Skip to main content
Log in

Platinum-group elements, S, Se and Cu in highly depleted abyssal peridotites from the Mid-Atlantic Ocean Ridge (ODP Hole 1274A): Influence of hydrothermal and magmatic processes

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Highly depleted harzburgites and dunites were recovered from ODP Hole 1274A, near the intersection between the Mid-Atlantic Ocean Ridge and the 15°20′N Fracture Zone. In addition to high degrees of partial melting, these peridotites underwent multiple episodes of melt–rock reaction and intense serpentinization and seawater alteration close to the seafloor. Low concentrations of Se, Cu and platinum-group elements (PGE) in harzburgites drilled at around 35–85 m below seafloor are consistent with the consumption of mantle sulfides after high degrees (>15–20 %) of partial melting and redistribution of chalcophile and siderophile elements into PGE-rich residual microphases. Higher concentrations of Cu, Se, Ru, Rh and Pd in harzburgites from the uppermost and lowest cores testify to late reaction with a sulfide melt. Dunites were formed by percolation of silica- and sulfur-undersaturated melts into low-Se harzburgites. Platinum-group and chalcophile elements were not mobilized during dunite formation and mostly preserve the signature of precursor harzburgites, except for higher Ru and lower Pt contents caused by precipitation and removal of platinum-group minerals. During serpentinization at low temperature (<250 °C) and reducing conditions, mantle sulfides experienced desulfurization to S-poor sulfides (mainly heazlewoodite) and awaruite. Contrary to Se and Cu, sulfur does not record the magmatic evolution of peridotites but was mostly added in hydrothermal sulfides and sulfate from seawater. Platinum-group elements were unaffected by post-magmatic low-temperature processes, except Pt and Pd that may have been slightly remobilized during oxidative seawater alteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alard O, Griffin WL, Lorand J-P, Jackson SE, O’Reilly SY (2000) Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature 407:891–894

    Article  Google Scholar 

  • Alard O, Lorand J-P, Reisberg L, Bodinier J-L, Dautria J-M, O’Reilly SY (2011) Volatile-rich metasomatism in Montferrier xenoliths (southern France): implications for the abundances of chalcophile and highly siderophile elements in the subcontinental mantle. J Petrol 52:2009–2045

    Article  Google Scholar 

  • Aldanmaz E, Meisel T, Celik OF, Henjes-Kunst F (2012) Osmium isotope systematics and highly siderophile element fractionation in spinel-peridotites from the Tethyan ophiolites in SW Turkey: implications for multi-stage evolution of oceanic upper mantle. Chem Geol 294–295:152–164

    Article  Google Scholar 

  • Alt JC, Shanks WC III (1998) Sulfur in serpentinized oceanic peridotites: serpentinization processes and microbial sulfate reduction. J Geophys Res 103(5):9917–9929

    Article  Google Scholar 

  • Alt JC, Shanks WC III (2003) Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur geochemistry and reaction modeling. Geochim Cosmochim Acta 67:641–653

    Article  Google Scholar 

  • Alt JC, Shanks WC III, Bach W, Paulick H, Garrido CJ, Beaudoin G (2007) Hydrothermal alteration and microbial sulfate reduction in peridotite and gabbro exposed by detachment faulting at the Mid-Atlantic Ridge, 15°20′N (ODP Leg 209): a sulfur and oxygen isotope study. Geochem Geophys Geosyst 8(8):Q08002

    Article  Google Scholar 

  • Bach W, Garrido CJ, Paulick H, Harvey J, Rosner M (2004) Seawater–peridotite interactions: first insights from ODP Leg 209, MAR 15°N. Geochem Geophys Geosyst 5(9):Q09F26

    Article  Google Scholar 

  • Bach W, Paulick H, Garrido CJ, Ildefonse B, Meurer WP, Humphris SE (2006) Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophys Res Lett 33:L13306

    Article  Google Scholar 

  • Barnes SJ, Liu W (2012) Pt and Pd mobility in hydrothermal fluids: evidence from komatiites and from thermodynamic modelling. Ore Geol Rev 44:49–58

    Article  Google Scholar 

  • Barnes S-J, Savard D, Bédard LP, Maier WD (2009) Selenium and sulfur concentrations in the Bushveld Complex of South Africa and implications for formation of the platinum-group element deposits. Miner Deposita 44:647–663

