Skip to main content

Advertisement

Log in

Predicting the potential distribution of Lantana camara L. under RCP scenarios using ISI-MIP models

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Projections of anthropogenically-induced global climate change and its impacts on potential distributions of invasive species are crucial for implementing effective conservation and management strategies. Lantana camara L., a popular ornamental plant native to tropical America, has become naturalized in some 50 countries and is considered one of the world’s worst weeds. To increase our understanding of its potential extent of spread and examine the responses of global geographic distribution, predictive models incorporating global distribution data of L. camara were generated. These models were used to identify areas of environmental suitability and project the effects of future climate change based on an ensemble of the four global climate models (GCMs) within the Inter-Sectoral Impact Model Intercomparis on Project (ISI-MIP). Each model was run under the four emission scenarios (Representative Concentration Pathways, RCPs) using the Maximum entropy (Maxent) approach. Future model predictions through 2050 indicated an overall expansion of L. camara, despite future suitability varying considerably among continents. Under the four RCP scenarios, the range of L. camara expanded further inland in many regions (e.g. Africa, Australia), especially under the RCP85 emission scenario. The global distribution of L. camara, though restricted within geographical regions of similar latitude as at present (35°N ~ 35°S), was projected to expand equator-ward in response to future climate conditions. Considerable discrepancy in predicted environmental suitability for L. camara among GCMs highlights the complexities of the likely effects of climate change on its potential distribution and the need to improve the reliability of predictions in novel climates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • ACI (2005) Arctic climate impact assessment. Cambridge University, Cambridge

    Google Scholar 

  • Andrewartha HG, Birch LC (1984) The ecological web: more on the distribution and abundance of animals. University of Chicago Press, Chicago

    Google Scholar 

  • Araujo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  Google Scholar 

  • Baars J, Neser S (1999) Past and present initiatives on the biological control of Lantana camara (Verbenaceae) in South Africa. Afr Entomol Memoir 1:21–33

    Google Scholar 

  • Baker RHA, Sansford CE, Jarvis CH et al (2000) The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Agric Ecosyst Environ 82:57–71

    Article  Google Scholar 

  • Beaumont LJ, Hughes L, Poulsen M (2005) Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol Model 186:250–269

    Article  Google Scholar 

  • Begon M, Harper JL, Townsend CR (1996) Ecology: individuals, populations and communities. Blackwell Science Publications, Oxford

    Book  Google Scholar 

  • Bell CE, Wilen CA, Stanton AE (2003) Invasive plants of horticultural origin. HortSci 38:14–16

    Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69

    Article  Google Scholar 

  • Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biol Lett 4:585–589

    Article  Google Scholar 

  • Brown JH, Stevens GC, Kaufman DM (1996) The geographic range: size, shape, boundaries, and internal structure. Annu Rev Ecol Evol Syst 27:597–623

    Article  Google Scholar 

  • Caminade C, Kovats S, Rocklov J et al (2014) Impact of climate change on global malaria distribution. Proc Natl Acad Sci U S A 111:3286–3291

    Article  Google Scholar 

  • Cilliers CJ, Neser S (1991) Biological control of Lantana camara (Verbenaceae) in South Africa. Agric Ecosyst Environ 37:57–75

    Article  Google Scholar 

  • Clarke LE, Edmonds JA, Jacoby HD et al. (2007) Scenarios of greenhouse gas emissions and atmospheric concentrations. Subreport 2.1a of Synthesis and Assessment Product 2.1. Climate Change Science Program and the Subcommittee on Global Change Research, Washington DC

  • Clements DR, DiTommaso A (2011) Climate change and weed adaptation: can evolution of invasive plants lead to greater range expansion than forecasted? Weed Res 51:227–240

    Article  Google Scholar 

  • Cohen J, Ernst K, Lindblade K et al (2010) Local topographic wetness indices predict household malaria risk better than land-use and land-cover in the western Kenya highlands. Malar J 9:328–338

    Article  Google Scholar 

  • Day MD, Broughton S, Hannan-Jones MA (2003) Current distribution and status of Lantana camara and its biological control agents in Australia, with recommendations for further biocontrol introductions into other countries. Biocontrol News Inf 24:63N–76N

    Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Fouquet A, Ficetola GF, Haigh A et al (2010) Using ecological niche modelling to infer past, present and future environmental suitability for Leiopelma hochstetteri, an endangered New Zealand native frog. Biol Conserv 143:1375–1384

