Skip to main content
Log in

Difference based estimators and infill statistics

  • Published:
Statistical Inference for Stochastic Processes Aims and scope Submit manuscript

Abstract

Infill statistics, that is, statistical inference based on very dense observations over a fixed domain has become of late a subject of growing importance. On the other hand, it is a known phenomenon that in many cases infill statistics do not provide optimal rates. The degree of sub-optimality is related to how much parameter-related information is lost because of dense sampling, which in turn is related to sample path regularity. In the stationary Gaussian case this is determined by the large value behaviour of the spectral density and its derivatives. Moreover, many interesting non stationary examples such as non linear functionals of stationary Gaussian processes or diffusion processes driven by a stationary increment Gaussian process can also be seen to depend on the large value behaviour of the spectral density of the underlying process. In this article we discuss several examples in a unified frequency domain approach providing a general framework relating sample path regularity to estimation rates. This includes examples such as volatility estimation for diffusions and fractional diffusions, multifractals and non-linear functions of Gaussian processes. As a final example we include the problem of estimation in the presence of an additive white noise, known as the nugget effect or micro-structure error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • At-Sahalia Y, Mykland P, Zhang L (2011) Ultra high frequency volatility estimation with dependent microstructure noise. J Econom 160(1):160–175

    Article  Google Scholar 

  • Bacry E, Delour J, Muzy JF (2001) Multifractal random walk. Phys Rev E 64(026103):1–4

  • Bacry E, Muzy JF (2003) Log-infinitely divisible multifractal processes. Commun Math Phys 236:449–475

    Article  MATH  MathSciNet  Google Scholar 

  • Bacry E, Gloter A, Hoffmann M, Muzy JF (2010) Multifractal analysis in a mixed asymptotic framework. Ann Appl Probab 20(5):1729–1760

    Article  MATH  MathSciNet  Google Scholar 

  • Barndorff-Nielsen OE, Corcuera JM, Podolskij M (2009) Power variation for Gaussian processes with stationary increments. Stoch Process Appl 119(6):1845–1865

    Article  MATH  MathSciNet  Google Scholar 

  • Berzin C, Latour A, León JR (2014) Inference on the Hurst parameter of the variance of diffusions driven by fractional Brownian motion. Series Mathematics and statistics 694, Springer International Publishing Switzerland, 2014

  • Biermé H, Bonami A, León JR (2011) Central limit theorems and quadratic variations in terms of spectral density. EJP 16:362–395

    MATH  Google Scholar 

  • Cressie N (1993) Statistics for spatial data. Revised reprint of the 1991 edition. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. A Wiley-Interscience Publication. Wiley, New York

  • Chan G, Wood A (2000) Increment-based estimators of fractal dimension for two-dimensional surface data. Stat Sin 10:343–376

    MATH  MathSciNet  Google Scholar 

  • Chan G, Wood A (2004) Estimation of fractal dimension for a class of non-Gaussian stationary processes and fields. Ann Stat 32(3):1222–1260

    Article  MATH  MathSciNet  Google Scholar 

  • Cline DBH (1991) Abelian and Tauberian theorems relating the local behaviour of an integrable function and the Tail behaviour of its Fourier transform. J Math Anal Appl 154:55–76

    Article  MATH  MathSciNet  Google Scholar 

  • Coutin L (2007) An introduction to (stochastic) calculus with respect to fractional Brownian motion. In Séminaire de Probabilités XL. Lecture notes in Mathematics. 1899, Springer, Berlin, pp 3–65

  • Chen H, Simpson D, Ying Z (2000) Infill asymptotics for a stochastic process with measurement errors. Stat Sin 10:141–156

    MATH  MathSciNet  Google Scholar 

  • Dai W, Heyde CC (1996) Ito’s formula with respect to fractional Brownian motion and its application. J Appl Math Stoch Anal 9:439–448

    Article  MATH  MathSciNet  Google Scholar 

  • Decreusefond L, Üstünel AS (1999) Stochastic analysis of the fractional Brownian motion. Potential Anal 10(2):177–214

    Article  MATH  MathSciNet  Google Scholar 

  • Fan J, Wang Y (2007) Multi-scale jump and volatility analysis for high-frequency financial data. J Am Stat Assoc 102(480):1349–1362

    Article  MATH  Google Scholar 

  • Gneiting T, Schlather M (2004) Stochastic models that separate fractal dimension and the Hurst effect. SIAM Rev 46(2):269–282

    Article  MATH  MathSciNet  Google Scholar 

  • Genon-Catalot V, Jacod J (1993) On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Ann Inst Henri Poincaré Probab Stat 29(1):119–151

    MATH  MathSciNet  Google Scholar 

  • Gloter A, Hoffmann M (2004) Stochastic volatility and fractional Brownian motion. Stoch Process Appl 113(1):143–172

    Article  MATH  MathSciNet  Google Scholar 

  • Gloter A, Jacod J (2001) Diffusions with measurement errors II. Optimal estimators. ESAIM Probab Stat 5:243–260

