pp 109–165

    Google Scholar 

  • Serrano L, Blanvillain G, Soyez D, Charmantier G, Grousset E, Aujoulat F, Spanings-Pierrot C (2003) Putative involvement of crustacean hyperglycemic hormone isoforms in the neuroendocrine mediation of osmoregulation in the crayfish Astacus leptodactylus. J Exp Biol 206:979–988

    Article  PubMed  CAS  Google Scholar 

  • Sommer A, Klein B, Pörtner HO (1997) Temperature induced anaerobiosis in two populations of the polychaete worm Arenicola marina (L). J Comp Physiol B 167:25–35

    Article  Google Scholar 

  • Spanings-Pierrot C, Soyez D, Van Herp F, Gompel M, Skaret G, Grousset E, Charmantier G (2000) Involvement of crustacean hyperglycemic hormone in the control of gill ion transport in the crab Pachygrapsus marmoratus. Gen Comp Endocrinol 119:340–350

    Article  PubMed  CAS  Google Scholar 

  • Spanopoulos-Hernandez M, Martinez-Palacios CA, Vanegaz-Perez RC, Rosas C, Rosse LG (2005) The combined effects of salinity and temperature on the oxygen consumption of juvenile shrimps Litopenaeus stylirostris (Stimpson, 1874). Aquaculuture 244:341–348

    Article  Google Scholar 

  • Steffensen JF (2002) Metabolic cold adaptation of polar fish based on measurements of aerobic oxygen consumption: fact or artefact? Artefact! Comp Biochem Physiol 132:789–795

    Article  Google Scholar 

  • Subrahmanya CB (1976) Tidal and diurnal rhythms of locomotory activity and oxygen consumption in the pink shrimp Penaeus duorarum. Contrib Mar Sci Univ Texas 20:123–132

    Google Scholar 

  • Tran D, Boudou A, Massabuau J-C (2000) Mechanism of oxygen consumption maintenance under varying levels of oxygenation in the freshwater clam Corbicula fluminea. Can J Zool 78:2027–2036

    Article  Google Scholar 

  • Truchot JP (1992) Respiratory function of arthropod haemocynins. Adv Comp Environ Physiol 13:377–404

    CAS  Google Scholar 

  • Tucker VA (1967) Method for oxygen content and dissociation curves on microliter blood samples. J Appl Physiol 23:410–414

    PubMed  CAS  Google Scholar 

  • Villarreal H, Ocampo L (1993) Effect of size and temperature on the oxygen consumption of the brown shrimp Penaeus californiensis (Holmes, 1900). Comp Biochem Physiol 106A:97–101

    Article  Google Scholar 

  • Wabete N, Chim L, Pham D, Lemaire P, Massabuau JC (2006) A soft technology ti improve survival and reproductive performance of Litopenaeus stylirostris by counterbalancing physiological disturbances associated with handling stress. Aquaculture 260:181–193

    Article  Google Scholar 

  • Zielinski S, Pörtner HO (1996) Energy metabolism and ATP free-energy change of the intertidal worm Sipunculus nudus below a critical temperature. J Comp Physiol B 166:492–500

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the technical staff of the experimental facilities at St Vincent, New Caledonia for their help. All the experiments comply with the current laws of New Caledonia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelly Wabete.

Additional information

Communicated by H.O. Pörtner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wabete, N., Chim, L., Lemaire, P. et al. Life on the edge: physiological problems in penaeid prawns Litopenaeus stylirostris, living on the low side of their thermopreferendum. Mar Biol 154, 403–412 (2008). https://doi.org/10.1007/s00227-008-0931-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-008-0931-1

Keywords

Navigation