Skip to main content
Log in

Factors affecting the detection distances of reef fish: implications for visual counts

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Detection patterns of coral reef fish were assessed from the meta-analysis of distance sampling surveys performed by visual census in New Caledonia and French Polynesia, from 1986 to 1999. From approximately 100,000 observations relating to 593 species, the frequency distributions of fish detection distances perpendicular to the transect line were compared according to species characteristics and sampling conditions. The shape and extension of these detection profiles varied markedly with fish size, shyness, and crypticity, indicating strong differences of detectability across species. Detection of very small and cryptic fish decreased strongly 1 m away from the line. Conversely, sightings of shy and large species were excessively low in the first meters due to diver avoidance prior to detection. The larger the fish, the greater the fleeing distance. Distance data underscore how inconsistent detectability biases across species and sites can affect the accuracy of visual censuses when assessing coral reef fish populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ackerman JL, Bellwood DR (2000) Reef fish assemblages: a re-evaluation using enclosed rotenone stations. Mar Ecol Prog Ser 206:227–237. doi:10.3354/meps206227

    Article  Google Scholar 

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csàaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281

    Google Scholar 

  • Alldredge MW, Simons TR, Pollock KH (2007) Factors affecting aural detections of songbirds. Ecol Appl 17:948–955. doi:10.1890/06-0685

    Article  Google Scholar 

  • Anderson DR (2001) The need to get the basics right in wildlife field studies. Wildl Soc Bull 29:1294–1297

    Google Scholar 

  • Barlow J, Gerrodette T, Forcada J (2001) Factors affecting perpendicular sighting distances on shipboard line-transect surveys for cetaceans. J Cetacean Res Manage 3:201–212

    Google Scholar 

  • Benzécri JP (1992) Correspondence analysis handbook. Dekker, New York

    Google Scholar 

  • Bohnsack JA, Bannerot SP (1986) A stationary visual census technique for quantitatively assessing community structure of coral reef fishes. NOAA Technical Report NMFS 41:1–15

  • Brock VE (1954) A preliminary report on a method of estimating reef fish populations. J Wildl Manage 18:297–308. doi:10.2307/3797016

    Article  Google Scholar 

  • Brock RE (1982) A critique of the visual census method for assessing coral reef fish populations. Bull Mar Sci 32:269–276

    Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, Oxford

    Google Scholar 

  • Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2004) Advanced distance sampling: estimating abundance of biological populations. Oxford University Press, Oxford

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practice information-theoretic approach, 2nd edn edn. Springer, New York

    Google Scholar 

  • Burnham KP, Anderson DR, Laake JL (1980) Estimation of density from line transect sampling of biological populations. Wildl Monogr 72:1–202

    Google Scholar 

  • Chapman CJ, Johnston ADF, Dunn JR, Creasey DJ (1974) Reactions of fish to sound generated by diver’s open-circuit underwater breathing apparatus. Mar Biol 27:357–366. doi:10.1007/BF00394372

    Article  Google Scholar 

  • Cheal AJ, Thompson AA (1997) Comparing visual counts of coral reef fish: implications of transect width and species selection. Mar Ecol Prog Ser 158:241–248. doi:10.3354/meps158241

    Article  Google Scholar 

  • Cole RG (1994) Abundance, size structure, and diver-oriented behaviour of three large benthic carnivorous fishes in a marine reserve in northeastern New Zealand. Biol Conserv 70:93–99. doi:10.1016/0006-3207(94)90276-3

    Article  Google Scholar 

  • Colvocoresses J, Acosta A (2007) A large-scale field comparison of strip transect and stationary point count methods for conducting length-based underwater visual surveys of reef fish populations. Fish Res 85:130–141. doi:10.1016/j.fishres.2007.01.012

    Article  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, Chichester

    Book  Google Scholar 

  • Edgar GJ, Barrett NS, Morton AJ (2004) Biases associated with the use of underwater visual census techniques to quantify fish density and size-structure. J Exp Mar Biol Ecol 308:269–290. doi:10.1016/j.jembe.2004.03.004

