Skip to main content
Log in

Microbial consortia increase thermal tolerance of corals

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

This study examined the response of a coral holobiont to thermal stress when the bacterial community was treated with antibiotics. Colonies of Pocillopora damicornis were exposed to broad and narrow-spectrum antibiotics targeting coral-associated α and γ-Proteobacteria. Corals were gradually heated from the control temperature of 26 to 31 °C, and measurements were made of host, zooxanthellar and microbial condition. Antibiotics artificially reduced the abundance and activity of bacteria, but had minimal effect on zooxanthellae photosynthetic efficiency or host tissue protein content. Heated corals without antibiotics showed significant declines in F V /F M , typical of thermal stress. However, heated corals treated with antibiotics showed severe tissue loss in addition to a decline in F V /F M . This study demonstrated that a disruption to the microbial consortium diminished the resilience of the holobiont. Corals exposed to antibiotics under control temperature did not bleach, suggesting that temperature may be an important factor influencing the activity, diversity and ecological function of the holobiont bacterial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ainsworth TD, Fines M, Roff G, Hoegh-Gildberg O (2008) Bacteria are not the primary cause of bleaching in the Mediterranean coral Oculina patigonica. ISME J 2:67–73

    Article  CAS  Google Scholar 

  • Ainsworth TD, Thurber RV, Gates RD (2010) The future of coral reefs: a microbial perspective. Trends Ecol Evol 25:233–240

    Article  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  Google Scholar 

  • Baird AH, Bhagooli R, Ralph PJ, Takahashi S (2009) Coral bleaching: the role of the host. Trends Ecol Evol 24:16–20

    Article  Google Scholar 

  • Barron MG, McGill CJ, Courtney LA, Marcovich DT (2010) Experimental bleaching of a reef-building coral using a simplified recirculating laboratory exposure system. J Mar Biol Article ID 415167:8

    Google Scholar 

  • Ben-Haim Y, Rosenberg E (2002) A novel Vibrio sp. pathogen of the coral Pocillopora damicornis. Mar Biol 141:47–55

    Article  Google Scholar 

  • Ben-Haim Y, Rosenberg E (2004) Temperature-regulated bleaching and tissue lysis of Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, New York, pp 301–324

    Google Scholar 

  • Ben-Haim Y, Zicherman-Keren M, Rosenberg E (2003) Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. Appl Envir Microbiol 69:4236–4242

    Article  CAS  Google Scholar 

  • Berner T, Baghdasarian G, Muscatine L (1993) Repopulation of a sea anemone with symbiotic dinoflagellates: analysis by in vivo fluorescence. J Exp Mar Biol Ecol 170:145–158

    Article  Google Scholar 

  • Bourne DG, Munn CB (2005) Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environ Microbiol 7:1162–1174

    Article  CAS  Google Scholar 

  • Bourne D, Iida Y, Uthicke S, Smith-Keune C (2008) Changes in coral-associated microbial communities during a bleaching event. ISME J 2:350–363

    Article  CAS  Google Scholar 

  • Brown BE, Le Tissier MDA, Bythell JC (1995) Mechanisms of bleaching deduced from histological studies of reef corals during a natural bleaching event. Mar Biol 122:655–663

    Article  Google Scholar 

  • Choi KH, Dobbs FC (1999) Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities. J Microbiol Methods 36:203–213

    Article  CAS  Google Scholar 

  • D’Croz L, Maté JL (2004) Experimental responses to elevated water temperature in genotypes of the reef coral Pocillopora damicornis from upwelling and non-upwelling environments in Panama. Coral Reefs 23:473–483

    Article  Google Scholar 

  • Davies PS (1984) The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs 2:181–186

    Google Scholar 

  • Ducklow HW, Mitchell R (1979) Bacterial populations and adaptations in the mucus layers on living corals. Limnol Oceanogr 24:715–725

    Article  Google Scholar 

  • Gates RD, Baghdasarian G, Muscatine L (1992) Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching. Biol Bull 182:324–332

    Article  Google Scholar 

  • Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Change Biol 2:495–509

    Article  Google Scholar 

  • Hill R, Larkum A, Frankart C, Kühl M, Ralph PJ (2004) Loss of functional Photosystem II reaction centres in zooxanthellae of corals exposed to bleaching conditions: using fluorescence rise kinetics. Photosynth Res 82:59–72