    Article  Google Scholar 

  • Becker H, Shirey SB, Carlson RW (2001) Effects of melt percolation on the Re-Os systematics of peridotites from a Paleozoic convergent plate margin. Earth Planet Sci Lett 188:107–121

    Article  Google Scholar 

  • Becker H, Horan MF, Walker RJ, Gao S, Lorand J-P, Rudnick RL (2006) Highly siderophile element composition of the Earth’s primitive upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochim Cosmochim Acta 70:4528–4550

    Article  Google Scholar 

  • Bell AS, Simon A, Guillong M (2009) Experimental constraints on Pt, Pd and Au partitioning and fractionation in silicate melt-sulfide-oxide-aqueous fluid systems at 800°C, 150 MPa and variable sulfur fugacity. Geochim Cosmochim Acta 73:5778–5792

    Article  Google Scholar 

  • Bockrath C, Ballhaus C, Holzheid A (2004) Fractionation of the platinum-group elements during mantle melting. Science 305:1951–1953

    Article  Google Scholar 

  • Brenan JM (2008) Re-Os fractionation by sulfide melt-silicate melt partitioning: a new spin. Chem Geol 248:140–165

    Article  Google Scholar 

  • Brenan JM, Andrews D (2001) High-temperature stability of laurite and Ru-Os-Ir alloy and their role in the PGE fractionation in mafic magmas. Can Mineral 39:341–360

    Article  Google Scholar 

  • Büchl A, Brügmann G, Batanova VG, Münker C, Hofmann AW (2002) Melt percolation monitored by Os isotopes and HSE abundances: a case study from the mantle section of the Troodos Ophiolite. Earth Planet Sci Lett 204:385–402

    Article  Google Scholar 

  • Büchl A, Brügmann G, Batanova VG, Hofmann AW (2004) Os mobilization during melt percolation: the evolution of Os isotope heterogeneities in the mantle sequence of the Troodos ophiolite, Cyprus. Geochim Cosmochim Acta 68:3397–3408

    Article  Google Scholar 

  • Cannat M, Lagabrielle Y, de Coutures N, Bougault H, Casey J, Dmitriev L, Fouquet Y (1997) Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: geological mapping in the 15°N region. Tectonophys 279:193–213

    Article  Google Scholar 

  • Crocket JH, Fleet ME, Stone WE (1997) Implications of composition for experimental partitioning of platinum-group elements and gold between sulfide liquid and basalt melt: the significance of nickel content. Geochim Cosmochim Acta 61:4139–4149

    Article  Google Scholar 

  • Delacour A, Früh-Green GL, Bernasconi SM, Kelley DS (2008) Sulfur in peridotites and gabbros at Lost City (30°N, MAR): implications for hydrothermal alteration and microbial activity during serpentinization. Geochim Cosmochim Acta 72:5090–5110

    Article  Google Scholar 

  • Delpech G, Lorand J-P, Grégoire M, Cottin J-Y, O’Reilly SY (2012) In-situ geochemistry of sulfides in highly metasomatized mantle xenoliths from Kerguelen, southern Indian Ocean. Lithos 154:296–314

    Article  Google Scholar 

  • Escartín J, Cannat M (1999) Ultramafic exposures and the gravity signature of the lithosphere near the Fifteen-Twenty Fracture Zone (Mid-Atlantic Ridge, 14°-16.5°N). Earth Planet Sci Lett 171:411–424

    Article  Google Scholar 

  • Escartín J, Mével C, MacLeod CJ, McCaig AM (2003) Constraints on deformation conditions and the origin of oceanic detachments: the Mid-Atlantic Ridge core complex at 15°45′N. Geochem Geophys Geosyst 4(8):1067

    Article  Google Scholar 

  • Fellows SA, Canil D (2012) Experimental study of the partitioning of Cu during partial melting of Earth’s mantle. Earth Planet Sci Lett 337–338:133–143

    Article  Google Scholar 

  • Finnigan CS, Brenan JM, Mungall JE, McDonough WF (2008) Experiments and models bearing on the role of chromite as a collector of Platinum group minerals by local reduction. J Petrol 49:1647–1665

    Article  Google Scholar 

  • Fischer-Gödde M, Becker H, Wombacher F (2011) Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths. Chem Geol 280:365–383

    Article  Google Scholar 

  • Fleet ME, Wu T-W (1993) Volatile transport of platinum-group elements in sulfide-chloride assemblages at 1000°C. Geochim Cosmochim Acta 57:3519–3531

