Skip to main content
Log in

A 2000 year midge-based paleotemperature reconstruction from the Canadian Arctic archipelago

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

A lake sediment core recovered from Lake V57 on Victoria Island, Nunavut, Canada, spanning the last 2000 years, was analyzed for sub-fossil midge remains and organic-matter content (estimated by loss-on-ignition (LOI)). Significant changes in midge community composition occurred during the last 2000 years, with a distinct midge community appearing after 1600 AD. The chironomid community between 0 and 1600 AD was dominated by Heterotrissocladius, Tanytarsus, Abiskomyia, and Paracladius. At approximately 1600 AD, Heterotrissocladius decreased in relative abundance and taxa such as Corynocera ambigua, C. oliveri, Psectrocladius sordidellus type, and Pentanneurini increased in relative abundance. Previously published midge-based inference models for average July air temperature (AJAT) and summer surface–water temperature (SSWT) were applied to the subfossil midge stratigraphy. The AJAT reconstruction indicates relatively cool conditions existed between 1100 and 1600 AD, with exceptional warming occuring after 1600 AD, as lake productivity inferred from organic-matter content increased concomitantly with midge-inferred AJAT and SSWT. The cooler conditions between 1200 and 1600 AD, and the pattern of warming over recent centuries inferred from Lake V57 is broadly consistent with temperature-sensitive biogenic silica records from other sites in the central Canadian Arctic and the treeline zone to the south suggesting a regionally synchronous response to climate forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ACIA (2004) Arctic climate impact assessment. Cambridge University Press, UK

    Google Scholar 

  • Anderson NJ, Brodersen KP, Ryves DB, McGowan S, Johansson LS, Jeppesen E, Leng MJ (2008) Climate versus in-lake processes as controls on the development of community structure in a low-arctic lake (South-West Greenland). Ecosystems (N. Y., Print) 11:307–324. doi:10.1007/s10021-007-9123-y

    Article  Google Scholar 

  • Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170. doi:10.1111/j.1469-8137.1996.tb04521.x

    Article  Google Scholar 

  • Birks HJB (1995) Quantitative paleoenvironmental reconstrcutions. In: Maddy D, Brew JS (eds) Statistical modelling of quaternary science data. Quaternary Research Association, London, pp 161–254

    Google Scholar 

  • Birks HJB (1998) Frey DG & Deevey ES review #1—Numerical tools in palaeolimnology: progress, potentialities, and problems. J Paleolimnol 20:307–332. doi:10.1023/A:1008038808690

    Article  Google Scholar 

  • Brodersen KP, Lindegaard C (1999) Mass occurrence and sporadic distribution of Corynocera ambigua Zetterstedt (Diptera, Chironomidae) in Danish lakes. Neo- and palaeolimnological records. J Paleolimnol 22:41–52. doi:10.1023/A:1008032619776

    Article  Google Scholar 

  • Brodersen KP, Pedersen O, Lindegaard C, Hamburger K (2004) Chironomids (Diptera) and oxy-regulatory capacity: an experimental approach to paleolimnological interpretation. Limnol Oceanogr 49:1549–1559

    Google Scholar 

  • Brodersen KP, Pedersen O, Walker IR, Jensen MT (2008) Respiration of midges (Diptera; Chironomidae) in British Columbian lakes: oxy-regulation, temperature and their role as palaeo-indicators. Freshw Biol 53:593–602. doi:10.1111/j.1365-2427.2007.01922.x

    Article  Google Scholar 

  • Brooks SJ, Birks HJB (2000) Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Krakenes Lake, western Norway. J Paleolimnol 23:77–89. doi:10.1023/A:1008044211484

    Article  Google Scholar 

  • Brooks SJ, Birks HJB (2001) Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problems. Quat Sci Rev 20:1723–1741. doi:10.1016/S0277-3791(01)00038-5

    Article  Google Scholar 

  • Brooks SJ, Birks HJB (2004) The dynamics of Chironomidae (Insecta:Diptera) assemblages in response to environmental change during the past 700 years on Svalbard. J Paleolimnol 31:483–498. doi:10.1023/B:JOPL.0000022547.98465.d3

    Article  Google Scholar 

  • Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of palaearctic chironomidae larvae in palaeoecology. Quaternary Research Association, London, UK

    Google Scholar 

  • Crowley TJ (2000) Causes of climate change over the past 1,000 years. Science 289:270–277. doi:10.1126/science.289.5477.270

    Article  Google Scholar 

  • Dyke A (2004) An outline of North American Deglaciation with emphasis on central and northern Canada. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations—extent and chronology, part II. Elsevier, Amsterdam, pp 373–424

    Google Scholar 

  • Engels S, Bohncke SJP, Bos JAA, Brooks SJ, Heiri O, Helmens KF (2008) Chironomid-based palaeotemperature estimates for northeast Finland during oxygen isotope stage 3. J Paleolimnol 40:49–61. doi:10.1007/s10933-007-9133-y

    Article  Google Scholar 

  • Environment Canada (2008a) A National Ecological Framework for Canada http://www.ec.gc.ca/soer-ree/English/Framework/NarDesc/

  • Environment Canada (2008b) National Climate Data and Information Archive http://www.climate.weatheroffice.ec.gc.ca/climate_normals

  • Finkelstein SA, Gaiewski K (2007) A palaeolimnological record of diatomcommunity dynamics and late-Holocene climatic changes from Prescott Island, Nunavut, central Canadian Arctic. Holocene 17:803–812. doi:10.1177/0959683607080521

    Article  Google Scholar 

  • Frey KE, McClelland JW, Holmes RM, Smith LC (2007) Impacts of climate warming and permafrost thaw on the riverine transport of nitrogen and phosphorus to the Kara Sea. J Geophys Res-Biogeosciences 112:G04S58. doi:10.1029/2006JG000369

    Article  Google Scholar 

  • Fulton RJ (1995) Surficial materials of Canada. Geological Survey of Canada, Map No. 1880A. 1:5,000,000

  • Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci U S A 103:14288–14293

    Article  Google Scholar 

  • Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15:1–7

    Article  Google Scholar 

  • Heiri O, Lotter AF (2001) Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. J Paleolimnol 26:343–350

    Article  Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments; reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  • Heiri O, Wick L, van Leeuwen JFN, van der Knaap WO, Lotter AF (2003) Holocene tree immigration and the chironomid fauna of a small Swiss subalpine lake (Hinterburgsee, 1515 m asl). Palaeogeogr Palaeoclimatol Palaeoecol 89:35–53

    Article  Google Scholar 

  • Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432

    Article  Google Scholar 

  • Hoyt DV, Schatten KH (1998a) Group sunspot numbers: A new solar activity reconstruction. Part 1. Solar Physics 179:189–219

    Article  Google Scholar 

  • Hoyt DV, Schatten KH (1998b) Group sunspot numbers: a new solar activity reconstruction. Part 2. Solar Physics 181:491–512

    Article  Google Scholar 

  • Hu FS, Kaufman D, Yoneji S, Nelson D, Shemesh A, Huang Y, Tian J, Bond G, Clegg B, Brown T (2003) Cyclic variation and solar forcing of Holocene climate in the Alaskan subarctic. Science 301:1890–1893

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Juggins S (1991) ZONE, version 1.2 (unpublished). University of Newcastle, Newcastle, UK

  • Juggins S (2003) Program C2 Data Analysis. University of Newcastle, Newcastle, UK

    Google Scholar 

  • Karst-Riddoch TL, Pisaric MFJ, Smol JP (2005) Diatom responses to 20th century climate-related environmental changes in high-elevation mountain lakes of the northern Canadian Cordillera. J Paleolimnol 33:265–282

    Article  Google Scholar 

  • Larocque I, Rolland N, Pienitz R (2006) Factors influencing the distribution of chironomids in lakes distributed along a latitudinal gradient in northwestern Québec, Canada. Can J Fish Aquat Sci 63:1286–1297

    Article  Google Scholar 

  • Livingstone DM, Lotter AF, Kettle H (2005) Altitude-dependent differences in the primary physical response of mountain lakes to climatic forcing. Limnol and Oceanogr 50:1313–1325

    Google Scholar 

  • MacDonald GM, Beukens RP, Kieser WE (1991) Radiocarbon dating of limnic sediments: a comparative analysis and discussion. Ecology 72:1150–1155

    Article  Google Scholar 

  • MacDonald GM, Porinchu DF, Rolland N, Kremenetsky KV, Kaufman DS Paleolimnological Evidence of the Response of the Central Canadian Treeline Zone to Radiative Forcing and Hemispheric Patterns of Temperature Change over the past 2000 years. J Paleolimnol (this volume). doi:10.1007/s10933-008-9250-2

  • McKay NP, Kaufman DS, Michelutti N (2008) Biogenic silica concentration as a high-resolution, quantitative temperature proxy at Hallet Lake, south-central Alaska. J Geophys Res 35:L05709

    Google Scholar 

  • Natural Resources Canada (1995) Canada: Permafrost. National Atlas of Canada, 5th edn. Map No. MCR 4177. 1:7,500,000

  • Olander H, Birks HJB, Korhola A, Blom T (1999) An expanded calibration model for inferring lakewater and air temperatures from fossil chironomid assemblages in northern Fennoscandia. Holocene 9:279–294

    Article  Google Scholar 

  • Peros MC, Gajewski K Pollen-based reconstructions of late Holocene climate from the central and western Canadian Arctic. J Paleolimnol (this volume). doi:10.1007/s10933-008-9256-9

  • Podritske B, Gajewski K (2007) Diatom community response to multiple scales of Holocene climate variability in a small lake on Victoria Island, NWT, Canada. Quat Sci Rev 26:3179–3196

    Article  Google Scholar 

  • Porinchu DF, Cwynar LC (2000) The distribution of freshwater Chironomidae (Insecta:Diptera) across treeline near the lower Lena River, northeast Siberia, Russia. Arct Antarct Alp Res 32:429–437

    Article  Google Scholar 

  • Porinchu DF, Potito AP, MacDonald GM, Bloom AM (2007) Subfossil chironomids as indicators of recent climate change in Sierra Nevada, California, lakes. Arct Antarct Alp Res 39:286–296

    Article  Google Scholar 

  • Porinchu DF, Rolland N, Moser KA Development of a chironomid-based air temperature inference model for the Central Canadian Arctic. J Paleolimnol (this volume). doi:10.1007/s10933-008-9233-3

  • Quinlan R, Smol JP (2001) Chironomid-based inference models for estimating end-of-summer hypolimnetic oxygen from south-central Ontario shield lakes. Freshw Biol 46:1529–1551

    Article  Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Herring C, Hughen KA, Kromer B, McCormac FG, Manning SW, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1058

    Google Scholar 

  • Reinemann SA (2008) A chironomid-based paleolimnological study of recent and mid-Holocene changes in mean July air temperature in the Great Basin, NV, USA. MSc thesis, The Ohio State University, OH, USA, 80 pp

  • Rigor I, Colony G, Martin S (2000) Variations in surface air temperature observations in the Arctic, 1979–97. J Climate 13:896–914

    Article  Google Scholar 

  • Rolland N, Larocque I, Francus P, Pienitz R, Laperriere L (2008) Holocene climate inferred from biological (Diptera: Chironomidae) analyses in a Southampton Island (Nunavut, Canada) lake. Holocene 18:229–291

    Article  Google Scholar 

  • Rothrock DA, Yu Y, Maykut GA (1999) Thinning of the Arctic sea-ice cover. Geophys Res Lett 26:3469–3472

    Article  Google Scholar 

  • Ruhland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North America and European lakes. Glob Chang Biol. doi:10.1111/j.1365-2486.2008.01670.x

    Google Scholar 

  • Serreze MC, Walsh JE, Chapin FS, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46:159–207

    Article  Google Scholar 

  • Serreze MC, Maslanik JA, Scambos TA, Fetterer F, Stroeve J, Knowles K, Fowler C, Drobot S, Barry RG, Haran TM (2003) A record minimum arctic sea ice extent, area in 2002. Geophys Res Lett 30:110

    Article  Google Scholar 

  • Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Ruhland K, Sorvari S, Antoniades D, Brooks SJ, Fallu MA, Hughes M, Keatley BE, Laing TE, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitoneni S, Solovieva N, Weckstrom J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci U S A 102:4397–4402

    Article  Google Scholar 

  • Stroeve JC, Serreze MC, Fetterer F, Arbetter T, Meier W, Maslanik J, Knowles K (2005) Tracking the Arctic’s shrinking ice cover: Another extreme September minimum in 2004. Geophys Res Lett 32:L04501

    Article  Google Scholar 

  • Stuiver M, Reimer PJ, Reimer RW (2005) CALIB 5.0. WWW program and documentation http://calib.qub.ac.uk/calib/

  • ter Braak CJF, Šmilauer P (2002) Canoco Reference manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, New York

  • Thomas E, Axford Y, Briner J (2008) Rapid 20th century environmental change on northeastern Baffin Island, Arctic Canada inferred from a multi-proxy lacustrine record. J Paleolimnnol 40:507–517

    Article  Google Scholar 

  • Walker IR (2001) Midges: chironomids and related diptera. In: Last WM, Smol JP, Birks HJB (eds) Tracking environmental change using lake sediments: Zoological indicators. Kluwer, Dordrecht, The Netherlands, pp 43–66

    Google Scholar 

  • Wang L, Sharp M, Rivard B, Steffen K (2007) Melt season duration and ice layer formation on the Greenland ice sheet, 2000–2004. J Geophys Res h-Earth Surface 112:F04013

    Article  Google Scholar 

  • Wiederholm T (1983) Chironomidae of the Holarctic region. Entomol Scand 19(Suppl):1–457

    Google Scholar 

  • Wright HE (1967) A square-rod piston sampler for lake sediments. J Sed Petr 37:975

    Google Scholar 

Download references

Acknowledgments

We thank Chase Langford (Department of Geography, UCLA) for creating the site map. We benefited greatly from conversations with J.P. Smol regarding the relationship between high-latitude warming and lake stratification, and the implication that stratification may have on chironomid-based temperature reconstructions. We thank D. Francis, D. Kaufman, and an anonymous reviewer for providing excellent, constructive suggestions that helped to greatly improve the paper. We are grateful to M. Peros, K. Gajewski, and S. Finkelstein for providing published and unpublished data incorporated in Fig. 5. We thank S. Handwork and the staff at NOSAMS for providing the radiocarbon dates. We are grateful to NSF, VECO, and Nunavut Research Institute (NRI) for field and logistical support. A NSF Paleoclimate award (ATM-0442177) to D.F.P and G.M.M. and Office of Polar Program awards to D.F.P (ARC-0455089) and G.M.M. (ARC-0455056) funded this work. This is a contribution to the ARCSS 2 kyr project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David F. Porinchu.

Additional information

This is one of fourteen papers published in a special issue dedicated to reconstructing late Holocene climate change from Arctic lake sediments. The special issue is a contribution to the International Polar Year and was edited by Darrell Kaufman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porinchu, D.F., MacDonald, G.M. & Rolland, N. A 2000 year midge-based paleotemperature reconstruction from the Canadian Arctic archipelago. J Paleolimnol 41, 177–188 (2009). https://doi.org/10.1007/s10933-008-9263-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-008-9263-x

Keywords

Navigation