Skip to main content

Advertisement

Log in

Temperature, salinity and growth rate dependences of Mg/Ca and Sr/Ca ratios of the skeleton of the sea urchin Paracentrotus lividus (Lamarck): an experimental approach

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The skeletal Mg/Ca ratio of echinoderms is known to increase with temperature but the relation has never been established in controlled experimental conditions. The present study investigated the effect of temperature, salinity and growth rate on Mg/Ca and Sr/Ca ratios in calcite skeletons of juvenile sea urchins grown in experimental conditions. Mg/Ca ratio was positively related to temperature, increasing until a plateau at high but field occurring temperatures. It was not linked to salinity nor growth rate. We suggest that this plateau is due to properties of the organic matrix of mineralization and recommend to take it into account for the use of Mg/Ca as proxy of seawater Mg/Ca. Skeletal Sr/Ca ratio was mainly dependent on temperature and growth rate, as usually observed in calcite skeletons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bentov S, Erez J (2006) Impact of biomineralization processes on the Mg content of foraminiferal shells: a biological perspective, Geochem Geophys Geosyst 7. doi:10.1029/2005GC001015

  • Berman A, Addadi L, Weiner S (1988) Interactions of sea-urchin skeleton macromolecules with growing calcite crystals: a study of intracrystalline proteins. Nature 331:546–549

    Article  CAS  Google Scholar 

  • Borremans C, Hermans J, Baillon S, André L, Ph Dubois (2009) Salinity effects on the Mg/Ca and Sr/Ca in starfish skeletons and the echinoderm relevance for paleoenvironmental reconstructions. Geology 37(4):351–354. doi:10.1130/G25411A

    Article  CAS  Google Scholar 

  • Carré M, Bentaleb I, Bruguier O, Ordinola E, Barret NT, Fontugne M (2006) Calcification rate influence on trace element concentrations in aragonitic bivalves shells: evidences and mechanisms. Geochim Cosmochim Acta 70:4906–4920. doi:10.1016/j.gca.2006.07.019

    Article  Google Scholar 

  • Chave KE (1954) Aspects of the biogeochemistry of magnesium 1. Calcareous marine organisms. J Geol 62:266–283

    Article  CAS  Google Scholar 

  • Cheng X, Varona PL, Olszta MJ, Gower LB (2007) Biomimetic synthesis of calcite films by a polymer-induced liquid-precursor (PILP) process—1. Influence and incorporation of magnesium. J Cryst Growth 307:395–404. doi:10.1016/j.jcrysgro.2007.07.006

    Article  CAS  Google Scholar 

  • Clarke FW, Wheeler WC (1922) The inorganic constituents of marine invertebrates. Prof Pap US geol Surv 124:56

    Google Scholar 

  • De Deckker P, Chivas AR, Shelley JMG (1999) Uptake of Mg and Sr in the euryhaline ostracod Cyprideis determined from in vitro experiments. Palaeogeogr Palaeoclimatol Palaeoecol 148:105–116. doi:10.1016/S0031-0182(98)00178-3

    Article  Google Scholar 

  • Dickson JAD (2002) Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans. Science 298:1222–1224. doi:10.1126/science.1075882

    Article  CAS  PubMed  Google Scholar 

  • Dubois Ph, Chen CP (1989) Calcification in echinoderms. In: Jangoux M, Lawrence JM (eds) Echinoderm studies. AA Balkema, Rotterdam, 3, pp 109–178

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Milleros FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366. doi:10.1126/science.1097329

    Article  CAS  PubMed  Google Scholar 

  • Grosjean PH, Spirlet C, Jangoux M (1996) Experimental study of growth in the echinoid Paracentrotus lividus (Lamarck, 1816). J Exp Mar Biol Ecol 201:173–184. doi:10.1016/0022-0981(95)00200-6

    Article  Google Scholar 

  • Kısakürek B, Eisenhauer A, Böhm F, Garbe-Schönberg D, Erez J (2008) Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white). Earth Planet Sci Lett 273(3–4):260–269. doi:10.1016/j.epsl.2008.06.026

    Article  Google Scholar 

  • Le Gall P, Bucaille D, Grassin JB (1990) Influence de la température sur la croissance de deux oursins comestibles Paracentrotus lividus et Psammechinus miliaris. In: De Ridder C, Dubois P, Lahaye MC, Jangoux M (eds) Echinoderm research. AA Balkema, Rotterdam, pp 183–188