    Article  Google Scholar 

  • Gallien L, Douzet R, Pratte S et al (2012) Invasive species distribution models – how violating the equilibrium assumption can create new insights. Glob Ecol Biogeogr 21:1126–1136

    Article  Google Scholar 

  • Goncalves E, Herrera I, Duarte M et al (2014) Global invasion of Lantana camara: has the climatic niche been conserved across continents? PLoS ONE 9, e111468

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Helmuth B, Kingsolver JG, Carrington E (2005) Biophysics, physiological ecology, and climate change: does mechanism matter? Annu Rev Physiol 67:177–201

    Article  Google Scholar 

  • Hijmans R, Schreuder M, De la Cruz J et al (1999) Using GIS to check co-ordinates of genebank accessions. Genet Resour Crop Evol 46:291–296

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Holt R, Gaines M (1992) Analysis of adaptation in heterogeneous landscapes: implications for the evolution of fundamental niches. Evol Ecol 6:433–447

    Article  Google Scholar 

  • Huntley B, Barnard P, Altwegg R et al (2010) Beyond bioclimatic envelopes: dynamic species’ range and abundance modelling in the context of climatic change. Ecography 33:621–626

    Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Jafri S (1974) Flora of Pakistan. Available at: http://www.efloras.org

  • Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350

    Article  Google Scholar 

  • Kriticos DJ, Sutherst RW, Brown JR et al (2003) Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J Appl Ecol 40:111–124

    Article  Google Scholar 

  • Leprieur F, Beauchard O, Blanchet S et al (2008) Fish invasions in the world’s river systems: when natural processes are blurred by human activities. PLoS Biol 6, e322

    Article  Google Scholar 

  • Masui T, Matsumoto K, Hijioka Y et al (2011) An emission pathway for stabilization at 6 Wm−2 radiative forcing. Clim Chang 109:59–76

    Article  Google Scholar 

  • McLachlan JS, Clark JS, Manos PS (2005) Molecular indicators of tree migration capacity under rapid climate change. Ecology 86:2088–2098

    Article  Google Scholar 

  • McNeely JA, Mooney HA, Neville LE et al. (2001) Global strategy on invasive alien species. IUCN on behalf of the Global Invasive Species Programme, Gland, Switzerland and Cambridge, UK

  • Moss RH, Edmonds JA, Hibbard KA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG et al. (2011) Ecological niches and geographic distributions. Monographs in Population Biology 49. Princeton University Press, Princeton, New Jersey, pp. 328

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Priyanka N, Joshi PK (2013) Effects of climate change on invasion potential distribution of Lantana camara. J Earth Sci Clim Chang 4:164–173

    Google Scholar 

  • Raes N, ter Steege H (2007) A null-model for significance testing of presence-only species distribution models. Ecography 30:727–736

    Article  Google Scholar 

  • Rahel FJ, Olden JD (2008) Assessing the effects of climate change on aquatic invasive species. Conserv Biol 22:521–533

    Article  Google Scholar 

  • Ramaswami G, Sukumar R (2013) Long-term environmental correlates of invasion by Lantana camara (verbenaceae) in a seasonally dry tropical forest. PLoS ONE 8, e76995

    Article  Google Scholar 

  • Reichard SH, White P (2001) Horticulture as a pathway of invasive plant introductions in the United States. Bioscience 51:103–113

    Article  Google Scholar 

  • Riahi K, Grübler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Chang 74:887–935

    Article  Google Scholar 

  • Riahi K, Rao S, Krey V et al (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Chang 109:33–57

    Article  Google Scholar 

  • Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat Clim Chang 2:248–253

    Article  Google Scholar 

  • Roura-Pascual N, Suarez AV (2008) The utility of species distribution models to predict the spread of invasive ants (Hymenoptera: Formicidae) and to anticipate changes in their ranges in the face of global climate change. Myrmecological News 11:61–77

    Google Scholar 

  • Sanders RW (2006) Taxonomy of Lantana sect. Lantana (Verbenaceae): I.correct application of Lantana camara and associated names. SIDA 22:381–421

    Google Scholar 

  • Schmidt F, Persson A (2003) Comparison of DEM data capture and topographic wetness indices. Precis Agric 4:179–192

    Article  Google Scholar 

  • Schrag A, Konrad S, Miller S et al (2011) Climate-change impacts on sagebrush habitat and West Nile virus transmission risk and conservation implications for greater sage-grouse. Geojournal 76:561–575

