Skip to main content

Advertisement

Log in

Modelling Estuarine Biogeochemical Dynamics: From the Local to the Global Scale

Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Estuaries act as strong carbon and nutrient filters and are relevant contributors to the atmospheric CO2 budget. They thus play an important, yet poorly constrained, role for global biogeochemical cycles and climate. This manuscript reviews recent developments in the modelling of estuarine biogeochemical dynamics. The first part provides an overview of the dominant physical and biogeochemical processes that control the transformations and fluxes of carbon and nutrients along the estuarine gradient. It highlights the tight links between estuarine geometry, hydrodynamics and scalar transport, as well as the role of transient and nonlinear dynamics. The most important biogeochemical processes are then discussed in the context of key biogeochemical indicators such as the net ecosystem metabolism (NEM), air–water CO2 fluxes, nutrient-filtering capacities and element budgets. In the second part of the paper, we illustrate, on the basis of local estuarine modelling studies, the power of reaction-transport models (RTMs) in understanding and quantifying estuarine biogeochemical dynamics. We show how a combination of RTM and high-resolution data can help disentangle the complex process interplay, which underlies the estuarine NEM, carbon and nutrient fluxes, and how such approaches can provide integrated assessments of the air–water CO2 fluxes along river–estuary–coastal zone continua. In addition, trends in estuarine biogeochemical dynamics across estuarine geometries and environmental scenario are explored, and the results are discussed in the context of improving the modelling of estuarine carbon and CO2 dynamics at regional and global scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abril G, Riou SA, Etcheber H, Frankignoulle M, de Wit R, Middelburg JJ (2000) Transient, tidal time-scale, nitrogen transformations in an estuarine turbidity maximum-fluid mud system (The Gironde, South-West France). Estuar Coast Shelf Sci 50:703–715

    Google Scholar 

  • Abril G, Nogueira M, Etcheber H, Cabeçadas G, Lemaire E, Brogueira MJ (2002) Behaviour of organic carbon in nine contrasting European estuaries. Estuar Coast Shelf Sci 54:241–262

    Google Scholar 

  • Alin SR, Rasera MFFL, Salimon CI, Richey JE et al (2011) Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. J Geophys Res Biogeosci 116. doi:10.1029/2010JG001398

  • Amann T, Weiss A, Hartmann J (2012) Carbon dynamics in the freshwater part of the Elbe estuary, Germany: implications of improving water quality. Estuar Coast Shelf Sci 107:112–121

    Google Scholar 

  • Andersson AJ, Mackenzie FT (2004) Shallow-water oceans: a source or sink of atmospheric CO2? Front Ecol Environ 2:348–353

    Google Scholar 

  • Arino O, Gross D, Ranera F, Bourg L, Leroy M, Bicheron P, Latham J, Di Gregorio A, Brockman C, Witt R, Defourny P, Vancutsem C, Herold M, Sambale J, Achard F, Durieux L, Plummer S, Weber J-L (2007) GlobCover: ESA service for global land cover from MERIS. In: Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS). IEEE International, Barcelona, pp 2412–2415

  • Arndt S, Regnier P (2007) A model for the benthic-pelagic coupling of silica in estuarine ecosystem: sensitivity analysis and system scale simulation. Biogeosciences 4:331–352

    Google Scholar 

  • Arndt S, Vanderborght JP, Regnier P (2007) Diatom growth response to physical forcing in a macro tidal estuary: coupling hydrodynamics, sediment transport, and biogeochemistry. J Geophys Res 112. doi: 10.1029/2006JC003581

  • Arndt S, Regnier P, Vanderborght JP (2009) Seasonally-resolved nutrient filtering capacities and export fluxes in a macrotidal estuary. J Mar Syst 78:42–58

    Google Scholar 

  • Arndt S, Lacroix G, Gypens N, Regnier P, Lancelot C (2011) Nutrient dynamics and phytoplankton development along an estuary-coastal zone continuum: a model study. J Mar Syst 84:49–66

    Google Scholar 

  • Arndt S, Jørgensen BB, LaRowe DE, Middelburg JJ, Pancost R, Regnier P (2013) Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Sci Rev 123:53–86

    Google Scholar 

  • Aston SR (1983) Silicon geochemistry and biogeochemistry. Academic Press, London

    Google Scholar 

  • Atlas R, Hoffman RN, Ardizzone J, Leidner SM, Jusem JC, Smith DK, Gombos D (2011) A cross-calibrated multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull Am Meteor Soc 92:157–174

    Google Scholar 

  • Baklouti M, Chevalier C, Bouvy M, Corbin D, Pagano M, Troussellier M, Arfi R (2011) A study of plankton dynamics under osmotic stress in the Senegal River Estuary, West Africa, using a 3D mechanistic model. Ecol Model 222:2704–2721

    Google Scholar 

  • Benoit P, Gratton Y, Mucci A (2006) Modeling of dissolved oxygen levels in the bottom waters of the Lower St. Lawrence Estuary: coupling of benthic and pelagic processes. Mar Chem 102:13–32

    Google Scholar 

  • Benson BB, Krause D Jr (1984) The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol Oceanogr 29:620–637

    Google Scholar 

  • Beusen AHW, Dekkers ALM, Bouwman AF, Ludwig W, Harrison J (2005) Estimation of global river transport of sediments and associated particulate C, N and P. Global Biogeochem Cycles 19. doi: 10.1029/2005GB002453

  • Bianchi TS (2007) Biogeochemistry of estuaries. Oxford University Press, Oxford

    Google Scholar 

  • Bianchi TS (2011) The role of terrestrial derived organic carbon in the coastal ocean: a changing paradigm and priming effect. Proc Natl Acad Sci 108:19473–19481

    Google Scholar 

  • Billen G (1975) Nitrification in the Scheldt Estuary (Belgium and The Netherlands). Estuar Coast Mar Sci 3:79–89

    Google Scholar 

  • Billen G, Somville M, De Becker E, Servais P (1985) A nitrogen budget of the Scheldt hydrographical basin. Neth J Sea Res 19:223–230

    Google Scholar 

  • Billen G, Lancelot C, Maybeck M (1991) N, P and Si retention along the aquatic continuum from land to ocean. In: Mantoura RFC, Martin JM, Wollast R (ed) Ocean margin processes in global change. Dahlem workshop reports, Wiley, pp 19–44