    Article  MATH  MathSciNet  Google Scholar 

  • Guyon X, León JR (1989) Convergence en loi des \(H\)-variations d’un processus gaussien stationnaire sur \(\mathbb{R}\). Ann Inst Henri Poincaré Probab Stat 25(3):265–282

    MATH  Google Scholar 

  • Hall P, Heyde CC (1980) Martingale limit theory and its application. Probability and Mathematical Statistics. Academic Press, New York

    Google Scholar 

  • Hayashi T, Jacod J, Yoshida Y (2011) Irregular sampling and central limit theorems for power variations: the continuous case. Ann Inst Henri Poincaré Probab Stat 47(4):1197–1218

    Article  MATH  MathSciNet  Google Scholar 

  • Ibragimov IA, Rozanov YA (1978) Gaussian random processes, trans. A. B. Aries. Springer, New York

    Book  Google Scholar 

  • Istas J, Lang G (1997) Quadratic variations and estimation of the local Hölder index of a Gaussian process. Ann Inst Henri Poincaré 33:407–436

    Article  MATH  MathSciNet  Google Scholar 

  • Kahane JP, Peyriére J (1976) Sur certaines martingales de Benoit Mandelbrot. Adv Math 22(2):131–145

    Article  MATH  Google Scholar 

  • León JR, Ludeña C (2004) Stable convergence of certain functionals of fBm. Stoch Anal Appl 22:289–314

    Article  MATH  Google Scholar 

  • León JR, Ludeña C (2007) Limits for weighted \(p\)-variations and likewise functionals of fractional diffusions with drift. Stoch Process Appl 117(3):271–296

    Article  MATH  Google Scholar 

  • Ludeña C (2008) \(L^p\)-variations for multifractal fractional random walks. Ann Appl Probab 18(3):1138–1163

    Article  MATH  MathSciNet  Google Scholar 

  • Ludeña C, Soulier P (2014) Estimating the scaling function of multifractal measures and multifractal random walks using ratios. Bernoulli, 20(1):334–376.

  • Lin S (1995) Stochastic analysis of fractional Brownian motion. Stoch Rep 55:121–140

    Article  MATH  Google Scholar 

  • Lu Z, Thosteim D, Yao Q (2008) Spatial smoothing, Nugget effect and Infill asymptotics. Stat Probab Lett 78:3145–3151

    Article  MATH  Google Scholar 

  • Mandelbrot B (1974) Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J Fluid Mech 62:331–358

    Article  MATH  Google Scholar 

  • Nualart D, Rascanu A (2002) Differential equations driven by fractional brownian motion. Collect Math 53(1):55–81

    MATH  MathSciNet  Google Scholar 

  • Nualart D, Torre Ortiz-La (2008) Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stoch Processes Appl 118:614–628

    Article  MATH  Google Scholar 

  • Ortega J (1990) Sur la variation des processus gaussiens. (On the variation of Gaussian processes) (French). C R Acad Sci Paris Sr I 310(12):835–838 ISSN 0764–4442

    MATH  Google Scholar 

  • Ossiander M, Waymire E (2000) Statistical estimation for multiplicative cascades. Ann Stat 28:1533–1560

    Article  MATH  MathSciNet  Google Scholar 

  • Sørensen H (2004) Parametric inference for diffusion processes observed at discrete points in time: a survey. Int Stat Rev 72:337–354

    Article  Google Scholar 

  • Stein M (1990) A comparison of generalized cross validation and modified log likelihood for estimating the parameters of a stochastic process. Ann Stat 18(3):1139–1157

    Article  MATH  Google Scholar 

  • Stein M (1999) Interpolation of spatial data. Some theory for Kriging. Springer Series in Statistics. Springer, New York

    Book  Google Scholar 

  • Tudor C, Viens F (2009) Variations and estimators for self-similarity parameters via Malliavin calculus. Ann Probab 37(6):2093–2134

    Article  MATH  MathSciNet  Google Scholar 

  • Zähle M (1998) Integration with respect to fractal functions and stochastic calculus. J Probab Theory Relat Fields 111:333–374

    Article  MATH  Google Scholar 

  • Zhang H, Zimmerman D (2005) Towards reconciling two asymptotic frameworks in spatial statistics. Biometrika 92(4):921–936

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang L (2006) Efficient estimation of stochastic volatility using noisy observations: a multi-scale approach. Bernoulli 12(6):1019–1043

  • Zhu Z, Stein M (2002) Parameter estimation for fractional Brownian surfaces. Stat Sin 12:863–883

    MATH  MathSciNet  Google Scholar 

  • Zhu Z, Taqqu M (2006) Impact of the sampling rate on the estimation of the parameters of fractional Brownian motion. J Time Ser Anal 27(3):367–380

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Proyecto LOCTI (Ministerio de Ciencia Tecnología e Innovación de Venezuela) “Estudio del transporte de contaminantes en el Lago de Valencia”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carenne Ludeña.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

León, J.R., Ludeña, C. Difference based estimators and infill statistics. Stat Inference Stoch Process 18, 1–31 (2015). https://doi.org/10.1007/s11203-014-9103-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11203-014-9103-8

Keywords

Mathematics Subject Classification

Navigation