Skip to main content

Advertisement

Log in

Empirical models of monthly and annual albedo in managed boreal forests of interior Norway

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

An 11-year remotely sensed surface albedo dataset coupled with historical meteorological and stand-level forest management data for a variety of stands in Norway’s most productive logging region is used to develop regression models describing temporal changes in forest albedo following clear-cut harvest disturbance events. Datasets are grouped by dominant tree species, and two alternate multiple regression models are developed and tested following a potential-modifier approach. This result in models with statistically significant parameters (p < 0.05) that explain a large proportion of the observed variation, requiring a single canopy modifier predictor coupled with either monthly or annual mean air temperature as a predictor of a stand’s potential albedo. Models based on annual mean temperature predict annual albedo with errors (RMSE) in the range of 0.025–0.027, while models based on monthly mean temperature predict monthly albedo with errors ranging between of 0.057–0.065 depending on the dominant tree species. While both models have the potential to be transferable to other boreal regions with similar forest management regimes, further validation efforts are required. As active management of boreal forests is increasingly seen as a means to mitigate climate change, the presented models can be used with routine forest inventory and meteorological data to predict albedo evolution in managed forests throughout the region, which, together with carbon cycle modeling, can lead to more holistic climate impact assessments of alternative forest harvest scenarios and forest product systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. H40 is a productivity index used in forestry and is the height in meters for the dominant trees at 40-yrs. breast height age (age after tree has reached 1.3 m). Thus, a productivity of “14” indicates the top height in meters of the stand by 40 years of breast height age.

References

  • Amiro BD, Orchansky AL, Barr AG, Black TA, Chambers SD, Chapin FS III, Goulden ML, Litvak M, Liu HP, McCaughey JH, McMillan A, Randerson JT (2006) The effect of post-fire stand age on the boreal forest energy blance. Agric For Meteorol 140:41–50

    Article  Google Scholar 

  • Anderson RG, Canadell JG, Randerson JT, Jackson RB, Hungate BA, Baldocchi DD, Ban-Weiss GA, Bonan GB, Caldeira K, Cao L, Diffenbaugh NS, Gurney KR, Kuepper LM, Law BE, Luyssaert S, O’Halloran TL (2010) Biophysical considerations in forestry for climate protection. Front Ecol Environ. doi:10.1890/090179

    Google Scholar 

  • Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Delire C, Mirin A (2007) Combined climate and carbon-cycle effects of large-scale deforestation. PNAS 104:6550–6555

    Article  Google Scholar 

  • Bathiany S, Claussen M, Brovkin V, Raddatz T, Gayler V (2010) Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model. Biogeosciences 7:1383–1399

    Article  Google Scholar 

  • Beck PSA, Goetz SJ, Mack MC, Alexander HD, Randerson JT, Loranty MM (2011) The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo. Glob Chang Biol 17:2853–2866

    Article  Google Scholar 

  • Betts RA (2000) Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408:187–190

    Article  Google Scholar 

  • Betts R, Falloon PD, Goldewijk KK, Ramankutty N (2007) Biogeophysical effects of land use on climate: model simulations of radiative forcing and large-scale temperature change. Agric For Meteorol 142:216–233

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  Google Scholar 

  • Bonan GB, Pollard D (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718

    Article  Google Scholar 

  • Bright RM, Strømman AH, Peters GP (2011) Radiative forcing impacts of boreal forest biofuels: a scenario study for Norway in light of albedo. Environ Sci Technol 45:7570–7580

    Article  Google Scholar 

  • Cherubini F, Bright RM, Strømman AH (2012) Site-specific global warming potentials of biogenic CO2 for bioenergy: contributions from carbon fluxes and albedo dynamics. Environ Res Lett 045902:11

    Google Scholar 

  • Claussen M, Brovkin V, Ganopolski A (2001) Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophys Res Lett 28:1011–1014