    Article  Google Scholar 

  • English S, Wilkinson C, Baker V (1997) Survey manual for tropical marine resources. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Fowler AJ (1987) The development of sampling strategies for population studies of coral reef fishes. A case study. Coral Reefs 6:49–58. doi:10.1007/BF00302212

    Article  Google Scholar 

  • Greenacre M (1984) Theory and applications of correspondence analysis. Academic Press, London

    Google Scholar 

  • Greene LE, Alevizon WS (1989) Comparative accuracies of visual assessment methods for coral reef fishes. Bull Mar Sci 44:899–912

    Google Scholar 

  • Harmelin-Vivien ML, Harmelin JG, Chauvet C, Duval C, Galzin R, Lejeune P, Barnabé G, Blanc F, Chevalier R, Duclerc J, Lasserre G (1985) Evaluation visuelle des peuplements et populations de poissons: méthodes et problèmes. Rev Ecol (Terre Vie) 40:467–540

    Google Scholar 

  • Harvey E, Fletcher D, Shortis MR, Kendrick GA (2004) A comparison of underwater visual distance estimates made by scuba divers and stereo-video system: implications for underwater visual census of reef fish abundance. Mar Freshw Res 55:573–580. doi:10.1071/MF03130

    Article  Google Scholar 

  • Hill J, Wilkinson C (2004) Methods for ecological monitoring of coral reefs. Australian Institute of Marine Science, Townsville. Available at http://www.cbd.int/doc/case-studies/tttc/tttc-00197-en.pdf. Accessed 11 June 2010

  • Hodgson G, Kiene W, Mihaly J, Liebeler J, Shuman C, Maun L (2004) Reef Check instruction manual: a guide to reef check coral reef monitoring. Reef Check, Institute of the Environment, University of California at Los Angeles. Available at http://www.ocean.ukm.my/kee/download/REEFCHECK_manual.pdf. Accessed 11 June 2010

  • Jennings S, Polunin NVC (1995) Biased underwater visual census biomass estimates for target species in tropical reef fisheries. J Fish Biol 47:733–736. doi:10.1111/j.1095-8649.1995.tb01938.x

    Article  Google Scholar 

  • Kulbicki M (1988) Correlation between catch data from bottom longlines and fish censuses in the SW lagoon of New Caledonia. In: Proc 6th int coral reef symp 2:305–312

  • Kulbicki M (1990) Comparisons between rotenone poisonings and visual counts for density and biomass estimates of coral reef fish populations. In: Proc ISRS Congr, Nouméa, pp 105–112

  • Kulbicki M (1998) How the acquired behaviour of commercial reef fishes may influence the results obtained from visual censuses. J Exp Mar Biol Ecol 222:11–30. doi:10.1016/S0022-0981(97)00133-0

    Article  Google Scholar 

  • Kulbicki M, Sarramégna S (1999) Comparison of density estimates derived from strip transect and distance sampling for underwater visual censuses: a case study of Chaetodontidae and Pomacanthidae. Aquat Living Resour 12:315–325. doi:10.1016/S0990-7440(99)00116-3

    Article  Google Scholar 

  • Kulbicki M, Bargibant G, Menou J-L, Mou-Tham G, Thollot P, Wantiez L, Williams J (1994) Evaluation des ressources en poissons du lagon d’Ouvéa. 3ème partie: les poissons. Rapp Conv Sci Mer Biol Mar, ORSTOM, Nouméa, New Caledonia

  • Labrosse P, Kulbicki M, Ferraris J (2002) Underwater visual fish census surveys: proper use and implementation. Secretariat of the Pacific Community, Nouméa, New Caledonia. Available at http://www.spc.int/coastfish/sections/reef/react/downloads/uvc_en.pdf. Accessed 11 June 2010

  • Lebart L (1994) Complementary use of correspondence analysis and cluster analysis. In: Greenacre MJ, Blasius J (eds) Correspondence analysis in the social sciences. Academic Press, London, pp 162–178