  • Billen G, Garnier J, Ficht A, Cun C (2001) Modeling the response of water quality in the Seine River estuary to human activity in its watershed over the last 50 years. Estuaries 24:977–993

    Google Scholar 

  • Billen G, Thieu V, Garnier J, Silvestre M (2009) Modelling the N cascade in regional watersheds: the case study of the Seine, Somme and Scheldt rivers. Agric Ecosyst Environ 133:234–246

    Google Scholar 

  • Borges AV (2005) Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28:3–27

    Google Scholar 

  • Borges AV, Abril G (2011) Carbon dioxide and methane dynamics in estuaries. Treatise Estuar Coast Sci 5:119–161

    Google Scholar 

  • Borges AV, Frankignoulle M (2002) Aspects of dissolved inorganic carbon dynamics in the upwelling system on the Galician coast. J Mar Syst 32:181–198

    Google Scholar 

  • Borges AV, Delille B, Schiettecatte LS, Gazeau F, Abril G, Frankignoulle M (2004) Gas transfer velocities of CO2 in three European estuaries (Renders Fjord, Scheldt, and Thames). Limnol Oceanog 49:1630–1641

    Google Scholar 

  • Borges AV, Delille B, Frankignoulle M (2005) Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts. Geophys Res Lett 32:L14601. doi:10.1029/2005GL023053

    Google Scholar 

  • Bowden KF (1963) The mixing processes in a tidal estuary. Int J Air Water Pollut 7:343–356

    Google Scholar 

  • Boyle E, Collier R, Dengler AT, Edmond JM, Ng AC, Stallard RF (1974) On the chemical mass-balance in estuaries. Geochim Cosmochim Acta 38:1719–1728

    Google Scholar 

  • Boynton WR, Garber JH, Summers R, Kemp WM (1995) Inputs, transformations and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries. Estuaries 18:285–314

    Google Scholar 

  • Brion N, Billen G (1998) A re-assessment of H14CO−3 incorporation method for measuring autotrophic nitrification and its use to estimate nitrifying biomasses. Rev Sci Eau 11:283–302

    Google Scholar 

  • Brock T (1981) Calculating solar radiation for ecological studies. Ecol Model 14:1–19

    Google Scholar 

  • Cai WJ (2011) Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration. Annu Rev Mar Sci 3:123–145

    Google Scholar 

  • Cai WJ, Wang Y (1998) The chemistry, fluxes and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnol Oceanogr 43:657–668

    Google Scholar 

  • Cai WJ, Pomeroy LR, Moran MA, Wang Y (1999) Oxygen and carbon dioxide mass balance in the estuarine/intertidal marsh complex of five rivers in the Southeastern US. Limnol Oceanogr 44:639–649

    Google Scholar 

  • Cai WJ, Dai M, Wang Y, Zhai W, Huang T, Chen S et al (2004) The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea. Cont Shelf Res 24:1301–1319

    Google Scholar 

  • Cai WJ, Guo X, Chen CTA, Dai M, Zhang L, Zhai W, Lohrenz SE, Yin K et al (2008) A comparative overview of weathering intensity and HCO3-flux of the world’s major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers. Cont Shelf Res 28:1538–1549

    Google Scholar 

  • Canuel EA, Cammer SS, McIntosh A, Pondell C (2012) Climate change impact on the organic carbon cycle at the land–ocean interface. Annu Rev Earth Planet Sci 40:685–711

    Google Scholar 

  • Cerco CF (2000) Phytoplankton kinetics in the Chesapeake Bay eutrophication model. Water Qual Ecosyst Model 1:5–49

    Google Scholar 

  • Cerco CF, Cole T (1993) Three-dimensional eutrophication model of Chesapeake Bay. J Environ Eng 119:10061025

    Google Scholar 

  • Cerco CF, Noel MR (2004) Process-based primary production modelling in Chesapeake Bay. Mar Ecol Prog Ser 282:45–58

    Google Scholar 

  • Cerco CF, Tillman D, Hagy JD (2010) Coupling and comparing a spatially- and temporally-detailed eutrophication model with and ecosystem network model: an initial application to Chesapeake Bay. Environ Model Softw 25:562–572

    Google Scholar 

  • Chen CTA, Liu KK, MacDonald R (2003) Continental margin exchanges. In: Fasham MJR (ed) Ocean biogeochemistry: a synthesis of the joint global ocean flux study (JGOFS). Springer, Berlin, pp 53–97

    Google Scholar 

  • Cloern JE (1996) Phytoplankton bloom dynamics in coastal ecosystems: a review with some general lessons from sustained investigation of San Francisco Bay, California. Rev Geophys 34:127–168

    Google Scholar 

  • Cloern JE (1999) The relative importance of light and nutrient limitation of phytoplankton growth: a simple index of coastal ecosystem sensitivity to nutrient enrichment. Aquat Ecol 33:3–16

    Google Scholar 

  • Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253

    Google Scholar 

  • Cloern JE, Alpine BE, Cole RL, Wong J, Arthur JF, Ball MD (1983) River discharge controls phytoplankton dynamics in the northern San Francisco Bay estuary. Estuar Coast Shelf Sci 16:415–429

    Google Scholar 

  • Compton J, Mallinson D, Glenn CR, Filippelli G, Follmi K, Shields G, Zanin Y (2000) Variations in the global phosphorus cycle. Marine authigenesis: from global to microbial. SEPM Special Publication 66:21–33

    Google Scholar 

  • Conley DJ (1997) Riverine contribution of biogenic silica to the oceanic silica budget. Limnol Oceanogr 42:774–777

    Google Scholar 

  • Corine Land Cover data set. http://www.eea.europa.eu

  • Cugier P, Billen G, Guillaud JF, Menesguen A (2005) Modelling the eutrophication of the Seine Bight (France) under historical, present and future riverine nutrient loading. J Hydrol 304:381–396

    Google Scholar 

  • Dai M, Guo X, Zhai W, Yuan L, Wang B, Wang L, Cai P, Tang T, Cai WJ (2006) Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought. Mar Chem 102:159–169

    Google Scholar 

  • Dai M, Wang L, Guo X, Zhai W, Li Q, He B, Kao SJ (2008) Nitrification and inorganic nitrogen distribution in a large perturbed river/estuarine system: the Pearl River Estuary, China. Biogeosciences 5:1227–1244

    Google Scholar 

  • Dalrymple RW, Zaitlin BA, Boyd R (1992) Estuarine facies models: conceptual basis and stratigraphic implications. J Sediment Petrol 62:1130–1146

    Google Scholar 

  • de Leeuw JW, Largeau C (1993) A review of macromolecular organic compounds that comprise living organism and their role in kerogen, coal and petroleum formation. In: Engel MH, Macko SA (eds) Organic geochemistry principles and applications. Plenum Publishing Corp, New York, pp 23–72

    Google Scholar 

  • DeMaster DJ (1981) The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta 45:1715–1732

    Google Scholar 

  • Desmit X, Vanderborght JP, Regnier P, Wollast R (2005) Control of phytoplankton production by physical forcing in a strongly tidal, well-mixed estuary. Biogeosciences 2:205–218

    Google Scholar 

  • Dettman EH (2001) Effect of water residence time on annual export and denitrification of nitrogen in estuaries: a model analysis. Estuaries 24:481–490

    Google Scholar 

  • Ducklow HW, McAllister SL (2004) The biogeochemistry of carbon dioxide in the coastal oceans. In: Robinson AR, Brink K (eds) The Sea. Harvard University Press, Cambridge, pp 193–225

    Google Scholar 

  • Dürr HH, Laruelle GG, van Kempen CM, Slomp CP, Meybeck M, Middlekoop H (2011) Worldwide typology of nearshore coastal systems: defining the estuarine filter of river inputs to the oceans. Estuaries Coasts 34:441–458

    Google Scholar 

  • Dyer KR (1995) Sediment transport in estuaries. In: Perillo GME (ed) Geomorphology and sedimentology of estuaries. Elsevier, Amsterdam, pp 423–449

    Google Scholar 

  • Dyer KR (2001) Suspended sediment transport in the Humber estuary. In: Huntley DA, Leeks GJL, Walling DE (eds) Land–Ocean Interaction: Measuring and Modelling Fluxes from River Basins to Coastal Seas. IAWQ, London, pp 169–183

    Google Scholar 

  • Elliott M, McLusky DS (2002) The need for definitions in understanding estuaries. Estuar Coast Shelf Sci 55:815–827

    Google Scholar 

  • Even S, Billen G, Bacq N, Thery S, Ruelland D, Garnier J, Cugier P, Poulin M, Blanc S, Lamy F, Paffoni C (2007a) New tools for modelling water quality of hydrosystems: an application in the Seine River basin in the frame of the Water Framework Directive. Sci Total Environ 375:274–291

    Google Scholar 

  • Even S, Thouvenin B, Bacq N, Billen G, Garnier J, Guezennec L, Blanc S, Ficht A, Le Hir P (2007b) An integrated modelling approach to forecast the impact of human pressure in the Seine estuary. Hydrobiol 588:13–29

    Google Scholar 

  • Eyre BD (2000) A regional evaluation of nutrient transformation and phytoplankton growth in nine river dominated sub-tropical East Australian estuaries. Mar Ecol Prog Ser 205:61–83

    Google Scholar 

  • Eyre BD, Balls PW (1999) A comparative study of nutrient processes along the salinity gradient of tropical and temperate estuaries. Estuar Coast 22:313–326

    Google Scholar 

  • Eyre BD, McKee L (2002) Carbon, nitrogen and phosphorus budgets for a shallow sub-tropical coastal embayment (Moreton Bay, Australia). Limnol Oceanogr 47:1043–1055

    Google Scholar 

  • Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie FT et al (2000) The Global Carbon Cycle: A test of our Knowledge of Earth as a System. Science 290. doi: 10.1126/science2905490291

  • Fekete BM, Vörösmarty CJ, Grabs W (2002) High-resolution fields of global runoff combining observed river discharge and simulated water balances. Glob Biogeochem Cycles 16:815–827

    Google Scholar 

  • Fekete BM, Wisser D, Kroeze C, Mayorga E, Bouwman L et al (2010) Millennium Ecosystem Assessment scenario drivers (1970–2050): climate and hydrological alterations. Glob Biogeochem Cycles 24:815–827

    Google Scholar 

  • Fisher TR, Hardings LW Jr, Stanley DW, Ward LG (1988) Phytoplankton, nutrients, and turbidity in the Chesapeake, Delaware, and Hudson estuaries. Estuar Coast Shelf Sci 27:61–93

    Google Scholar 

  • Follows MJ, Dutkiewicz S, Ito T (2006) On the solution of the carbonate system in ocean biogeochemistry models. Ocean Model 12:290–301

    Google Scholar 

  • Frankignoulle M, Bourge I, Wollast R (1996) Atmospheric CO2 fluxes in a highly polluted estuary (The Scheldt). Limnol Oceanogr 41:365–369

    Google Scholar 

  • Frankignoulle M, Abril G, Borges A, Bourge I, Canon C, Delille B, Libert E, Theate JM (1998) Carbon dioxide emission from European estuaries. Science 282:434–436

    Google Scholar 

  • Friedrichs CT, Aubrey DG (1988) Non-linear tidal distortion in shallow well mixed estuaries: a synthesis. Estuar Coast Shelf Sci 27:521–545

    Google Scholar 

  • Frossard E, Brossard M, Hedley MJ, Mertherell A (1995) Reactions controlling the cycling of P in soils. In: Tiessen H (ed) Phosphorus cycling in terrestrial and aquatic ecosystems: a global perspective. SCOPE/Wiley, New York, pp 107–137

    Google Scholar 

  • Garnier J, Billen G, Costa M (1995) Seasonal succession of diatoms and Chlorophyceae in the drainage network of the Seine River: observations and modeling. Limnol Oceanogr 40:750–765

    Google Scholar 

  • Garnier J, Billen G, Cebron A (2007) Modelling nitrogen transformations in the lower Seine river and estuary (France): impact of waste release on oxygenation and N2O emission. Hydrobiologia 588:291–302