    Article  Google Scholar 

  • Sharma GP, Raghubanshi AS, Singh JS (2005) Lantana invasion: an overview. Weed Biol Manag 5:157–165

    Article  Google Scholar 

  • Smith LS, Smith DA (1982) The naturalised Lantana camara complex in eastern Australia. Queensland Bot Bull 1:1–26

    Google Scholar 

  • Soberon J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inform 2:1–10

    Article  Google Scholar 

  • Svenning JC, Normand S, Kageyama M (2008) Glacial refugia of temperate trees in Europe: insights from species distribution modelling. J Ecol 96:1117–1127

    Article  Google Scholar 

  • Taylor S, Kumar L (2013) Potential distribution of an invasive species under climate change scenarios using CLIMEX and soil drainage: a case study of Lantana camara L. in Queensland, Australia. J Environ Manag 114:414–422

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012a) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Taylor S, Kumar L, Reid N (2012b) Impacts of climate change and land-use on the potential distribution of an invasive weed: a case study of Lantana camara in Australia. Weed Res 52:391–401

    Article  Google Scholar 

  • Taylor S, Kumar L, Reid N et al (2012c) Climate change and the potential distribution of an invasive shrub, Lantana camara L. PLoS ONE 7, e105500

    Google Scholar 

  • Thakur ML, Ahmad M, Thakur RK (1992) Lantana weed (Lantana camara var. aculeate Linn) and its possible management through natural insect pests in India. Indian Forester 118:466–488

    Google Scholar 

  • Thompson GD, Robertson MP, Webber BL et al (2011) Predicting the subspecific identity of invasive species using distribution models: Acacia saligna as an example. Divers Distrib 17:1001–1014

    Article  Google Scholar 

  • USGS (2009) HYDRO1k elevation derivative database. Cent. for Earth Resour. Obs. and Sci., Sioux Falls, S. D. Available at http://edc.usgs.gov/products/elevation/gtopo30/hydro/

  • van Vuuren D, Edmonds J, Kainuma M et al (2011a) A special issue on the RCPs. Clim Chang 109:1–4

    Article  Google Scholar 

  • van Vuuren D, Stehfest E, den Elzen MJ et al (2011b) RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C. Clim Chang 109:95–116

    Article  Google Scholar 

  • Vardien W, Richardson DM, Foxcroft LC et al (2012) Invasion dynamics of Lantana camara L. (sensu lato) in South Africa. S Afr J Bot 81:81–94

    Article  Google Scholar 

  • Vorsino AE, Fortini LB, Amidon FA et al (2014) Modeling Hawaiian ecosystem degradation due to invasive plants under current and future climates. PLoS ONE 9, e102400

    Article  Google Scholar 

  • Warszawski L, Frieler K, Huber V et al (2014) The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): project framework. Proc Natl Acad Sci U S A 111:3228–3232

    Article  Google Scholar 

  • Wiens JJ, Ackerly DD, Allen AP et al (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324

    Article  Google Scholar 

  • Wildlife Conservation Society WCS (2005) Last of the Wild Project, Version 2, 2005 (LWP-2): Last of the Wild Dataset (Geographic). Palisades, NY

  • Willis KJ, Whittaker RJ (2002) Species diversity–scale matters. Science 295:1245–1248

    Article  Google Scholar 

  • Zhang Q, Zhang Y, Peng S et al (2014) Climate warming may facilitate invasion of the exotic shrub Lantana camara. PLoS ONE 9, e105500

    Article  Google Scholar 

  • Zhu G-P, Rédei D, Kment P et al (2014) Effect of geographic background and equilibrium state on niche model transferability: predicting areas of invasion of Leptoglossus occidentalis. Biol Invasions 16:1069–1081

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 24 kb)

ESM 2

(DOCX 24 kb)

ESM 3

(DOCX 19 kb)

Fig. S1

(PDF 303 kb)

Fig. S2

(DOCX 175 kb)

Fig. S3

(PDF 1250 kb)

Fig. S4

(DOCX 203790 kb)

Table 1

(DOCX 20 kb)

Table 2

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Z., Zhang, J.E., DiTommaso, A. et al. Predicting the potential distribution of Lantana camara L. under RCP scenarios using ISI-MIP models. Climatic Change 134, 193–208 (2016). https://doi.org/10.1007/s10584-015-1500-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-015-1500-5

Keywords