    Google Scholar 

  • Lebart L, Morineau A, Warwick KM (1984) Multivariate descriptive statistical analysis: correspondence analysis and related techniques for large matrices. Wiley, New York

    Google Scholar 

  • Letourneur Y, Kulbicki M, Labrosse P (2000) Fish stock assessment of the northern New Caledonian lagoons: 1-structure and stocks of coral reef fish communities. Aquat Living Resour 13:65–76. doi:10.1016/S0990-7440(00)00145-5

    Article  Google Scholar 

  • Lincoln Smith MP (1988) Effects of observer swimming speed on sample counts of temperate rocky reef fish assemblages. Mar Ecol Prog Ser 43:223–231. doi:10.3354/meps043223

    Article  Google Scholar 

  • Lincoln Smith MP (1989) Improving multispecies rocky reef fish censuses by counting different groups of species using different procedures. Environ Biol Fish 26:29–37. doi:10.1007/BF00002473

    Article  Google Scholar 

  • MacNeil MA, Tyler EHM, Fonnesbeck CJ, Rushton SP, Polunin NVC, Conroy MJ (2008) Accounting for detectability in reef-fish biodiversity estimates. Mar Ecol Prog Ser 367:249–260. doi:10.3354/meps07580

    Article  Google Scholar 

  • MacNeil MA, Graham NAJ, Polunin NVC, Kulbicki M, Galzin R, Harmelin-Vivien M, Rushton SP (2009) Hierarchical drivers of reef-fish metacommunity structure. Ecology 90:252–264. doi:10.1890/07-0487.1

    Article  Google Scholar 

  • Mapstone BD (1988) The determination of patterns in the abundance of Pomacentrus moluccensis Bleeker on the southern Great Barrier Reef. PhD thesis, University of Sydney, Australia

  • Mapstone BD, Ayling AM (1998) An investigation of optimum methods and unit sizes for the visual estimation of abundances of some coral reef organisms. Great Barrier Reef Marine Park Authority Res Pub Ser 47, Townsville, Queensland

  • Marsh H, Sinclair DF (1989) Correcting for visibility bias in strip transect aerial surveys of aquatic fauna. J Wildl Manage 53:1017–1024. doi:10.2307/3809604

    Article  Google Scholar 

  • McCormick MI, Choat JH (1987) Estimating total abundance of a large temperate-reef fish using visual strip-transects. Mar Biol 96:469–478. doi:10.1007/BF00397964

    Article  Google Scholar 

  • Minte-Vera CV, de Moura RL, Francini-Filho RB (2008) Nested sampling: an improved visual-census technique for studying reef fish assemblages. Mar Ecol Prog Ser 367:283–293. doi:10.3354/meps07511

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. Vienna, Austria. http://www.R-project.org. Accessed 11 June 2010

  • Russell BC, Talbot FH, Anderson GRV, Goldman B (1978) Collection and sampling of reef fishes. In: Stoddart DR, Johannes RE (eds) Coral reefs: research methods. UNESCO, Norwich, pp 329–345

    Google Scholar 

  • Sale PF (1997) Visual census of fishes: how well do we see what is there? In: Proc 8th int coral reef symp 2:1435–1439

  • Sale PF, Douglas WA (1981) Precision and accuracy of visual census techniques for fish assemblages on coral patch reefs. Environ Biol Fish 5:243–249. doi:10.1007/BF00005761

    Article  Google Scholar 

  • Sale PF, Sharp BJ (1983) Correction for bias in visual transect censuses of coral reef fishes. Coral Reefs 2:37–42. doi:10.1007/BF00304730

    Article  Google Scholar 

  • Samoilys MA, Carlos G (2000) Determining methods of underwater visual census for estimating the abundance of coral reef fishes. Environ Biol Fish 57:289–304. doi:10.1023/A:1007679109359

    Article  Google Scholar 

  • Schmidt MB, Gassner H (2006) Influence of scuba divers on the avoidance reaction of a dense vendace (Coregonus albula L.) population monitored by hydroacoustics. Fish Res 82:131–139. doi:10.1016/j.fishres.2006.08.014

