Skip to main content
Log in

Autoregressive logistic regression applied to atmospheric circulation patterns

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Autoregressive logistic regression models have been successfully applied in medical and pharmacology research fields, and in simple models to analyze weather types. The main purpose of this paper is to introduce a general framework to study atmospheric circulation patterns capable of dealing simultaneously with: seasonality, interannual variability, long-term trends, and autocorrelation of different orders. To show its effectiveness on modeling performance, daily atmospheric circulation patterns identified from observed sea level pressure fields over the Northeastern Atlantic, have been analyzed using this framework. Model predictions are compared with probabilities from the historical database, showing very good fitting diagnostics. In addition, the fitted model is used to simulate the evolution over time of atmospheric circulation patterns using Monte Carlo method. Simulation results are statistically consistent with respect to the historical sequence in terms of (1) probability of occurrence of the different weather types, (2) transition probabilities and (3) persistence. The proposed model constitutes an easy-to-use and powerful tool for a better understanding of the climate system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bizzotto R, Zamuner S, De Nicolao G, Karlsson MO, Gomeni R (2010) Multinomial logistic estimation of Markov-chain models for modelling sleep architecture in primary insomnia patients. Pharmacokinet Pharmacodyn 37:137–155

    Article  Google Scholar 

  • Bonney GE (1987) Logistic regression for dependent binary data. Biometrics 43(4):951–973

    Article  Google Scholar 

  • Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis: forecasting and control. Prentice-Hall International, New Jersey

    Google Scholar 

  • Cahynova M, Huth R (2009) Enhanced lifetime of atmospheric circulation types over Europe: fact or fiction? Tellus 61A:407–416

    Article  Google Scholar 

  • Corte-Real J, Xu H, Qian B (1999) A weather generator for obtaining daily precipitation scenarios based on circulation patterns. Clim Res 13:61–75

    Article  Google Scholar 

  • Cox DR (1972) The analysis of multivariate binary data. J R Stat Soc Ser C 21(2):113–120

    Google Scholar 

  • de Vries SO, Fiedler V, Kiupers WD, Hunink MGM (1998) Fitting multistate transition models with autoregressive logistic regression: supervised exercise in intermittend claudication. Med Decis Mak 18:52–60

    Article  Google Scholar 

  • Dobson AJ (2002) An introduction to generalized linear models, 2nd edn. Chapman & Hall/CRC, Florida

    Google Scholar 

  • Esteban P, Martín-Vide J, Mases M (2006) Daily atmospheric circulation catalogue for Western Europe using multivariate techniques. Int J Climatol 26:1501–1515

    Article  Google Scholar 

  • Gerstengarbe FW, Werner P (1999) Katalog der Grosswetterlagen Europas (1881–1998) nach Paul Hess und Helmuth Brezowsky. Potsdam Institut für Klimafolgenforschung, Postdam, Germany

  • Gerstengarbe FW, Werner P. (2005) Katalog der Grosswetterlagen Europas(1881–2004) nach Paul Hess und Helmuth Brezowsky. Potsdam Institut für Klimafolgenforschung, Postdam, Germany

  • Goodess CM, Jones PD (2002) Links between circulation and changes in the characteristics of Iberian rainfall. Int J Climatol 22:1593–1615

    Article  Google Scholar 

  • Hess P, Brezowsky H (1952) Katalog der Grosswetterlagen Europas(Catalog of the European Large Scale Weather Types). Ber. Dt. Wetterd, in der US-Zone 33, Bad Kissingen, Germany

  • Hurrell J, Kushnir Y, Ottersen G, Visbeck M (2003) The North Atlantic Oscillation: climate significance and environmental impact, geophysical monograph series 134. American Geophysical Union, Washington, DC

  • Huth R (2000) A circulation classification scheme applicable in GCM studies. Theor Appl Climatol 67:1–18

    Article  Google Scholar 

  • Huth R (2001) Disaggregating climatic trends by classification of circulation patterns. Int J Climatol 21:135–153

    Article  Google Scholar 

  • Huth R, Beck C, Philipp A, Demuzere M, Ustrnul Z, Cahynová M, Kyselý K, Tveito OE (2008) Classification of atmospheric circulation patterns. Trends Dir Clim Res 1146:105–152

    Google Scholar 

  • Izaguirre C, Menéndez M, Camus P, Méndez FJ, Mínguez R, Losada IJ (2012) Exploring the interannual variability of extreme wave climate in the northeast atlantic ocean. Ocean Modelling 59–60:31–40. http://dx.doi.org/10.1016/j.ocemod.2012.09.007

  • Jordan P, Talkner P (2000) A seasonal Markov chain model for the weather in the central Alps. Tellus 52A:455–469