    Google Scholar 

  • Lea DW (2003) Elemental and isotopic proxies of past Ocean temperatures. In: Elderfield H (ed) The Oceans and Marine Geochemistry. Elsevier-Pergamon, Oxford, 6, pp 365–390. doi: 10.1016/B0-08-043751-6/06114-4

  • Lea DW, Mashiotta TA, Spero HJ (1999) Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochim Cosmochim Acta 63:2369–2379. doi:10.1016/S0016-7037(99)00197-0

    Article  CAS  Google Scholar 

  • Lewis CA, Ebert TA, Boren ME (1990) Allocation of 45calcium to body components of starved and fed purple sea urchins (Strongylocentrotus purpuratus). Mar Biol 105:213–222. doi: 10.1007/BF01344289

    Google Scholar 

  • Lorrain A, Gillikin DP, Paulet Y-M, Chauvaud L, Le Mercier A, Navez J, André L (2005) Strong kinetic effects on Sr/Ca ratios in the calcitic bivalve Pecten maximus. Geology 33(12):965–968. doi:10.1130/G22048.1

    Article  CAS  Google Scholar 

  • MEDAR Group (2002) MEDATLAS 2002 database. Mediterranean and Black Sea database of temperature, salinity and biochemical parameters. Climatological Atlas. Ifremer Editions

  • Morse JW, Mackenzie FT (1990) The oceanic carbonate system and calcium carbonate accumulation in deep sea sediments. In: Morse JW, Mackenzie FT (eds) Geochemistry of sedimentary carbonates: developments in sedimentology, vol 48. Elsevier, Amsterdam, pp 133–177

  • Nakano E, Okazaki K, Iwamatsu T (1963) Accumulation of radioactive carbon in the larvae of the sea urchin Pseudocentrotus depressus. Biol Bull 125:125–132

    Article  CAS  Google Scholar 

  • Nürnberg D, Bijma J, Hemleben C (1996) Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochim Cosmochim Acta 60(5):803–814. doi:10.1016/0016-7037(95)00446-7

    Article  Google Scholar 

  • Pilkey OH, Hower J (1960) The effect of the environment on the concentration of skeletal magnesium and strontium in Dendraster. J Geol 68(2):203–214

    Article  CAS  Google Scholar 

  • Politi Y, Arad T, Klein E, Weiner S, Addadi L (2004) Sea urchin spine calcite forms via a transient amorphous calcium phase. Science 306(5699):1161–1164. doi:10.1126/science.1102289

    Article  CAS  PubMed  Google Scholar 

  • Politi Y, Mahamid J, Goldberg H, Weiner S, Addadi L (2007) Asprich mollusk shell protein: in vitro experiments aimed at elucidating function in CaCO3 crystallization. CrystEngComm 9:1171–1177

    Article  CAS  Google Scholar 

  • Raz S, Weiner S, Addadi L (2000) Formation of high-magnesian calcites via an amorphous precursor phase: possible biological implications. Adv Mater 12:38–42

    Article  CAS  Google Scholar 

  • Richter DK (1984) Zur Zusammensetzung und Diagenese natürlicher Mg-calcite. Boch Geol Geotech Arb 15:310

  • Richter DK, Bruckschen P (1998) Geochemistry of recent tests of Echinocyamus pusillus: constraints for temperature and salinity. Carbonates Evaporites 13(2):157–167

    Article  CAS  Google Scholar 

  • Rickaby REM, Schrag DP, Zondervan I, Riebesell U (2002) Growth rate dependence of Sr incorporation during calcification of Emiliania huxleyi. Global Biogeochem Cycles 16(1):1–8. doi:10.1029/2001GB001408

    Article  Google Scholar 

  • Ries JB (2004) Effect of ambient Mg/Ca ratio on Mg fractionation in calcareous marine invertebrates: a record of the oceanic Mg/Ca ratio over the Phanerozoic. Geology 32(11):981–984. doi:10.1130/G20851.1

    Article  CAS  Google Scholar 

  • Robach JS, Stock SR, Veis A (2006) Mapping of magnesium and of different protein fragments in sea urchin teeth via secondary ion mass spectroscopy. J Struct Biol 155:87–95. doi:10.1016/j.jsb.2006.03.02