    Article  CAS  Google Scholar 

  • Hill R, Brown CM, DeZeeuw K, Campbell DA, Ralph PJ (2011) Increased rate of D1 repair in coral symbionts during bleaching is insufficient to counter accelerated photo-inactivation. Limnol Oceanogr 56:139–146

    Article  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Hueerkamp C, Glynn PW, D’Croz L, Maté JL, Colley SB (2001) Bleaching and recovery of five eastern Pacific corals in an El Niño-related temperature experiment. Bull Mar Sci 69:215–236

    Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanzen 167:191–194

    CAS  Google Scholar 

  • Jokiel PL (2004) Temperature stress and coral bleaching. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, New York, pp 401–425

    Google Scholar 

  • Jones RJ (1997) Zooxanthellae loss as a bioassay for assessing stress in corals. Mar Ecol Prog Ser 149:163–171

    Article  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U (1998) Temperature induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant, Cell Environ 21:1219–1230

    Article  CAS  Google Scholar 

  • Koh EG (1997) Do scleractinian corals engage in chemical warfare against microbes? J Chem Ecol 23:379–398

    Article  CAS  Google Scholar 

  • Koren O, Rosenberg E (2006) Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl Environ Microbiol 72:5254–5259

    Article  CAS  Google Scholar 

  • Kushmaro A, Rosenberg E, Fine M, Ben-Haim Y, Loya Y (1998) Effect of temperature onbleaching of the coral Oculina patagonica by Vibrio shiloi AK-1. Mar Ecol Prog Ser 171:131–137

    Article  Google Scholar 

  • Kushmaro A, Banin E, Loya Y, Stackebrandt E, Rosenberg E (2001) Vibrio shiloi sp. nov., the causative agent of bleaching of the coral Oculina patagonica. Int J Syst Evol Microbiol 51:1383–1388

    CAS  Google Scholar 

  • Lesser MP, Mazel CH, Gorbunov MY, Falkowski PG (2004) Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305:997–1000

    Article  CAS  Google Scholar 

  • Lesser MP, Falcón LI, Rodríguez-Román A, Enríquez S, Hoegh-Guldberg O, Iglesias-Prieto R (2007) Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar Ecol Prog Ser 346:143–152

    Article  CAS  Google Scholar 

  • Levy O, Dubinsky Z, Achituv Y, Erez J (2006) Diurnal polyp expansion behavior in stony corals may enhance carbon availability for symbionts photosynthesis. J Exp Mar Biol Ecol 333:1–11

    Article  CAS  Google Scholar 

  • Mouchka ME, Hewson I, Harvell CD (2010) Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts. Integr Comp Biol 50:662–674

    Article  Google Scholar 

  • Raina J-B, Tapiolas D, Willis BL, Bourne DG (2009) Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl Environ Microbiol 75:3492–3501

    Article  CAS  Google Scholar 

  • Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073

    Article  CAS  Google Scholar 

  • Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14

    Article  CAS  Google Scholar 

  • Ritchie KB, Smith GW (2004) Microbial communities of coral surface mucopolysaccharide layers. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, New York, pp 259–264

    Google Scholar 

  • Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10

    Article  Google Scholar 

  • Rosenberg E (2004) The bacterial disease hypothesis of coral bleaching. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, New York, pp 445–461

    Google Scholar 

  • Rosenberg E, Ben-Haim Y (2002) Microbial diseases of corals and global warming. Environ Microbiol 4:318–326

    Article  Google Scholar 

  • Rosenberg E, Kellog CA, Rowher F (2007a) Coral microbiology. Oceanography 20:146–154

    Article  Google Scholar 

  • Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007b) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362

    Article  CAS  Google Scholar 

  • Rowan R (1998) Diversity and ecology of zooxanthellae on coral reefs. J Phycol 34:407–417

    Article  Google Scholar 

  • Rypien KL, Ward JR, Azam F (2010) Antagonistic interactions among coral-associated bacteria. Environ Microbiol 12:28–39

    Article  CAS  Google Scholar 

  • Sala MM, Arin L, Balagué V, Felipe J, Guadayol Ò, Vaqué D (2005) Functional diversity of bacterioplankton assemblages in western Antarctic seawaters during late spring. Mar Ecol Prog Ser 292:13–21

