Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolution of magma-poor continental margins from rifting to seafloor spreading

Abstract

The rifting of continents involves faulting (tectonism) and magmatism, which reflect the strain-rate and temperature dependent processes of solid–state deformation and decompression melting within the Earth1,2. Most models of this rifting have treated tectonism and magmatism separately, and few numerical simulations have attempted to include continental break-up and melting, let alone describe how continental rifting evolves into seafloor spreading. Models of this evolution conventionally juxtapose continental and oceanic crust. Here we present observations that support the existence of a zone of exhumed continental mantle, several tens of kilometres wide, between oceanic and continental crust on continental margins where magma-poor rifting has taken place. We present geophysical and geological observations from the west Iberia margin3,4,5,6,7, and geological mapping of margins of the former Tethys ocean now exposed in the Alps8,9,10,11,12,13. We use these complementary findings to propose a conceptual model that focuses on the final stage of continental extension and break-up, and the creation of a zone of exhumed continental mantle that evolves oceanward into seafloor spreading. We conclude that the evolving stress and thermal fields are constrained by a rising and narrowing ridge of asthenospheric mantle, and that magmatism and rates of extension systematically increase oceanward.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Exploded block diagram of the continental margin beneath the SIAP off west Iberia.
Figure 2: Palinspastic reconstruction with arbitrary reference datum10 of profile Lusigal 12 (ref.16) across the southern Iberia abyssal plain (SIAP).
Figure 3: Conceptual lithosphere-scale model of development of a rifted magma-poor margin relative to a fixed right-hand edge.

Similar content being viewed by others

References

  1. McKenzie, D. P. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–679 (1988).

    Article  ADS  CAS  Google Scholar 

  2. England, P. Constraints on extension of continental lithosphere. J. Geophys. Res. 88, 1145–1152 (1983).

    Article  ADS  Google Scholar 

  3. Dean, S. M., Minshull, T. A., Whitmarsh, R. B. & Louden, K. Deep structure of the ocean-continent transition in the southern Iberia Abyssal Plain from seismic refraction profiles: II The IAM-9 transect at 40° 20′ N. J. Geophys. Res. 105, 5859–5886 (2000).

    Article  ADS  Google Scholar 

  4. Chian, D., Louden, K. E., Minshull, T. A. & Whitmarsh, R. B. Deep structure of the ocean-continent transition in the southern Iberia Abyssal Plain from seismic refraction profiles: Ocean Drilling Program (Legs 149 and 173) transect. J. Geophys. Res. 104, 7443–7462 (1999).

    Article  ADS  Google Scholar 

  5. Pickup, S. L. B., Whitmarsh, R. B., Fowler, C. M. R. & Reston, T. J. Insight into the nature of the ocean-continent transition of West Iberia from a deep multichannel seismic reflection profile. Geology 24, 1079–1082 (1996).

    Article  ADS  Google Scholar 

  6. Whitmarsh, R. B. et al. in Non-Volcanic Rifting of Continental Margins: A Comparison of Evidence from Land and Sea (eds Wilson, R. C. L., Whitmarsh, R. B., Taylor, B. & Froitzheim, N.) 107–124 (Geological Society of London, London, in the press).

  7. Whitmarsh, R. B. & Wallace, P. J. in Proc. ODP Sci. Results (eds Beslier, M. O., Whitmarsh, R. B., Wallace, P. J. & Girardeau, J.) 1–36 (Ocean Drilling Program, College Station, Texas, 2001).

    Google Scholar 

  8. Lagabrielle, Y. & Lemoine, M. Alpine, Corsican and Apennine ophiolites: the slow-spreading ridge model. C. R. Acad. Sci. Ser. 2a 325, 909–920 (1997).

    CAS  Google Scholar 

  9. Manatschal, G. & Bernoulli, D. Architecture and tectonic evolution of nonvolcanic margins: present-day Galicia and ancient Adria. Tectonics 18, 1099–1199 (1999).

    Article  ADS  Google Scholar 

  10. Manatschal, G., Froitzheim, N., Rubenach, M. J. & Turrin, B. in Non-Volcanic Rifting of Continental Margins: A Comparison of Evidence from Land and Sea (eds Wilson, R. C. L., Whitmarsh, R. B., Taylor, B. & Froitzheim, N.) 405–428 (Geological Society of London, London, in the press).

  11. Manatschal, G. & Nievergelt, P. A continent-ocean transition recorded in the Err and Platta nappes (Eastern Switzerland). Eclogae Geol. Helvetiae 90, 3–27 (1997).

    Google Scholar 

  12. Froitzheim, N. & Manatschal, G. Kinematics of Jurassic rifting, mantle exhumation, and passive margin formation in the Austroalpine and Penninic nappes (eastern Switzerland). Geol. Soc. Am. Bull. 108, 1120–1133 (1996).

    Article  ADS  Google Scholar 

  13. Desmurs, L., Manatschal, G. & Bernoulli, D. in Non-Volcanic Rifting of Continental Margins: A Comparison of Evidence from Land and Sea (eds Wilson, R. C. L., Whitmarsh, R. B., Taylor, B. & Froitzheim, N.) 235–266 (Geological Society of London, London, in the press).