    Google Scholar 

  • Garnier J, Billen G, Even S, Etcheber H, Servais P (2008) Organic matter dynamics and budgets in the turbidity maximum zone of the Seine Estuary (France). Estuar Coast Shelf Sci 77:150–162

    Google Scholar 

  • Gattuso JP, Frankignoulle M, Wollast R (1998) Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst 29:405–434

    Google Scholar 

  • Gazeau F, Smith SV, Gentili B, Frankignoulle M, Gattuso JP (2004) The European coastal zone: characterization and first assessment of ecosystem metabolism. Estuar Coast Shelf Sci 60:673–694

    Google Scholar 

  • Gazeau F, Gattuso JP, Middelburg JJ, Brion N, Schiettecatte LS (2005) Planktonic and whole system metabolism in a nutrient-rich estuary (the Scheldt estuary). Estuaries 28:868–883

    Google Scholar 

  • GESAMP (1987) Land/Sea boundary flux of contaminants: contributions from rivers. Rep Stud GESAMP

  • Giese BS, Jay DA (1989) Modelling tidal energetics of the Columbia River estuary. Estuar Coast Shelf Sci 29:549–571

    Google Scholar 

  • Gordon DC Jr, Boudreau PR, Mann KH, Ong JE et al (1996) LOICZ biogeochemical modelling guidelines. LOICZ reports and studies no 5, pp 1–96

  • Guan W, Wong L, Xu D (2001) Modeling nitrogen and phosphorus cycles and dissolved oxygen in the Zhujiang estuary. II. Model results. Acta Oceanol Sin 20:505–514

    Google Scholar 

  • Guéguen C, Laodong G, Deli W, Noriyuki T, Chin-Chang H (2006) Chemical characteristics and origin of dissolved organic matter in the Yukon River. Biogeochemistry 77:139–155

    Google Scholar 

  • Gypens N, Lacroix G, Lancelot C, Borges AV (2011) Seasonal and inter-annual variability of air-sea CO2 fluxes and seawater carbonate chemistry in the Southern North Sea. Prog Oceanogr 88:59–77

    Google Scholar 

  • Gypens N, Delhez E, Vanhoutte-Brunier A, Burton S, Thieu V, Passy P, Liu Y, Callens J, Rousseau V, Lancelot C (2012) Modelling phytoplankton succession and nutrient transfer along the Scheldt estuary (Belgium, The Netherlands). J Mar Syst. doi:10.1016/j.jmarsys.2012.10.006

  • Haag D, Kaupenjohann M (2000) Biogeochemical models in the environmental science. Int J Phylosophy Chem 6:117–142

    Google Scholar 

  • Hanley N, Faichney R, Munro A, Shortle JS (1998) Economic and environmental modelling for pollution control in an estuary. J Environ Manag 52:211–225

    Google Scholar 

  • Harding LWJ, Meeson BW, Fisher TRJ (1986) Phytoplankton production in two east coast estuaries: photosynthesis-light functions and patterns of carbon assimilation in Chesapeake and Delaware Bays. Estuar Coast Shelf Sci 23:773–806

    Google Scholar 

  • Hartmann J, Kempe S (2008) What is the maximum potential for CO2 sequestration by stimulated weathering on the global scale? Naturwissenschaften 95:1159–1164

    Google Scholar 

  • Hartmann J, Lauerwald R, Moosdorf N, Amann T, Weiss A (2011) GLORICH: GLobal River and estuary CHemical database. ASLO, San Juan

    Google Scholar 

  • Hedges JI, Keil RG (1999) Organic geochemical perspectives on estuarine processes: sorption reactions and consequences. Mar Chem 65:55–65

    Google Scholar 

  • Hedges JI, Eglinton G, Hatcher PG, Kirchman DL et al (2000) The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org Geochem 31:945–958

    Google Scholar 

  • Heip C, Herman PMJ (1995) Major biological processes in European tidal estuaries: a synthesis of the JEEP-92 Project. Hydrobiologia 311:1–7

    Google Scholar 

  • Hofmann AF, Soetaert K, Middelburg JJ (2008a) Present nitrogen and carbon dynamics in the Scheldt estuary using a novel 1-D model. Biogeosciences 5:981–1006

    Google Scholar 

  • Hofmann AF, Meysman FJR, Soetaert K, Middelburg JJ (2008b) A step-by-step procedure for pH model construction in aquatic systems. Biogeosciences 5:227–251

    Google Scholar 

  • Horrevoets AC, Savenije HHG, Schuurman JN, Graas S (2004) The influence of river discharge on tidal damping in alluvial estuaries. J Hydrol 294:213–228

    Google Scholar 

  • Howarth RW, Jensen H, Marino R, Postma H (1995) Transport to and processing of P in near-shore and oceanic waters. In: Tiessen H (ed) Phosphorus in the global environment transfers, cycles and management SCOPE 54. Wiley, Chichester, pp 323–345

    Google Scholar 

  • Jay DA, Giese BS, Sherwood CR (1990) Energetics and sedimentary processes in the Columbia River estuary. Prog Oceanogr 25:157–174

    Google Scholar 

  • Jiang LQ, Cai WJ, Wang Y (2008) A comparative study of carbon dioxide degassing in river- and marine-dominated estuaries. Limnol Oceanogr 53:2603–2615

    Google Scholar 

  • Kaul LW, Froelich PN (1984) Modeling estuarine nutrient geochemistry in a simple system. Geochim Cosmochim Acta 48:1417–1433

    Google Scholar 

  • Keeney-Kennicutt WL, Presley BJ (1986) The geochemistry of trace metals in the Brazos river estuary. Estuar Coast Shelf Sci 22:459–477

    Google Scholar 

  • Keil RG, Mayer LM, Quay PD, Richey JE, Hedges JI (1997) Loss of organic matter from riverine particles in deltas. Geochim Cosmochim Acta 61:1507–1511

    Google Scholar 

  • Ketchum BH (1955) Distribution of coliform bacteria and other pollutant in tidal estuaries. Sewage Ind Wastes 27:1288–1296

    Google Scholar 

  • Kim S, Cerco CF (2003) Hydrodynamic and eutrophication model of the Chester River estuary and the Eastern Bay estuary.Oceanol 45:67–80

    Google Scholar 

  • Krom MD, Berner RA (1980) Adsorption of phosphate in anoxic marine sediments. Limnol Oceanogr 25:797–806

    Google Scholar 

  • Lancelot C, Muylaert K (2011) Trends in estuarine phytoplankton ecology. Treatise Estuar Coast Sci 7:5–15

    Google Scholar 

  • Lancelot C, Veth C, Mathot S (1991) Modelling ice-edge phytoplankton bloom in the Scotia-Weddell sea sector of the Southern Ocean during spring 1988. J Mar Syst 2:333–346

    Google Scholar 

  • Lancelot C, Hannon E, Becquevort S, Veth C, de Baar HJW (2000) Modelling phytoplankton blooms and carbon export production in the Southern Ocean: dominant controls by light and iron in the Atlantic sector in Austral spring 1992. Deep-Sea Res I 47:1621–1662

    Google Scholar 

  • Langdon C (1988) On the causes of interspecific differences in the growth-irradiance relationship for phytoplankton. II. A general review. J Phytoplankton Res 10:1291–1312

    Google Scholar 

  • Laruelle GG, Regnier P, Ragueneau O, Kempa M, Moriceau B, Ni Longphuirt S, Leynaert A, Thouzeau G, Chauvaud L (2009a) Benthic-pelagic coupling and the seasonal silica cycle in the Bay of Brest (France): new insights from a coupled physical-biological model. Mar Ecol Prog Ser 385:15–32

    Google Scholar 

  • Laruelle GG, Roubeix P, Sferratore A, Brodherr B, Ciuffa D, Conley DJ, Dürr HH, Garnier J, Lancelot C, Le Thi Phuong Q, Meunier JD, Meybeck M, Michalopoulos P, Moriceau B, Ní Longphuirt S, Loucaides S, Papush L, Presti M, Ragueneau O, Regnier PAG, Saccone L, Slomp CP, Spiteri C, Van Cappellen P (2009b) The global biogeochemical cycle of silicon: role of the land–ocean transition and response to anthropogenic perturbation. Glob Biogeochem Cycles 23. doi: 10.01029/2008GB003267

  • Laruelle GG, Dürr HH, Slomp CP, Borges AV (2010) Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophys Res Lett 37:1–6

    Google Scholar 

  • Laruelle GG, Dürr HH, Lauerwald R, Hartmann J, Slomp CP, Goossens N, Regnier PAG (2013) Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrol Earth Syst Sci 17:2029–2051

    Google Scholar 

  • Lauerwald R, Hartmann J, Ludwig W, Moosdorf N (2012) Assessing the non-conservative fluvial fluxes of dissolved organic carbon in North America. J Geophys Res. doi: 10.1029/2011JG001820

  • Lee DI, Parl CK, Cho HS (2005) Ecological modeling for water quality management of Kwangyang Bay, Korea. J Environ Manag 74:327–337

    Google Scholar 

  • Lefort S, Gratton Y, Mucci A, Dadou I, Gilbert D (2012) Hypoxia in the Lower St. Lawrence Estuary: how physics controls spatial patterns. J Geophys Res 117:1–14

    Google Scholar 

  • Lewitus AJ, Kana TM (1995) Light respiration in six estuarine phytoplankton species: contrasts under photoautotrophic and mixotrophic growth conditions. J Phycol 31:754–761

    Google Scholar 

  • Lichtner PC, Steefel CI, Oelkers EH (1996) Reactive transport in porous media. Reviews in mineralogy, vol 34. The mineralogical society of America, Washington

  • Lin J, Xie L, Pietrafesa LJ, Ramus JS, Paerl HW (2007) Water quality gradients across Albemarle-Pamlico estuarine system: seasonal variations and model applications. J Coast Res 23:213–229

    Google Scholar 

  • Lin J, Xie L, Pietrafesa LJ, Xu H, Woods W, Mallin MA, Durako MJ (2008) Water quality responses to simulated flow and nutrient reductions in the Cape Fear River Estuary and adjacent coastal region, North Carolina. Ecol Model 212:200–217

    Google Scholar 

  • Lionard M, Muylaert K, Van Gansbeke D, Vyverman W (2005) Influence of changes in salinity and light intensity on growth of phytoplankton communities from the Scheldt river and estuary (Belgium/The Netherlands). Hydrobiologia 540:105–115

    Google Scholar 

  • Liss PS (1976) Conservative and non-conservative behavior of dissolved constituents during estuarine mixing. In: Burton JD, Liss PS (eds) Estuarine chemistry. Academic Press, London, pp 93–130

    Google Scholar 

  • Macedo MF, Duarte P (2006) Phytoplankton production modelling in three marine ecosystems: static versus dynamic approach. Ecol Model 190:299–316

    Google Scholar 

  • Mackenzie FT (2013) Sediments, Diagenesis, and Sedimentary Rocks. Volume 7 of Treatise on Geochemistry. Elsevier, New York

  • Mackenzie FT, Lerman A, Andersson AJ (2004) Past and present of sediment and carbon biogeochemical cycling models. Biogeoscience 1:11–32

    Google Scholar 

  • Mackenzie FT, Andersson AJ, Lerman A, Ver LM (2005) Boundary exchanges in the global costal margin: implications for the organic and inorganic carbon cycles. In: Robinson AR, Brink KH (eds) The sea. Harvard University Press, Cambridge, pp 193–225

    Google Scholar 

  • Mackenzie FT, Lerman A, DeCarlo EH (2011) Coupled C, N, P and O biogeochemical cycling at the land–ocean interface. Treatise Estuar Coast Sci 5:317–342

    Google Scholar 

  • Maher DT, Eyre BD (2012) Carbon budget for three autotrophic Australian estuaries: Implications for global estimates of the coastal air-water CO2 flux. Glob Biogeochem Cycles. doi: 10.1029/2011GB004075

  • Margvelashvili N, Robson B, Sakov P, Webster IT, Parslow J, Herzfeld M, Andrewartha J (2003) Numerical modelling of hydrodynamics, sediment transport and biogeochemistry in the Fitzroy Estuary. Tech Rep 9. Cooperative Research Centre for Coastal Zone Estuary and Waterway Management

  • Mayorga E, Seitzinger SP, Harrison JA, Dumont E, Beusen AHW, Bouwman AF, Fekete BM, Kroeze C, Van Drecht G (2010) Global nutrient export from WaterSheds 2 (NEWS 2): model development and implementation. Environ Model Softw 25:837–853

    Google Scholar 

  • Meybeck M (1993) Riverine transport of atmospheric carbon: sources, global typology and budget. Water Air Soil Poll 70:443–463

    Google Scholar 

  • Middelburg JJ, Herman PMJ (2007) Organic matter processing in tidal estuaries. Mar Chem 106:127–147

    Google Scholar 

  • Mills GL, Quinn JG (1984) Dissolved copper and copper-organic complexes in the Narrangasett Bat estuary. Mar Chem 15:151–172

    Google Scholar 

  • Moek W, Koene B (1975) Chemistry of dissolved inorganic carbon in estuarine and coastal brackish waters. Esuar Coast Shelf Sci 3:325–336

    Google Scholar 

  • Moosdorf N, Hartmann J, Lauerwald R, Hagedom B, Kempe S (2011) Atmospheric CO2 consumption by chemical weathering in North America. Geochim Cosmochim Acta 75:7829–7854

    Google Scholar 

  • Mortazavi B, Iverson RL, Huang W, Lewis GF, Caffrey JM (2000) Nitrogen budgets of Apalachicola Bay, Florida, a bar-built estuary in the northeastern Gulf of Mexico. Mar Ecol Prog Ser 195:1–14

    Google Scholar 

  • Mulholland PJ (1997) Dissolved organic matter concentration and flux in streams. J North Am Benthol Soc 16:131–141

    Google Scholar 

  • Muylaert K, Sabbe K, Vyverman W (2009) Changes in phytoplankton diversity and community composition along the salinity gradient of the Scheldt estuary (Belgium/The Netherlands). Estuar Coast Shelf Sci 82:335–340

    Google Scholar 

  • Nedwell DB, Trimmer M (1996) Nitrogen fluxes through the upper estuary of the Great Ouse, England: the role of the bottom sediments. Mar Ecol Prog Ser 142:273–286

    Google Scholar 

  • Nielsen K, Nielsen LP, Rasmussen P (1995) Estuarine nitrogen retention independently estimated by the denitrification rate and mass balance methods: a study of Norsminde Fjord, Denmark. Mar Ecol Prog Ser 119:275–283

    Google Scholar 

  • Nixon SW, Ammerman JW, Atkinson LP et al (1996) The fate of nitrogen and phosphorus at the land–sea margin of the North Atlantic Ocean. Biogeochemistry 35:141–180

    Google Scholar 

  • Nowicki BL, Requintina E, Van Keuren D, Kelly JR (1997) Nitrogen losses through sediment denitrification in Boston Harbor and Massachusetts Bay. Estuaries 20:626–639

    Google Scholar 

  • O’Connor DJ, Dobbins WE (1956) Mechanism of reaeration in natural streams. J Sanit Eng Divis ASCE 82(SA6):1–30

    Google Scholar 

  • Odum HT (1956) Primary production in flowing waters. Limnol Oceanogr 1:102–117

    Google Scholar 

  • Officer CB (1980) Box models revisited. In: Hamilton P, MacDonald KB (eds) Estuarine and wetlands processes. Plenum Press, New York, pp 65–114

    Google Scholar 

  • Officer CB, Lynch DR (1981) Dynamics of mixing in estuaries. Estuar Coast Shelf Sci 12:525–533

    Google Scholar 

  • Officer C, Biggs J, Taft J, Cronin L (1984) Chesapeake Bay anoxia: origin, development, and significance. Sci 223:22–27

    Google Scholar 

  • O’Kane JP (1980) Estuarine water quality management. Pitman, London

    Google Scholar 

  • O’Kane JP, Regnier P (2003) A mathematically transparent low-pass filter for tidal estuaries. Estuar Coast Shelf Sci 57:593–603

    Google Scholar 

  • Paerl HW, Pinckney JL, Fear JM, Peierls BL (1998) Ecosystem responses to internal and watershed organic matter loading: consequences for hypoxia in the eutrophying Neuse River Estuary, North Carolina, USA. Mar Ecol Prog Ser 166:17–25

    Google Scholar 

  • Paerl HW, Valdes LM, Peierls BL, Adolf JE, Harding LW Jr (2006) Anthropogenic and climatic influences on the eutrophication of large estuarine ecosystems. Limnol Oceanogr 51:448–462

    Google Scholar 

  • Pallud C, Van Cappelen P (2006) Kinetics of microbial sulfate reduction in estuarine sediments. Geochim Cosmochim Acta 70:1148–1162

    Google Scholar 

  • Parker BB (1991) The relative importance of the various nonlinear mechanisms in a wide range of tidal interactions (a review). In: Parker BB (ed) Tidal hydrodynamics. Wiley, New York, pp 237–268

    Google Scholar 

  • Paytan A, McLaughlin K (2007) The oceanic phosphorus cycle. Chem Rev 107(563):576

    Google Scholar 

  • Pritchard DW (1974) Dispersion and flushing of pollutants in estuaries. J Hydraul Div 95:115–124

    Google Scholar 

  • Qin YC, Weng HW (2006) Silicon release and its speciation distribution in the superficial sediments of the Pearl River Estuary, China. Estuar Coast Shelf Sci 67:433–440

    Google Scholar 

  • Quinton JN, Govers G, Van Oost K, Bardgett RD (2010) The impact of agricultural soil erosion on biogeochemical cycling. Nat Geosci 3:311–314

    Google Scholar 

  • Rabalais NN, Turner RE (2001) Coastal Hypoxia: Consequences for Living Resources and Ecosystems. Coast Estuar Stud 58. doi: 10.1029/CE058

  • Rabouille C, Mackenzie FT, Ver LM (2001) Influence of the human perturbation on carbon, nitrogen, and oxygen biogeochemical cycles in the global coastal ocean. Geochim Cosmochim Acta 65:3615–3641

    Google Scholar 

  • Raymond PA, Cole JJ (2001) Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries 24:312–317