    Article  Google Scholar 

  • St John J, Russ GR, Gladstone W (1990) Accuracy and bias of visual estimates of numbers, size structure and biomass of a coral reef fish. Mar Ecol Prog Ser 64:253–262. doi:10.3354/meps064253

    Article  Google Scholar 

  • Stanley DR, Wilson CA (1995) Effect of scuba-divers on fish density and target strength estimates from stationary dual-beam hydroacoustics. Trans Am Fish Soc 124:946–949. doi:10.1577/1548-8659(1995)124<0946:EOSDOF>2.3.CO;2

    Article  Google Scholar 

  • Stewart BD, Beukers JS (2000) Baited technique improves censuses of cryptic fish in complex habitats. Mar Ecol Prog Ser 197:259–272. doi:10.3354/meps197259

    Article  Google Scholar 

  • Thomas L, Buckland ST, Rexstad EA, Laake JL, Strindberg S, Hedley SL, Bishop JRB, Marques TA, Burnham KP (2010) Distance software: design and analysis of distance sampling surveys for estimating population size. J Appl Ecol 47:5–14. doi:10.1111/j.1365-2664.2009.01737.x

    Article  Google Scholar 

  • Thompson AA, Mapstone BD (1997) Observer effects and training in underwater visual surveys of reef fishes. Mar Ecol Prog Ser 154:53–63. doi:10.3354/meps154053

    Article  Google Scholar 

  • Thresher RE, Gunn JS (1986) Comparative analysis of visual census techniques for highly mobile, reef associated piscivores (Carangidae). Environ Biol Fish 17:93–116. doi:10.1007/BF00001740

    Article  Google Scholar 

  • Ward-Paige C, Mills Flemming J, Lotze HK (2010) Overestimating fish counts by non-instantaneous visual censuses: consequences for population and community descriptions. PLoS ONE 5(7): e11722. doi:10.1371/journal.pone.0011722

  • Watson DL, Harvey ES (2007) Behaviour of temperate and sub-tropical reef fishes towards a stationary SCUBA diver. Mar Freshwat Behav Physiol 40:85–103. doi:10.1080/10236240701393263

    Article  Google Scholar 

  • Watson RA, Quinn TJ (1997) Performance of transect and point count underwater visual census methods. Ecol Model 104:103–112

    Article  Google Scholar 

  • Watson DL, Harvey ES, Anderson MJ, Kendrick GA (2005) A comparison of temperate reef fish assemblages recorded by three underwater stereo-video techniques. Mar Biol 148:415–425. doi:10.1007/s00227-005-0090-6

    Article  Google Scholar 

  • Williams ID, Walsh WJ, Tissot BN, Hallacher LE (2006) Impact of observers’ experience level on counts of fishes in underwater visual surveys. Mar Ecol Prog Ser 310:185–191. doi:10.3354/meps310185

    Article  Google Scholar 

  • Willis TJ (2001) Visual census methods underestimate density and diversity of cryptic reef fishes. J Fish Biol 59:1408–1411. doi:10.1111/j.1095-8649.2001.tb00202.x

    Article  Google Scholar 

  • Willis TJ, Millar RB, Babcock RC (2000) Detection of spatial variability in relative density of fishes: comparison of visual census, angling, and baited underwater video. Mar Ecol Prog Ser 198:249–260. doi:10.3354/meps198249

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to M. Harmelin-Vivien and N.V.C. Polunin for constructive advice on this work. We also thank M.A. MacNeil, L. Yakob, A.R. Harborne, S. Bejarano Chavarro, and the anonymous reviewers for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves-Marie Bozec.

Additional information

Communicated by D. Goulet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 500 kb)

Supplementary material 2 (DOC 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozec, YM., Kulbicki, M., Laloë, F. et al. Factors affecting the detection distances of reef fish: implications for visual counts. Mar Biol 158, 969–981 (2011). https://doi.org/10.1007/s00227-011-1623-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1623-9

Keywords

Navigation