    Article  Google Scholar 

  • Fleet ME, Crocket JH, Liu M, Stone WE (1999) Laboratory partitioning of platinum-group elements (PGE) and gold with application to magmatic sulfide-PGE deposits. Lithos 47:127–142

    Article  Google Scholar 

  • Fonseca ROC, Laurenz V, Mallmann G, Luguet A, Hoehne N, Jochum KP (2012) New constraints on the genesis and long-term stability of Os-rich alloys in the Earth’s mantle. Geochim Cosmochim Acta 87:227–242

    Article  Google Scholar 

  • Fujiwara T, Lin J, Matsumoto T, Kelemen PB, Tucholke BE, Casey JF (2003) Crustal evolution of the Mid-Atlantic Ridge near the Fifteen-Twenty Fracture Zone in the last 5 Ma. Geochem Geophys Geosyst 4(3):1024

    Article  Google Scholar 

  • Gammons CH, Bloom MS (1993) Experimental investigation of the hydrothermal geochemistry of platinum and palladium: II. The solubility of PtS and PdS in aqueous sulfide solutions to 300°C. Geochim Cosmochim Acta 57:2451–2467

    Article  Google Scholar 

  • Godard M, Lagabrielle Y, Alard O, Harvey J (2008) Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (Fifteen-Twenty Fracture Zone, Mid-Atlantic Ridge): implications for mantle dynamics beneath a slow spreading ridge. Earth Planet Sci Lett 267:410–425

    Article  Google Scholar 

  • Handler MR, Bennett VC (1999) Behaviour of platinum-group elements in the subcontinental mantle of eastern Australia during variable metasomatism and melt depletion. Geochim Cosmochim Acta 63:3597–3618

    Article  Google Scholar 

  • Handler MR, Bennett VC, Dreibus G (1999) Evidence from correlated Ir/Os and Cu/S for late-stage Os mobility in peridotite xenoliths: implications for Re-Os systematics. Geology 27:75–78

    Article  Google Scholar 

  • Hanghøj K, Kelemen PB, Hassler D, Godard M (2010) Composition and genesis of depleted mantle peridotites from the Wadi Tayin massif, Oman ophiolite; major and trace element geochemistry, and Os isotope and PGE systematics. J Petrol 51:201–227

    Article  Google Scholar 

  • Harvey J, Gannoun A, Burton KW, Rogers NW, Alard O, Parkinson IJ (2006) Ancient melt extraction from the oceanic upper mantle revealed by Re-Os isotopes in abyssal peridotites from the Mid-Atlantic ridge. Earth Planet Sci Lett 244:606–621

    Article  Google Scholar 

  • Harvey J, Dale CW, Gannoun A, Burton KW (2011) Osmium mass balance in peridotite and the effects of mantle-derived sulphides on basalt petrogenesis. Geochim Cosmochim Acta 75:5574–5596

    Article  Google Scholar 

  • Helmy HM, Ballhaus C, Wohlgemuth-Ueberwasser C, Fonseca ROC, Laurenz V (2010) Partitioning of Se, As, Sb, Te and Bi between monosulfide solid solution and sulfide melt - Application to magmatic sulfide deposits. Geochim Cosmochim Acta 74:6174–6179

    Article  Google Scholar 

  • Holzheid A, Sylvester P, O’Neill HSC, Rubie DC, Palme H (2000) Evidence for a late chondritic veneer in the Earth’s mantle from high-pressure partitioning of palladium and platinum. Nature 406:396–399

    Article  Google Scholar 

  • Kelemen PB, Kikawa E, Miller DJ, Party SS (2007) Leg 209 summary: processes in a 20-km-thick conductive boundary layer beneath the Mid-Atlantic Ridge, 14°–16°N. Proc Ocean Drill Progr Sci Results 209 doi:10.2973/odp.proc.sr.2209.2001.2007

  • Klein F, Bach W (2009) Fe-Ni-Co-O-S phase relations in peridotite-seawater interactions. J Petrol 50:37–59

    Article  Google Scholar 

  • König S, Luguet A, Lorand J-P, Wombacher F, Lissner M (2012) Selenium and tellurium systematics of the Earth’s mantle from high precision analyses of ultra-depleted orogenic peridotites. Geochim Cosmochim Acta 86:354–366

    Article  Google Scholar 

  • Lee C-TA (2002) Platinum-group element geochemistry of peridotite xenoliths from the Sierra Nevada and the Basin and Range, California. Geochim Cosmochim Acta 66:3987–4005

    Article  Google Scholar 

  • Liu C-Z, Snow JE, Brügmann G, Hellebrand E, Hofmann AW (2009) Non-chondritic HSE budget in Earth’s upper mantle evidenced by abyssal peridotites from Gakkel ridge (Arctic Ocean). Earth Planet Sci Lett 283:122–132

    Article  Google Scholar 

  • Lorand J-P, Alard O (2001) Platinum-group element abundances in the upper mantle: new constraints from in situ and whole-rock analyses of Massif Central xenoliths (France). Geochim Cosmochim Acta 65:2789–2806

    Article  Google Scholar 

  • Lorand J-P, Alard O (2010) Determination of selenium and tellurium concentrations in Pyrenean peridotites (Ariege, France): new insight into S/Se/Te systematics of the upper in mantle samples. Chem Geol 278:120–130

    Article  Google Scholar 

  • Lorand J-P, Pattou L, Gros M (1999) Fractionation of platinum-group elements and gold in the upper mantle: a detailed study in Pyrenean orogenic lherzolites. J Petrol 40:957–981

    Article  Google Scholar 

  • Lorand J-P, Schmidt G, Palme H, Kratz K-L (2000) Highly siderophile element geochemistry of the Earth’s mantle: new data for the Lanzo (Italy) and Ronda (Spain) orogenic peridotite bodies. Lithos 53:149–164

    Article  Google Scholar 

  • Lorand J-P, Alard O, Luguet A, Keays RR (2003) Sulfur and selenium systematics of the subcontinental lithospheric mantle: inferences from the Massif Central xenolith suite (France). Geochim Cosmochim Acta 67:4137–4151

    Article  Google Scholar 

  • Lorand J-P, Delpech G, Grégoire M, Moine B, O’Reilly SY, Cottin J-Y (2004) Platinum-group elements and the multistage metasomatic history of Kerguelen lithospheric mantle (South Indian Ocean). Chem Geol 208:195–215

    Article  Google Scholar 

  • Lorand J-P, Luguet A, Alard O, Bezos A, Meisel T (2008) Abundance and distribution of platinum-group elements in orogenic lherzolites; a case study in a Fontete Rouge lherzolite (French Pyrénées). Chem Geol 248:174–194

    Article  Google Scholar 

  • Lorand J-P, Alard O, Luguet A (2010) Platinum-group element micronuggets and refertilization process in Lherz orogenic peridotite (northeastern Pyrenees, France). Earth Planet Sci Lett 289:298–310

    Article  Google Scholar 

  • Lorand J-P, Luguet A, Alard O (2013) Platinum-group element systematics and petrogenetic processing of the continental upper mantle: a review. Lithos 164–167:2–21

    Article  Google Scholar 

  • Luguet A, Alard O, Lorand J-P, Pearson NJ, Ryan C, O’Reilly SY (2001) Laser-ablation microprobe (LAM)-ICPMS unravels the highly siderophile element geochemistry of the oceanic mantle. Earth Planet Sci Lett 189:285–294

    Article  Google Scholar 

  • Luguet A, Lorand J-P, Seyler M (2003) Sulfide petrology and highly siderophile element geochemistry of abyssal peridotites: a coupled study of samples from the Kane Fracture Zone (45°W 23°20 N, MARK Area, Atlantic Ocean). Geochim Cosmochim Acta 67:1553–1570

    Article  Google Scholar 

  • Luguet A, Lorand J-P, Alard O, Cottin J-Y (2004) A multi-technique study of platinum group element systematic in some Ligurian ophiolitic peridotites, Italy. Chem Geol 208:175–194

    Article  Google Scholar 

  • Luguet A, Shirey SB, Lorand J-P, Horan MF, Carlson RW (2007) Residual platinum-group minerals from highly depleted harzburgites of the Lherz massif (France) and their role in HSE fractionation of the mantle. Geochim Cosmochim Acta 71:3082–3097

    Article  Google Scholar 

  • Maier WD (2005) Platinum-group element (PGE) deposits and occurrences: mineralization styles, genetic concepts, and exploration criteria. J Afr Earth Sci 41:165–191

    Article  Google Scholar 

  • Marchesi C, Griffin WL, Garrido CJ, Bodinier J-L, O’Reilly SY, Pearson NJ (2010) Persistence of mantle lithospheric Re-Os signature during asthenospherization of the subcontinental lithospheric mantle: insights from in situ isotopic analysis of sulfides from the Ronda peridotite (Southern Spain). Contrib Mineral Petrol 159:315–330

    Article  Google Scholar 

  • Mavrogenes JA, O’Neill HSC (1999) The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim Cosmochim Acta 63:1173–1180

    Article  Google Scholar 

  • McDonough WF, Sun S–S (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Meisel T, Moser J (2004) Reference materials for geochemical PGE analysis: new analytical data for Ru, Rh, Pd, Os, Ir, Pt and Re by isotope dilution ICP-MS in 11 geological reference materials. Chem Geol 208:319–338

    Article  Google Scholar 

  • Morgan JW (1986) Ultramafic xenoliths: clues to Earth’s late accretionary history. J Geophys Res 91(B12):12375–12387

    Article  Google Scholar 

  • Mountain BW, Wood SA (1988) Chemical controls on the solubility, transport and deposition of platinum and palladium in hydrothermal solutions: a thermodynamic approach. Econ Geol 83:492–510

    Article  Google Scholar 

  • O’Neill HSC, Dingwell DB, Borisov A, Spettel B, Palme H (1995) Experimental petrochemistry of some highly siderophile elements at high temperatures, and some implications for core formation and the mantle’s early history. Chem Geol 120:255–273

    Article  Google Scholar 

  • Palme H, Jones A (2003) Solar system abundances of the elements. In: Davis AM (ed) Meteorites, Comets and Planets, Treatise Geochemistry 1. Elsevier, Oxford, pp 41–61

    Chapter  Google Scholar 

  • Pan P, Wood SA (1994) Solubility of Pt and Pd sulfides and Au metal in aqueous bisulfide solutions II. Results at 200° to 350°C and saturated vapor pressure. Miner Depos 29:373–390

    Article  Google Scholar 

  • Paulick H, Bach W, Godard M, De Hoog JCM, Suhr G, Harvey J (2006) Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chem Geol 234:179–210

    Article  Google Scholar 

  • Peach CL, Mathez EA, Keays RR (1990) Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: implications for partial melting. Geochim Cosmochim Acta 54:3379–3389

    Article  Google Scholar 

  • Pearson DG, Irvine GJ, Ionov DA, Boyd FR, Dreibus GE (2004) Re-Os isotope systematics and platinum group element fractionation during mantle melt extraction: a study of massif and xenolith peridotite suites. Chem Geol 208:29–59

    Article  Google Scholar 

  • Pearson DG, Parman SW, Nowell GM (2007) A link between large mantle melting events and continent growth seen in osmium isotopes. Nature 449:202–205

    Article  Google Scholar 

  • Peregoedova A, Barnes S-J, Baker DR (2004) The formation of Pt-Ir alloys and Cu-Pd-rich sulfide melts by partial desulfurization of Fe-Ni-Cu sulfides: results of experiments and implications for natural systems. Chem Geol 208:247–264

    Article  Google Scholar 

  • Prichard HM, Ixer RA, Lord RA, Maynard J, Williams N (1994) Assemblages of platinum-group minerals and sulfides in silicate lithologies and chromite-rich rocks within the Shetland ophiolite. Can Mineral 32:271–294

    Google Scholar 

  • Rehkämper M, Halliday AN, Alt J, Fitton JG, Zipfel J, Takazawa E (1999) Non-chondritic platinum-group element ratios in oceanic mantle lithosphere: petrogenetic signature of melt percolation? Earth Planet Sci Lett 172:65–81

    Article  Google Scholar 

  • Richardson T, Burnham OM (2002) Precious metal analysis at the Geoscience Laboratories: results from the new low-level analytical facility. Ontario Geol Surv Open File Rep 6100:35

    Google Scholar 

  • Rose-Weston L, Brenan JM, Fei Y, Secco RA, Frost DJ (2009) Effect of pressure, temperature, and oxygen fugacity on the metal-silicate partitioning of Te, Se, and S: implications for earth differentiation. Geochim Cosmochim Acta 73:4598–4615

    Article  Google Scholar 

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5(5):Q05004

    Article  Google Scholar 

  • Savard D, Barnes S-J, Meisel T (2010) Comparison between Nickel-Sulfur Fire Assay Te co-precipitation and Isotope Dilution with High-Pressure Asher acid digestion for the determination of platinum-group elements, rhenium and gold. Geostand Geoanal Res 34:281–291

    Article  Google Scholar 

  • Seyler M, Lorand J-P, Dick HJB, Drouin M (2007) Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15° 20′: ODP Hole 1274A. Contrib Mineral Petrol 153:303–319

    Article  Google Scholar 

  • Shi R, Alard O, Zhi X, O’Reilly SY, Pearson NJ, Griffin WL, Zhang M, Chen X (2007) Multiple events in the Neo-Tethyan oceanic upper mantle: evidence from Ru-Os-Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites. Tibet. Earth Planet Sci Lett 261:33–48

    Article  Google Scholar 

  • Shirai N, Nishino T, Li X, Amakawa Y, Ebihara M (2003) Precise determination of PGE in a GSJ reference sample JP-1 by ID-ICPMS after nickel sulfide fire assay preconcentration. Geochem J 37:531–536

    Article  Google Scholar 

  • Snow JE, Schmidt G (1998) Constraints on Earth accretion deduced from noble metals in the oceanic mantle. Nature 391:166–169

    Article  Google Scholar 

  • Snow JE, Schmidt G, Rampone E (2000) Os isotopes and highly siderophile elements (HSE) in the Ligurian ophiolites, Italy. Earth Planet Sci Lett 175:119–132

    Article  Google Scholar 

  • van Acken D, Becker H, Hammerschmidt K, Walker RJ, Wombacher F (2010) Highly siderophile elements and Sr–Nd isotopes in refertilized mantle peridotites - A case study from the Totalp ultramafic body, Swiss Alps. Chem Geol 276:257–268

    Article  Google Scholar 

  • Wang Z, Becker H, Gawronski T (2013) Partial re-equilibration of highly siderophile elements and the chalcogens in the mantle: a case study on the Baldissero and Balmuccia peridotite massifs (Ivrea Zone, Italian Alps). Geochim Cosmochim Acta 108:21–44

    Article  Google Scholar 

  • Wood SA (1987) Thermodynamic calculations of the volatility of the platinum group elements (PGE): the PGE content of fluids at magmatic temperatures. Geochim Cosmochim Acta 51:3041–3050

    Article  Google Scholar 

  • Wood SA, Mountain BW, Pan P (1992) The aqueous geochemistry of platinum, palladium and gold: recent experimental constraints and re-evaluation of theoretical predictions. Canad Mineral 30:955–982

    Google Scholar 

  • Wood SA, Pan P, Zhang Y, Mucci A (1994) The solubility of Pt and Pd sulfides and Au in bisulfide solutions I. Results at 25°-90°C and 1 bar pressure. Miner Depos 29:309–317

    Article  Google Scholar 

  • Xiao Z, Gammons CH, Williams-Jones AE (1998) Experimental study of copper(I) chloride complexing in hydrothermal solutions at 40 to 300°C and saturated water vapor pressure. Geochim Cosmochim Acta 62:2949–2964

    Article  Google Scholar 

  • Xiong Y, Wood SA (2000) Experimental quantification of hydrothermal solubility of platinum-group elements with special reference to porphyry copper environments. Mineral Petrol 68:1–28

    Article  Google Scholar 

  • Yamamoto M (1976) Relationship between Se/S and sulfur isotope ratios of hydrothermal sulfide minerals. Miner Deposita 11:197–209

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to D. van Acken and two anonymous referees for their constructive reviews of the submitted version of the manuscript. This research used samples provided by the Ocean Drilling Program (ODP). ODP is sponsored by the U.S. National Science Foundation and participating countries under the management of the Joint Oceanographic Institutions (JOI) Inc. C.M.’s research has been supported by a JAE-DOC postdoctoral fellowship of the CSIC co-funded by the European Social Fund, and by a Marie Curie European Re-integration Grant under contract agreement PERG08-GA-2010-276867. This is contribution 352 from the ARC Centre of Excellence for Core to Crust Fluid Systems (http://www.ccfs.mq.edu.au) and 907 from the GEMOC Key Centre (http://www.gemoc.mq.edu.au).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Marchesi.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchesi, C., Garrido, C.J., Harvey, J. et al. Platinum-group elements, S, Se and Cu in highly depleted abyssal peridotites from the Mid-Atlantic Ocean Ridge (ODP Hole 1274A): Influence of hydrothermal and magmatic processes. Contrib Mineral Petrol 166, 1521–1538 (2013). https://doi.org/10.1007/s00410-013-0942-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-013-0942-x

Keywords

Navigation