    Article  CAS  PubMed  Google Scholar 

  • Russel AD, Hönisch B, Spero HJ, Lea DW (2004) Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera. Geochim Cosmochim Acta 68(21):4347–4361, doi:10.1016/j.gca.2004.03.013

    Google Scholar 

  • Shen CC, Lee T, Chen CY, Wang CH, Dai CF, Li LH (1996) The calibration of D (Sr/Ca) versus sea surface temperature relationship for Porites corals. Geochim Cosmochim Acta 60:3849–3858. doi:10.1016/0016-7037(96)00205-0

    Article  CAS  Google Scholar 

  • Shirayama Y, Thornton H (2005) Effect of increased atmospheric CO2 on shallow water marine benthos. J Geophys Res 110: C09S08. doi: 10.1029/2004JC002618

  • Spirlet C, Grosjean Ph, Jangoux M (2001) Cultivation of Paracentrotus lividus (Echinodermata: Echinoidea) on extruded feeds: digestive efficiency, somatic and gonadal growth. Aquac Nutr 7(2):91–99

    Article  CAS  Google Scholar 

  • Stoll HM, Schrag DP (2000) Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate. Geochem Geophys Geosyst 1:1–29. doi:199GC000015

    Article  Google Scholar 

  • Stoll HM, Rosenthal Y, Falkowski P (2002) Climate proxies from Sr/Ca of coccoliths calcite: calibrations from continuous culture of Emiliana huxleyi. Geochim Cosmochim Acta 66(6):927–936. doi:10.1016/S0016-7037(01)00836-5

    Article  CAS  Google Scholar 

  • Wasylenki LE, Dove PM, Wilson DS, De Yoreo JJ (2005) Nanoscale effects of strontium on calcite growth: an in situ AFM study in the absence of vital effects. Geochim Cosmochim Acta 69:3017–3027. doi:10.1016/j.gca.2004.12.019

    Article  CAS  Google Scholar 

  • Weber JN (1969) The incorporation of magnesium into the skeletal calcites of echinoderms. Am J Sci 267:537–566

    CAS  Google Scholar 

  • Weber JN (1973) Temperature dependence of magnesium in echinoid and asteroid skeletal calcite: a reinterpretation of its significance. J Geol 81:543–556

    Article  CAS  Google Scholar 

Download references

Acknowledgments

B. David and two anonymous reviewers are acknowledged for their critical reading of the manuscript and fruitful suggestions. The authors wish to thanks Ph. Pernet, J. Navez, L. Monin and N. Dakhani for the specimen analyses. T. Dupont provided technical support. This work was supported by a “Plan Action 2” grant (contract nr WI/36/F02), the CALMARS II project from the Belgian Federal Science Policy, Brussels, Belgium (contract nr SD/CS/02A) and FRFC contract (nr 2.4532.07). Ph. Dubois is a Senior Research Associate of the National Fund for Scientific Research (NFSR, Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Hermans.

Additional information

Communicated by U. Sommer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 81 kb)

227_2010_1409_MOESM2_ESM.eps

Suppl. fig. 1: Mean ambital diameter (±SD) of the sea urchins at the beginning (♦) and the end (■) of the experiment for the different aquaria. Non-growing individuals were discarded from final distribution. Numbers indicate the final effective in the different aquaria. (EPS 3,935 kb)

227_2010_1409_MOESM3_ESM.eps

Suppl. fig. 2: Skeletal Mn/Ca ratios versus Fe/Ca ratios indicating no influence on Mg/Ca ratios by contaminating phases. (EPS 3,139 kb)

227_2010_1409_MOESM4_ESM.eps

Suppl. fig. 3: Sr/Ca ratio (mol/mol) in the skeleton of Paracentrotus lividus grown in aquarium according to growth rate (mg/d), equation of the linear regression (P < 10−5). (EPS 3,231 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermans, J., Borremans, C., Willenz, P. et al. Temperature, salinity and growth rate dependences of Mg/Ca and Sr/Ca ratios of the skeleton of the sea urchin Paracentrotus lividus (Lamarck): an experimental approach. Mar Biol 157, 1293–1300 (2010). https://doi.org/10.1007/s00227-010-1409-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-010-1409-5

Keywords

Navigation