    Article  CAS  Google Scholar 

  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee S (eds) Chlorophyll fluorescence: a signature of photosynthesis. Kluwer, Dordrecht, pp 279–319

    Google Scholar 

  • Schultz GE, Ducklow H (2000) Changes in bacterioplankton metabolic capabilities along a salinity gradient in the York River estuary, Virginia, USA. Aquat Microb Ecol 22:163–174

    Article  Google Scholar 

  • Shashar N, Cohen Y, Loya Y, Sar N (1994) Nitrogen fixation (acetylene reduction) in stony corals: evidence for coral–bacteria interactions. Mar Ecol Prog Ser 111:259–264

    Article  CAS  Google Scholar 

  • Stefanowicz A (2006) The Biolog Plates technique as a tool in ecological studies of microbial communities. Polish J Environ Stud 15:669–676

    CAS  Google Scholar 

  • Stimson J, Kinzie RA III (1991) The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J Exp Mar Biol Ecol 153:63–74

    Article  Google Scholar 

  • Sweet MJ, Croquer A, Bythell JC (2011a) Bacterial assemblages differ between compartments within the coral holobiont. Coral Reefs 30:39–52

    Article  Google Scholar 

  • Sweet MJ, Croquer A, Bythell JC (2011b) Dynamics of bacterial community development in the reef coral Acropora muricata following experimental antibiotic treatment. Coral Reefs 30:1121–1133

    Article  Google Scholar 

  • Thurber RLV, Barott KL, Hall D, Liu H, Rodriguez-Mueller B, Desnues C, Edwards RA, Haynes M, Angly FE, Wegley L, Rohwer FL (2008) Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa. Proc Natl Acad Sci USA 105:18413–18418

    Article  Google Scholar 

  • Thurber RV, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F, Dinsdale E, Kelly L, Rohwer F (2009) Metagenomic analysis of stressed coral holobionts. Environ Microbiol 11:2148–2163

    Article  CAS  Google Scholar 

  • Toren A, Landau L, Kushmaro A, Loya Y, Rosenberg E (1998) Effect of temperature on adhesion of Vibrio strain AK-1 to Oculina patagonica and on coral bleaching. Appl Environ Microbiol 64:1379–1384

    CAS  Google Scholar 

  • Ulstrup KE, Berkelmans R, Ralph PJ, van Oppen MJH (2006) Variation in bleaching sensitivity of two coral species across a latitudinal gradient on the Great Barrier Reef: the role of zooxanthellae. Mar Ecol Prog Ser 314:135–148

    Article  Google Scholar 

  • van Oppen MJH, Leong J, Gates RD (2009) Coral-virus interactions: a double-edged sword? Symbiosis 47:1–8

    Article  Google Scholar 

  • Wang G-H, Liu J–J, Qi X-N, Jin J, Wang Y, Liu X-B (2008) Effects of fertilization on bacterial community structure and function in a black soil of Dehui region estimated by Biolog and PCR-DGGE methods. Acta Ecologica Sinica 28:220–226

    Article  Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012

    Article  CAS  Google Scholar 

  • Whitaker JR, Granum PE (1980) An absolute method for protein determination based on difference in absorbance at 235 and 280 nm. Anal Biochem 109:156–157

    Article  CAS  Google Scholar 

  • Wilson WH, Francis I, Ryan K, Davy SK (2001) Temperature induction of viruses in symbiotic dinoflagellates. Aquat Microb Ecol 25:99–102

    Article  Google Scholar 

  • Wilson WH, Dale AL, Davy JE, Davy SK (2005) An enemy within? Observations of virus-like particles in reef corals. Coral Reefs 24:145–148

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Ralph.

Additional information

Communicated by M. Kühl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

227_2012_1967_MOESM1_ESM.eps

Photographs showing coral condition representative of each treatment after 120 h. a Control, b + Antibiotics, c Heat-stressed d Heat-stress + Antibiotics (EPS 3.47 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilbert, J.A., Hill, R., Doblin, M.A. et al. Microbial consortia increase thermal tolerance of corals. Mar Biol 159, 1763–1771 (2012). https://doi.org/10.1007/s00227-012-1967-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-1967-9

Keywords

Navigation