    Google Scholar 

  • Raymond PA, Oh NH, Turner RE, Broussard W (2008) Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451:449–452

    Google Scholar 

  • Regnier P, Steefel CI (1999) A high resolution estimate of the inorganic nitrogen flux from the Scheldt estuary to the coastal North Sea during a nitrogen limited algal bloom, spring 1995. Geochim Cosmochim Acta 63:1359–1374

    Google Scholar 

  • Regnier P, Wollast R, Steefel CI (1997) Long-term fluxes of reactive species in macrotidal estuaries: estimates from a fully transient, multicomponent reaction-transport model. Mar Chem 58:127–145

    Google Scholar 

  • Regnier P, Mouchet A, Wollast R, Ronday F (1998) A discussion of methods for estimating residual fluxes in strong tidal estuaries. Cont Shelf Res 18:1543–1571

    Google Scholar 

  • Regnier P, Vanderborght JP, Steefel CI, O’Kane JP (2002) Modeling complex multi-component reactive-transport systems: towards a simulation environment based on the concept of a Knowledge Base. Appl Math Model 26:913–927

    Google Scholar 

  • Regnier P, Arndt S, Dale AW, LaRowe DE, Mogollon J, Van Cappellen P (2011) Advances in the biogeochemical modeling of the marine methane cycle. Earth Sci Rev 106:105–130

    Google Scholar 

  • Regnier P, Friedlingstein P, Ciais P, Mackenzie FT, Gruber N, Janssens I, Laruelle GG, Lauerwald R, Luyssaert S, Andersson AJ, Arndt S, Arnosti C, Borges AV, Dale AW, Gallego-Sala A, Goddéris Y, Goossens N, Hartmann J, Heinze C, Ilyina T, Joos F, LaRowe DE, Leifeld J, Meysman FJR, Munhoven G, Raymond PA, Spahni R, Suntharalingam P, Thullner M (2013) Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci 6(8):597–607

    Google Scholar 

  • Revelle R, Suess HE (1957) Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9:18–27

    Google Scholar 

  • Robson BJ, Hamilton DP (2004) Three-dimensional modelling of a microcystis bloom event in the Swan River estuary, Western Australia. Ecol Model 174:203–222

    Google Scholar 

  • Robson BJ, Bukaveckas PA, Hamilton DP (2008) Modelling and mass balance assessment of nutrient retention in a seasonally-owing estuary (Swan River Estuary, Western Australia). Estuar Coast Shelf Sci 76:282–292

    Google Scholar 

  • Savenije HHG (1992) Rapid assessment technique for salt intrusion in alluvial estuaries. IHE report series 27, Delft

  • Savenije HHG (2005) Salinity and tides in alluvial estuaries, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  • Scavia D, Kelly ELA, Hagy JD III (2006) A simple model for forecasting the effects of nitrogen loads on Chesapeake Bay hypoxia. Estuaries Coast 29:674–684

    Google Scholar 

  • Schroeder F (1997) Water quality in the Elbe estuary: significance of different processes for the oxygen deficit at Hamburg. Environ Model Assess 2:73–82

    Google Scholar 

  • Seitzinger SP (1988) Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol Oceanogr 33:702–724

    Google Scholar 

  • Seitzinger SP, Harrison JA, Dumont E, Beusen AHW, Bouwman AF (2005) Sources and delivery of carbon, nitrogen, and phosphorous to the coastal zone: an overview of Global Nutrient Export from Watersheds (NEWS) models and their application. Glob Biogeochem Cycles 19:75–89

    Google Scholar 

  • Shen J (2006) Optimal estimation of parameters for a estuarine eutrophication model. Ecol Model 191:521–537

    Google Scholar 

  • Shiller AM (1996) The effect of recycling traps and upwelling on estuarine chemical flux estimates. Geochim Cosmochim Acta 55:3241–3251

    Google Scholar 

  • Smith SV, Hollibaugh JT (1993) Coastal metabolism and the oceanic organic carbon balance. Rev Geophys 31:75–89

    Google Scholar 

  • Soetaert K, Herman PMJ (1995) Nitrogen dynamics in the Westerschelde estuary (S.W. Netherlands) estimated by means of the ecosystem model MOSES. Hydrobiologia 311:225–246

    Google Scholar 

  • Soetaert K, Middelburg JJ, Heip C (2006) Long-term change in dissolved inorganic nutrients in the heterotrophic Scheldt estuary (Belgium, The Netherlands). Limnol Oceanogr 51:409–423

    Google Scholar 

  • Sommerfield CK, Wong KC (2011) Mechanisms of sediment flux and turbidity maintenance in the Delaware Estuary. J Geophys Res 116. doi: 10.1029/2010JC006462

  • Spiteri C, Van Cappellen P, Regnier P (2008) Surface complexation effects on phosphate adsorption to ferric iron oxyhydroxides along pH and salinity gradients in estuaries and coastal aquifers. Geochim Cosmochim Acta 72:3431–3445

    Google Scholar 

  • Stommel H (1953) Computation of pollution in a vertically mixed estuary. Sewage Ind Wastes 25:1065–1071

    Google Scholar 

  • Struyf E, Van Damme S, Gribsholt B, Meire P (2005) Freshwater marshes as dissolved silica recyclers in an estuarine environment (Schelde estuary, Belgium). Hydrobiologia 540:69–77

    Google Scholar 

  • Tappin AD (2002) An examination of the fluxes of nitrogen and phosphorus in temperate and tropical estuaries: current estimates and uncertainties. Estuar Coast Shelf Sci 55:885–901

    Google Scholar 

  • Tappin AD, Harris JRW, Uncles RJ (2003) The fluxes and transformations of suspended particles, carbon and nitrogen in the Humber estuarine system (UK) from 1994 to 1996: results from an integrated observation and modelling study. Sci Total Environ 314–316:665–713

    Google Scholar 

  • Thieu V, Mayorga E, Billen G, Garnier J (2010) Sub-regional and downscaled-global scenarios of nutrient transfer in river basins: the seine-Scheldt-Somme case study. Special issue “Past and Future Trends in Nutrient Export from Global Watersheds and Impacts on Water Quality and Eutrophication”. Global Biogeochem Cycles 24:1–15