  14. Boillot, G., Féraud, G., Recq, M. & Girardeau, J. Undercrusting by serpentinite beneath rifted margins. Nature 341, 523–525 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Reston, T. J., Krawczyk, C. M. & Kläschen, D. The S reflector west of Galicia (Spain). Evidence for detachment faulting during continental breakup from prestack depth migration. J. Geophys. Res. 101, 8075–8091 (1996).

    Article  ADS  Google Scholar 

  16. Whitmarsh, R. B., Dean, S. M., Minshull, T. A. & Tompkins, M. Tectonic implications of exposure of lower continental crust beneath the Iberia Abyssal Plain, northeast Atlantic Ocean: geophysical evidence. Tectonics 19, 919–942 (2000).

    Article  ADS  Google Scholar 

  17. Hermann, J., Müntener, O., Trommsdorff, V., Hansmann, W. & Piccardo, G. B. Fossil crust-to-mantle transition, Val Malenco (Italian Alps). J. Geophys. Res. 102, 20123–20132 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Müntener, O., Hermann, J. & Trommsdorff, V. Cooling history and exhumation of lower-crustal granulite and upper mantle (Malenco, eastern central Alps). J. Petrol. 41, 175–200 (2000).

    Article  ADS  Google Scholar 

  19. Bertotti, G., Picotti, V., Bernoulli, D. & Casterllarin, A. From rifting to drifting tectonic evolution of the South-Alpine upper crust from the Triassic to the Early Cretaceous. Sedim. Geol. 86, 53–76 (1993).

    Article  ADS  Google Scholar 

  20. Minshull, T. A., Dean, S. M., White, R. S. & Whitmarsh, R. B. in Non-Volcanic Rifting of Continental Margins: A Comparison of Evidence from Land and Sea (eds Wilson, R. C. L., Whitmarsh, R. B., Taylor, B & Froitzheim, N.) 537–550 (Geological Society of London, London, in the press).

  21. Hébert, R., Gueddari, K., Laflèche, M. R., Beslier, M.-O. & Gardien, V. in Non-Volcanic Rifting of Continental Margins: A Comparison of Evidence from Land and Sea (eds Wilson, R. C. L., Whitmarsh, R. B., Taylor, B. & Froitzheim, N.) 161–189 (Geological Society of London, London, in the press).

  22. Abe, N. in Non-Volcanic Rifting of Continental Margins: A Comparison of Evidence from Land and Sea (eds Wilson, R. C. L., Whitmarsh, R. B., Taylor, B. & Froitzheim, N.) 143–159 (Geological Society of London, London, in the press).

  23. Skelton, A. D. L. & Valley, J. W. The relative timing of serpentinization and mantle exhumation at the ocean-continent transition, Iberia: constraints from oxygen isotopes. Earth Planet. Sci. Lett. 178, 327–338 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Schärer, U., Girardeau, J., Cornen, G. & Boillot, G. 138–121 Ma asthenospheric magmatism prior to continental break-up in the North Atlantic and geodynamic implications. Earth Planet. Sci. Lett. 181, 555–572 (2000).

    Article  ADS  Google Scholar 

  25. Rampone, E. et al. Petrology, mineral and isotope geochemistry of the External Liguride peridotites (Northern Apennines, Italy). J. Petrol. 36, 81–105 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Müntener, O. & Hermann, J. in Non-Volcanic Rifting of Continental Margins: A Comparison of Evidence from Land and Sea (eds Wilson, R. C. L., Whitmarsh, R. B., Taylor, B. & Froitzheim, N.) 267–288 (Geological Society of London, London, in the press).

  27. Whitmarsh, R. B., Miles, P. R., Sibuet, J.-C. & Louvel, V. in Proc. ODP Sci. Results (eds Whitmarsh, R. B., Sawyer, D. S., Klaus, A. & Masson, D. G.) 665–674 (Ocean Drilling Program, College Station, Texas, 1996).

    Google Scholar 

  28. Harry, D. L. & Sawyer, D. S. A dynamic model of extension in the Baltimore Canyon Trough region. Tectonics 11, 420–436 (1992).

    Article  ADS  Google Scholar 

  29. Louden, K. E. & Chian, D. in Response of the Earth's Lithosphere to Extension (eds White, R. S., Hardman, R. F. P., Watts, A. B. & Whitmarsh, R. B.) 767–799 (Phil. Trans. R. Soc. Ser. A, Royal Society, London, 1999).

    Google Scholar 

  30. Taylor, B., Goodliffe, A. M. & Martinez, F. How continents break up: Insights from Papua New Guinea. J. Geophys. Res. 104, 7497–7512 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the Shipboard Scientific Parties of ODP Leg 149 and Leg 173 and those aboard RRS Discovery cruise 215. We thank the UK Natural Environment Research Council, The Royal Society of London and the Swiss National Science Foundation for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Whitmarsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitmarsh, R., Manatschal, G. & Minshull, T. Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature 413, 150–154 (2001). https://doi.org/10.1038/35093085

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35093085

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing