Skip to main content
Log in

Complex patterns of population structure and recruitment of Plectropomus leopardus (Pisces: Epinephelidae) in the Indo-West Pacific: implications for fisheries management

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Here the population genetic structure of an ecologically and economically important coral reef fish, the coral trout Plectropomus leopardus, is investigated in the context of contemporary and historical events. Coral trout were sampled from four regions (six locations) and partial mtDNA D-loop sequences identified six populations (Fst = 0.89209, P < 0.0001): Scott Reef and the Abrolhos Islands in west Australia; the Great Barrier Reef (GBR), represented by northern and southern GBR samples; New Caledonia and Taiwan, with Taiwan containing two genetic lineages. Furthermore, this study identified source and sink populations within and among regions. Specifically, the northern population in west Australia (Scott Reef) was identified, as the source for replenishment of the Abrolhos population, whilst New Caledonia was a source for recruitment to the GBR. Based on these insights from a single mtDNA marker, this study will facilitate the development of rational management plans for the conservation of P. leopardus populations and therefore mitigate the risk of population declines from anthropogenic influences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bay LK, Choat JH, van Herwerden L, Robertson DR (2004) High genetic diversities and complex genetic structure in an Indo-Pacific tropical reef fish (Chlorurus sordidus): evidence of an unstable evolutionary past? Mar Biol 144:757–767

    Article  CAS  Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benzie JAH (1999) Genetic structure of coral reef organisms: ghosts of dispersal past. Am Zool 39:131–145

    Article  Google Scholar 

  • Brinkman R, Wolanski E, Deleersnijder E, McAllister F, Skirving W (2002) Oceanic inflow from the Coral Sea into the Great Barrier Reef. Estuar Coast Shelf Sci 54:655–668

    Article  Google Scholar 

  • Chenoweth SF, Hughes JM, Keenan CP, Lavery S (1998) When oceans meet: a teleost shows secondary intergradation at an Indian–Pacific interface. Proc R Soc Lond B 265:415–420

    Article  Google Scholar 

  • Crandall ED, Frey MA, Grossberg RK, Barber PH (2008) Contrasting demographic history and phylogeographical patterns in two Indo-Pacific gastropods. Mol Ecol 17:611–626

    Article  PubMed  Google Scholar 

  • Doherty PJ, Fowler AJ, Samoilys MA, Harris DA (1994) Monitoring the replenishment of coral trout (Pisces: Serranidae) populations. Bull Mar Sci 54(1):343–355

    Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  PubMed Central  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Godfrey JS, Ridgway KR (1985) The large-scale environment of the poleward-flowing Leeuwin current, Western Australia: longshore steric height gradients, wind stresses and geostrophic flow. J Phys Oceanogr 15:481–495

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Heemstra PC, Randall JE (1993) FAO species catalogue, vol 16. Groupers of the world (family Serranidae, subfamily Epinephelinae). An annotated and illustrated catalogue of the grouper, rockcod, hind, coral grouper and lyretail species known to date. FAO Fish Synop 125(16):382

  • Horne JB, van Herwerden L, Choat JH, Robertson DR (2008) High population connectivity across the Indo-Pacific: congruent lack of phylogeographic structure in three reef fish congeners. Mol Phylogenet Evol 49:629–638

    Article  PubMed  Google Scholar 

  • Hubbard DK, Zankl H, Van Heerden I, Gill IP (2005) Holocene Reef Development along the Northeastern St. Croix Shelf, Buck Island, U.S. Virgin Islands. J Sediment Res 75:97–113

    Article  Google Scholar 

  • Hutchings JA (2000) Collapse and recovery of marine fishes. Nature 406:534–536

    Article  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genetics 6: 13. v.3.15. http://ibdws.sdsu.edu/)

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones GP, McCormick MI, Srinivasan M, Eagle JV (2004) Coral decline threatens fish biodiversity in marine reserves. Proc Natl Acad Sci USA 101:8251–8253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klanten O, Choat J, van Herwerden L (2007) Extreme genetic diversity and temporal rather than spatial partitioning in a widely distributed coral reef fish. Mar Biol 150:659–670

    Article  Google Scholar 

  • Knittweis L, Kraemer WE, Timm J, Kochzius M (2009) Genetic structure of Heliofungia actiniformis (Scleractinia: Fungiidae) populations in the Indo-Malay Archipelago: implications for live coral trade management efforts. Conserv Genet 10:241–249

    Article  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larcombe P (2004) Holocene Great barrier Reef: sedimentary controls and implications for environmental management. In: Gostin VA (ed) Gondwana to greenhouse: Australian environmental geoscience. Geological Society of Australia Special Publication 21

  • Leis JM, Carson-Ewart BM (1999) In situ swimming and settlement behaviour of larvae of an Indo-Pacific coral-reef fish, the coral trout Plectropomus leopardus (Pisces: Serranidae). Mar Biol 134:51–64

    Article  Google Scholar 

  • Lukoschek V, Waycott M, Marsh H (2007) Phylogeography of the olive sea snake, Aipysurus laevis (Hydrophiinae) indicates Pleistocene range expansion around northern Australia but low contemporary gene flow. Mol Ecol 16:3406–3422

    Article  CAS  PubMed  Google Scholar 

  • McCafferty S, Bermingham E, Quenouille B, Planes S, Hoelzer G, Asoh K (2002) Historical biogeography and molecular systematics of the Indo-Pacific genus Dascyllus (Teleostei: Pomacentridae). Mol Ecol 11:1377–1392

    Article  CAS  PubMed  Google Scholar 

  • Meyers G (1996) Variation of Indonesian throughflow and the El Niño-Southern Oscillation. J Geophys Res 101:12255–12264