    Article  Google Scholar 

  • Fall S, Niyogi D, Gluhovsky A, Pielke RA Sr, Kalnay E, Rochon G (2010) Impacts of land use land cover on temperature trends over the continental United States: assessment using the North American Regional Reanalysis. Int J Climatol 30:1980–1993

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric consituents and in radiative forcing. In: Soloman S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, U. K. and New York, NY, USA

    Google Scholar 

  • Granhus A, Hylen G, Nilsen J-EØ (2012) Statistics of forest conditions and resources in Norway. Ressursoversikt fra Skog og landskap 03/12. Norwegian Forest and Landscape Institute, Ås

  • Hibbard K, Janetos A, van Vuuren D, Pongratz J, Rose SK, Betts RA, Herold M, Feddema JJ (2010) Research priorities in land use and land-cover change for the Earth system and integrated assessment modelling. Int J Climatol 30:2118–2128

    Article  Google Scholar 

  • Jackson RB, Randerson JT, Canadell JG, Anderson RG, Avissar R, Baldocchi DD, Bonan GB, Caldeira K, Diffenbaufh NS, Field CB, Hungate BA, Jobbágy EG, Kueppers LM, Nosetto MD, Pataki DE (2008) Protecting climate with forests. Environ Res Lett 3:044006, 044005pp

    Article  Google Scholar 

  • Jin Y, Schaaf CB, Woodcock CE, Gao F, Li X, Strahler AH, Lucht W, Liang S (2003) Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals, 2. Validation. J Geophys Res 108, D54159

    Google Scholar 

  • Jin Y, Randerson JT, Goulden ML, Goetz SJ (2012) Post-fire changes in net shortwave radiation along a latitudinal gradient in boreal North America. Geophys Res Lett 39, L13403

    Article  Google Scholar 

  • Kuusk A, Nilson T (2000) A directional multispectral forest reflectance model. Remote Sens Environ 72:244–252

    Article  Google Scholar 

  • Kvalevåg MM, Myhre G, Bonan GB, Levis S (2009) Anthropogenic land cover changes in a GCM with surface albedo changes based on MODIS data. Int J Climatol 30:2105–2117

    Article  Google Scholar 

  • Liang S (2007) Recent developments in estimating land surface biogeophysical variables from optical remote sensing. Prog Phys Geogr 31:501–516

    Article  Google Scholar 

  • Lyons E, Jin Y, Randerson JT (2008) Changes in surface albedo after fire in boreal forest ecosystems of interior Alaska assessed using MODIS satellite observations. J Geophys Res 13, G02012

    Article  Google Scholar 

  • Manninen T, Stenberg P (2009) Simulation of the effect of snow covered forest floor on the total forest albedo. Agric For Meteorol 149:303–319

    Article  Google Scholar 

  • McMillan AMS, Goulden ML (2008) Age-dependent variation in the biophysical properties of boreal forests. Global Biogeochem Cycles 22:1–14

    Article  Google Scholar 

  • NASA LP DAAC (2012) MODIS Terra + Aqua Combined Albedo/BRDF Product MCD43A3 L3 Global 500m. NASA Land Processes Distributed Active Archive Center (LP DAAC)

  • Ni W, Woodcock CE (2000) Effect of canopy structure and the presence of snow on the albedo of boreal conifer forests. J Geophys Res 105:1879–11888

    Article  Google Scholar 

  • Nilson T, Peterson U (1991) A forest canopy reflectance model and a test case. Remote Sens Environ 37:131–142

    Article  Google Scholar 

  • Nilson T, Peterson U (1994) Age dependence of forest reflectance: analysis of main driving factors. Remote Sens Environ 48:319–331

    Article  Google Scholar 

  • Nilson T, Kuusk A, Lang M, Lükk T (2003) Forest reflectance modeling: theoretical aspects and applications. Ambio 32:535–541

    Google Scholar 

  • Ni-Meister W, Lee S, Strahler A, Woodcock CE, Schaaf C, Yao T, Jon Ranson K, Sun G, Bryan Blair J (2010) Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing. J Geophys Res 115:G00E11