    Article  Google Scholar 

  • Kalnay EM, Kanamitsu R, Kistler W, Collins D, Deaven L, Gandin M, Iredell S, Saha G, White J, Woollen Y, Zhu M, Chelliah W, Ebisuzaki W, Higgins J, Janowiak KC, Mo C, Ropelewski J, Wang A, Leetmaa R, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470

    Article  Google Scholar 

  • Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: Monthly means CD-Rom and documentation. Bull Am Meteorol Soc 82:247–268

    Article  Google Scholar 

  • Kyselý K, Huth R (2006) Changes in atmospheric circulation over Europe detected by objective and subjective methods. Theor Appl Climatol 85:19–36

    Article  Google Scholar 

  • Maheras P, Tolika K, Anagnostopoulou C, Vafiadis M, Patrikas I, Flocas H (2004) On the relationships between circulation types and changes in rainfall variability in Greece. Int J Climatol 24:1695–1712

    Article  Google Scholar 

  • Massey FJ (1951) The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46:68–78

    Article  Google Scholar 

  • Muenz LR, Rubinstein LV (1985) Models for covariate dependence of binary sequences. Biometrics 41(1):91–101

    Article  Google Scholar 

  • Nicolis C, Ebeling W, Baraldi C (1997) Markov processes, dynamic entropies and the statistical prediction of mesoscale weather regimes. Tellus A 49:108–118

    Article  Google Scholar 

  • Pasmanter RA, Timmermann A (2003) Cyclic Markov chains with an application to an intermediate ENSO model. Nonlinear Process Geophys 10:197–210

    Article  Google Scholar 

  • Pastor MA, Casado MJ (2012) Use of circulation types classifications to evaluate AR4 climate models over the euro-atlantic region. Clim Dyn

  • Philipp A, Bartholy J, Beck C, Erpicum M, Esteban P, Fettweis X, Huth R, James P, Joudain S, Kreienkamp F, Krennert T, Lykoudis S, Michalides SC, Pianko-Kluczynska K, Post P, Rasilla D, Schiemann R, Spekat A, Tymvios FS (2010) Cost733cat- A database of weather and circulation type classification. Phys Chem Earth 35:360–373

    Article  Google Scholar 

  • Plan E, Elshoff JP, Stockis A, Sargentini-Maier ML, Karlsson MO (2012) Likert pain score modelling: A Markov model and an autoregressive continuous model. Clin Pharmacol Ther 91:820–828

    Article  Google Scholar 

  • Polo I, Ullmann A, Roucou P, Fontaine B (2011) Weather regimes in the euro-atlantic and mediterranean sector, and relationship with west african rainfall over the 1989–2008 period from a self-organizing maps approach. J Clim 24:3423–3432

    Article  Google Scholar 

  • Rodríguez G (2007) Lecture notes on generalized linear models, 1st edn. Princeton University, New Jersey

    Google Scholar 

  • Stefanicki G, Talkner P, Weber R (1998) Frequency changes of weather types in the alpine region since 1945. Theor Appl Climatol 60:47–61

    Article  Google Scholar 

  • van den Besselaar E, Klein Tank A, van der Schrier G (2009) Influence of circulation types on temperature extremes in Europe. Theor Appl Climatol 99:431–439

    Article  Google Scholar 

  • Vidakovik B (2011) Statistics for bioengineering sciences, 1st edn. Springer, New York

    Book  Google Scholar 

  • Werner P, Gerstengarbe FW (2010) Katalog der Grosswetterlagen Europas(1881–2009) nach Paul Hess und Helmuth Brezowsky. Potsdam Institut für Klimafolgenforschung, Postdam, Germany

Download references

Acknowledgments

This work was partially funded by projects “AMVAR” (CTM2010-15009), “GRACCIE” (CSD2007-00067, CONSOLIDER-INGENIO 2010), “IMAR21” (BIA2011-2890) and “PLVMA” (TRA2011-28900) from the Spanish Ministry MICINN, “MARUCA” (E17/08) from the Spanish Ministry MF and “C3E” (200800050084091) from the Spanish Ministry MAMRM. The support of the EU FP7 Theseus “Innovative technologies for safer European coasts in a changing climate”, contract ENV.2009-1, n. 244104, is also gratefully acknowledged. Y. Guanche is indebted to the Spanish Ministry of Science and Innovation for the funding provided in the FPI Program (BES-2009-027228). R. Mínguez is also indebted to the Spanish Ministry MICINN for the funding provided within the “Ramon y Cajal” program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mínguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guanche, Y., Mínguez, R. & Méndez, F.J. Autoregressive logistic regression applied to atmospheric circulation patterns. Clim Dyn 42, 537–552 (2014). https://doi.org/10.1007/s00382-013-1690-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1690-3

Keywords

Navigation