    Article  Google Scholar 

  • Munday PL (2004) Habitat loss, resource specialization, and extinction on coral reefs. Glob Chang Biol 10:1642–1647

    Article  Google Scholar 

  • Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature 423:280–283

    Article  CAS  PubMed  Google Scholar 

  • Pandolfi JM, Tudhope AW, Burr G, Chappell J, Edinger E, Frey M, Steneck R, Sharma C, Yeates A, Jennions M, Lescinsky H, Newton A (2006) Mass mortality following disturbance in Holocene coral reefs from Papua New Guinea. Geology 34:949–952

    Article  Google Scholar 

  • Pauly D, Christensen V, Gúenette S, Pitcher T, Sumaila UR, Walters C, Watson R, Zeller D (2002) Towards sustainability in world fisheries. Nature 418:689–695

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45

    Article  CAS  PubMed  Google Scholar 

  • Roberts CM (1997) Connectivity and management of Caribbean coral reefs. Science 278:1454–1457

    Article  CAS  PubMed  Google Scholar 

  • Rohlf (1973) Algorithm 76. Hierarchical clustering using the minimum spanning tree. Comput J 16:93–95

    Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-Statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russ GR, Cheal AM, Dolman AM, Emslie MJ, Evans RD, Miller I, Sweatman H, Williamson DH (2008) Rapid increase in fish numbers follows creation of world's largest marine reserve network. Curr Biol 18:514–515

    Article  Google Scholar 

  • Sambrook J, Fritch EF, Maniatis T (1989) Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbour Laboratory Press, Cold Spring Harbour

  • Samoilys MA (1997) Periodicity of spawning aggregations of coral trout Plectropomus leopardus (Pisces:Serranidae) on the northern Great Barrier Reef. Mar Ecol Prog Ser 160:149–159

    Article  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) A software for population genetics data analysis (ARLEQUIN)

  • Slatkin M (1987) Geneflow and the geographic structure of natural populations. Science 236:787–792

    Article  CAS  PubMed  Google Scholar 

  • Smith SV, Buddemeier RW (1992) Global change and coral reef ecosystems. Ann Rev Ecol Syst 23:89–118

    Article  Google Scholar 

  • Smith WL, Craig MT (2007) Casting the Percomorph net widely: the importance of broad taxonomic sampling in the search for the placement of Serranid and Percid Fishes. Copeia 2007(1):35–55

    Article  Google Scholar 

  • Swofford DL (1999) PAUP*: phylogenetic analysis using parsimony. Sinauer Associates, Champaign

  • Swofford DL (2000) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. 10b. Sinauer Associates, Sunderland

  • van Herwerden L, Davies CR, Choat JH (2002) Phylogenetic and evolutionary perspectives of the Indo-Pacific grouper, Plectropomus species on the Great Barrier Reef, Australia. J Fish Biol 60:1591–1596

    Article  Google Scholar 

  • van Herwerden L, Choat JH, Dudgeon CL, Carlos G, Newman SJ, Frisch A, van Oppen MJH (2006) Contrasting patterns of genetic structure in two species of the coral trout Plectropomus (Serranidae) from east and west Australia : Introgressive hybridisation or ancestral polymorphisms. Mol Phylogenet Evol 41:420–435

    Article  PubMed  Google Scholar 

  • Van Oppen MJH, Gates R (2006) Conservation genetics and the resilience of reef-building corals. Mol Ecol 15:3863–3883

    Article  PubMed  Google Scholar 

  • Voris HK (2000) Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J Biogeogr 27:1153–1167

    Article  Google Scholar 

  • Webster JM, Beaman RJ, Bridge T (2008) From Corals to Canyons: the Great Barrier Reef margin. EOS Trans Am Geophys Union 89:217–218

    Article  Google Scholar 

  • Weir BS (1996) Genetic data analysis II: methods for discrete genetic data. Sinauer Assoc., Inc., Sunderland, MA, USA

  • Weir BS, Cockerham CC (1984) Estimating F statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Welch DJ, Mapstone BD, Begg GA (2008) Spatial and temporal variation and effects of changes in management in discard rates from the commercial reef line fishery of the Great Barrier Reef, Australia. Fish Res 90:247–260

    Article  Google Scholar 

  • Williams ST, Benzie JAH (1998) Evidence of a biogeographic break between populations of a high dispersal starfish: congruent regions within the Indo-West Pacific defined by color morphs, mtDNA, and allozyme data. Evolution 52:87–99

    CAS  PubMed  Google Scholar 

  • Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD dissertation, The University of Texas at Austin

Download references

Acknowledgments

This study was funded by grants to JHC and LVH from James Cook University’s Competitive Research Incentive Grant Scheme; the Department of Environment, Heritage, Water and Arts for funding collection and processing of material from the Coral Sea; and the Department of Fisheries, Government of Western Australia for logistical support to collect samples from WA. We thank JP Hobbs, Craig Skepper, Kim Nardi, Chris Dibden, Glenn Almany and Will Robbins, for assisting in sample collection from WA and the Coral Sea. Brett Molony and Vanessa Messmer kindly provided samples from New Caledonia. We thank Emmanuelle Botte for extracting DNA from new tissue samples from Scott Reef, which were used in this study. Final thanks to David Williamson and Richard Evans for unpublished observations pertaining to PLD values of coral trout.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne Van Herwerden.

Additional information

Communicated by T. Reusch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Herwerden, L., Howard Choat, J., Newman, S.J. et al. Complex patterns of population structure and recruitment of Plectropomus leopardus (Pisces: Epinephelidae) in the Indo-West Pacific: implications for fisheries management. Mar Biol 156, 1595–1607 (2009). https://doi.org/10.1007/s00227-009-1195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-009-1195-0

Keywords

Navigation