    Google Scholar 

  • Thieu V, Billen G, Garnier J, Benoît M (2011) Nitrogen cycling in a hypothetical scenario of generalized organic agriculture in the Seine, Somme and Scheldt watersheds. Reg Environ Change 11:359–370

    Google Scholar 

  • Thullner M, Regnier P, Van Cappellen P (2007) Modeling microbially induced carbon degradation in redox-stratified subsurface environments: concepts and open questions. Geomicrobiol J 24. doi: 10.1080/01490450701459275

  • Trimmer M, Nedwell DB, Sivyer DB, Malcom SJ (1998) Nitrogen fluxes through the lower estuary of the river Great Ouse, England: the role of the bottom sediments. Mar Ecol Prog Ser 163:109–124

    Google Scholar 

  • Uncles RJ, Jordan MB (1980) One-dimensional representation of residual currents in the Severn Estuary and associated observations. Estuar Coast Mar Sci 10:39–60

    Google Scholar 

  • Uncles RJ, Radford PJ (1980) Seasonal and spring-neap tidal dependence of axial dispersion coefficients in the Severn: a wide, vertically mixed estuary. J Fluid Mech 98:703–726

    Google Scholar 

  • Uncles RJ, Stephens JA (1999) Suspended sediment fluxes in the tidal Ouse, UK. J Hydrol Process 13:1167–1179

    Google Scholar 

  • van Beusekom JEE, de Jonge VN (1998) Retention of phosphorus and nitrogen in the Ems estuary. Estuaries 21:527–539

    Google Scholar 

  • Van Cappellen P, Wang Y (1996) Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron and manganese. Am J Sci 296:197–243

    Google Scholar 

  • van der Zee C, Roevros N, Chou L (2007) Phosphorus speciation, transformation and retention in the Scheldt estuary (Belgium/The Netherlands) from the freshwater tidal limits to the North Sea. Mar Chem 106:76–91

    Google Scholar 

  • Vanderborght JP, Wollast R, Loijens M, Regnier P (2002) Application of a transport-reaction model to the estimation of biogas fluxes in the Scheldt estuary. Biogeochem 59:207–237

    Google Scholar 

  • Vanderborght JP, Folmer I, Aguilera DR, Uhrenholdt T, Regnier P (2007) Reactive-transport modelling of a river-estuarine-coastal zone system: application to the Scheldt estuary. Mar Chem 106:92–110

    Google Scholar 

  • Ver LMB, Mackenzie FT, Lerman A (1999) Carbon cycle in the coastal zone: effects of global perturbations and change in the past three centuries. Chem Geol 159:283–304

    Google Scholar 

  • Volta C, Arndt S, Savenije HHG, Laruelle GG, Regnier P (2013) C-GEM (v 1.0): a new, cost-efficient biogeochemical model for estuaries and its application to a funnel-shaped system. Geosci Model Dev Discuss 6:5645–5709

    Google Scholar 

  • Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–7382

    Google Scholar 

  • Webster IT, Smith SV, Parslow J (2000) Implications of spatial and temporal variation for biogeochemical budgets of estuaries. J Phys Oceanogr 12:112–115

    Google Scholar 

  • Weiss RF, Price BA (1980) Nitrous oxide solubility in water and seawater. Mar Chem 8:347–359

    Google Scholar 

  • Wild-Allen K, Skerratt J, Rizwi F, Parslow J (2009) Derwent estuary biogeochemical model: Technical report. CSIRO Mar Atmos Res

  • Wollast R (1983) Interaction in estuaries and coastal waters. In: Bolin B, Cook RB (eds) The major biogeochemical cycles and their interactions. Wiley, SCOPE, pp 385–407

    Google Scholar 

  • Wollast R (1998) Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean. In: Brink KH, Robinson AR (eds) The major biogeochemical cycles and their interactions. Wiley-Interscience, New York

    Google Scholar 

  • Wollast R, Peters JJ (1978) Biogeochemical properties of an estuarine system: the river Scheldt. Biogeochemistry of estuarine sediments: In: Proceedings of a UNESCO/SCOR workshop held in Melreux, Begium (1976)

  • Wulff F, Stigebrandt A, Rahm L (1990) Nutrient dynamics of the Baltic Sea. Ambio 19:126–133

    Google Scholar 

  • Wulff F, Eyre BD, Johnstone R (2011) Nitrogen versus phosphorus limitation in a subtropical coastal embayment (Moreton Bay; Australia): implications for management. Ecol Model 222:120–130

    Google Scholar 

  • World Ocean Atlas. http://www.nodc.noaa.gov/OC5/indprod.html

  • Yeats PA (1993) Input of metals to the North Atlantic from two large Canadian estuaries. Mar Chem 43:201–209

    Google Scholar 

  • Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, Amsterdam

    Google Scholar 

  • Zhai W, Dai M, Cai W, Wang Y, Wang Z (2005) High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary: the Pearl River estuary, China. Mar Chem 93:21–32

    Google Scholar 

  • Zhang H, Li S (2010) Effects of physical and biochemical processes on the dissolved oxygen budget for the Pearl River Estuary during summer. J Mar Syst 79:65–88

    Google Scholar 

Download references

Acknowledgments

This manuscript has greatly benefited from insightful comments from Wei-Jun Cai and the editorial work of Eric De Carlo. The research leading to these results has received funding from the government of the Brussels-Capital Region (Brains Back to Brussels award to P. Regnier), by the European Union’s Seventh Framework Program (FP7/2007-2013) under Grant Agreement No. 283080, project GEOCARBON, by the German Science Foundation DFG (DFG-project HA 4472/6-1) and the Cluster of Excellence “CliSAP” (DFG, EXC177), Universität Hamburg. S. Arndt acknowledges funding by the National Environmental Research Council (NERC; Grant Number NE/I021322/1), N. Goossens is funded by a FRIA (Fonds de la Recherche Scientifique-FNRS) Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Regnier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 185 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regnier, P., Arndt, S., Goossens, N. et al. Modelling Estuarine Biogeochemical Dynamics: From the Local to the Global Scale. Aquat Geochem 19, 591–626 (2013). https://doi.org/10.1007/s10498-013-9218-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-013-9218-3

Keywords

Navigation