    Article  Google Scholar 

  • Norwegian Meteorological Institute (2013) eKlima - Monthly historical meteorology. Norwegian Meteorological Institute. Accessed Jan 31, 2013 at: http://sharki.oslo.dnmi.no/portal/page?_pageid=73,39035,73_39049&_dad=portal&_schema=PORTAL

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Pongratz J, Reick CH, Raddatz T, Caldeira K, Claussen M (2011) Past land use decisions have increased mitigation potential of reforestation. Geophys Res Lett 38, L15701

    Article  Google Scholar 

  • Randerson JT, Liu H, Flanner MG, Chambers SD, Jin Y, Hess PG, Pfister G, Mack MC, Treseder KK, Welp LR, Chapin FS, Harden JW, Goulden ML, Lyons E, Neff JC, Schuur EAG, Zender CS (2006) The impact of boreal forest fire on climate warming. Science 314:1130–1132

    Article  Google Scholar 

  • Rautiainen M, Nilson T, Lükk T (2009) Seasonal reflectance trends of hemiboreal birch forests. Remote Sens Environ 113:805–815

    Article  Google Scholar 

  • Rautiainen M, Heiskanen J, Eklundh L, Mõttus M, Lukes P, Stenberg P (2010) Ecological applications of physically based remote sensing methods. Scand J For Res 25:325–339

    Article  Google Scholar 

  • Rautiainen M, Stenberg P, Möttus M, Manninen T (2011) Radiative transfer simulations link boreal forest structure and shortwave albedo. Boreal Environ Res 16:91–100

    Google Scholar 

  • Salomon JG, Schaaf CB, Strahler AH, Gao F, Jin Y (2006) Validation of the MODIS bidirectional reflectance distribution function and albedo retrievals using combined observations from the aqua and terra platforms. IEEE Trans Geosci Remote Sens 44:1555–1565

    Article  Google Scholar 

  • Schaaf CB, Gao F, Strahler AH, Lucht W, Li X, Tsang T, Strugnell NC, Zhang X, Jin Y, Muller J-P, Lewis P, Barnsley M, Hobson P, Disney M, Roberts G, Dunderdale M, Doll C, d’Entremont RP, Hu B, Liang S, Privette JL, Roy D (2002) First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens Environ 83:135–148

    Article  Google Scholar 

  • Schaaf C, Liu J, Gao F, Jiao Z, Shuai Y, Strahler A (2012) Collection 005 change summary for MODIS BRDF/Albedo (MCD43) Algorithms. Accessed 15 August, 2012: http://landweb.nascom.nasa.gov/QA_WWW/forPage/C005_Change_BRDF.pdf, pp. 1–2

  • Sertel E, Robock A, Ormeci C (2009) Impacts of land cover data quality on regional climate simulations. Int J Climatol 30:1942–1953

    Article  Google Scholar 

  • Soja A, Tchebakova N, French N, Flannigan M, Shugard H, Stocks B, Sukhinin A, Parfenova E, Chapin FS III, Stackhouse P (2010) Climate-induced boreal forest change: predictions versus current observations. Glob Planet Chang 56:274–296

    Article  Google Scholar 

  • Wramneby A, Smith B, Samuelsson P (2010) Hot spots of vegetation-climate feedbacks under future greenhouse forcing in Europe. J Geophys Res 115, D21119

    Article  Google Scholar 

Download references

Acknowledgments

The MODIS L3 data were obtained through the online Data Pool at the NASA Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, USA (https://lpdaac.usgs.gov/get_data). This work was performed under the project “Decision Support Models for Increased Harvest and Climate-motivated Forest Policies” funded by the Norwegian Research Council, grant number: 210464.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan M. Bright.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 3448 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bright, R.M., Astrup, R. & Strømman, A.H. Empirical models of monthly and annual albedo in managed boreal forests of interior Norway. Climatic Change 120, 183–196 (2013). https://doi.org/10.1007/s10584-013-0789-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-013-0789-1

Keywords