Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

A middle Eocene carbon cycle conundrum

Abstract

The Middle Eocene Climatic Optimum (MECO) was an approximately 500,000-year-long episode of widespread ocean–atmosphere warming about 40 million years ago, superimposed on a long-term middle Eocene cooling trend. It was marked by a rise in atmospheric CO2 concentrations, biotic changes and prolonged carbonate dissolution in the deep ocean. However, based on carbon cycle theory, a rise in atmospheric CO2 and warming should have enhanced continental weathering on timescales of the MECO. This should have in turn increased ocean carbonate mineral saturation state and carbonate burial in deep-sea sediments, rather than the recorded dissolution. We explore several scenarios using a carbon cycle model in an attempt to reconcile the data with theory, but these simulations confirm the problem. The model only produces critical MECO features when we invoke a sea-level rise, which redistributes carbonate burial from deep oceans to continental shelves and decreases shelf sediment weathering. Sufficient field data to assess this scenario is currently lacking. We call for an integrated approach to unravel Earth system dynamics during carbon cycle variations that are of intermediate timescales (several hundreds of thousands of years), such as the MECO.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluxes between the carbon reservoirs in the present-day carbon cycle.
Figure 2: A compilation of proxy data across the MECO.
Figure 3: Results of the LOSCAR model run corresponding to the MECO target.

Similar content being viewed by others

References

  1. Walker, J. C. G. & Kasting, J. F. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 151–189 (1992).

    Article  Google Scholar 

  2. Ridgwell, A. & Hargreaves, J. C. Regulation of atmospheric CO2 by deep-sea sediments in an Earth system mode. Glob. Biogeochem. Cycles 21, GB2008 (2007).

    Article  Google Scholar 

  3. Zeebe, R. E., History of Seawater Carbonate Chemistry, Atmospheric CO2, and Ocean Acidification. Annu. Rev. Earth Planet. Sci. 40, 141–165 (2012).

    Article  Google Scholar 

  4. Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics (Princeton Univ. Press, 2006).

    Google Scholar 

  5. Archer, D., Winguth, A., Lea, D. & Mahowald, N. What caused the glacial/interglacial pCO2 cycles? Rev. Geophys. 38, 159–189 (2000).

    Article  Google Scholar 

  6. Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth's surface-temperature. J. Geophys. Res. 86, 9776–9782 (1981).

    Article  Google Scholar 

  7. Berner, R. A. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291, 339–376 (1991).

    Article  Google Scholar 

  8. Dickens, G. R., Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet. Sci. Lett. 213, 169–183 (2003).

    Article  Google Scholar 

  9. Dickens, G. R. Down the rabbit hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene — Eocene thermal maximum and other past hyperthermal events. Clim. Past 7, 831–846 (2011).

    Article  Google Scholar 

  10. Sluijs, A., Bowen, G. J., Brinkhuis, H., Lourens, L. J. & Thomas, E. in Deep Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies (eds Williams, M., Haywood, A. M., Gregory, F. J. & Schmidt, D. N.) 323–349 (The Geological Society London, 2007).

    Book  Google Scholar 

  11. Lourens, L. J. et al. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435, 1083–1087 (2005).

    Article  Google Scholar 

  12. Thomas, E. & Zachos, J. C. Was the late Paleocene thermal maximum a unique event? Geologiska Föreningens i Stockholm Förhandlingar 122, 169–170 (2000).

    Google Scholar 

  13. Koch, P. L., Zachos, J. C. & Gingerich, P. D. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature 358, 319–322 (1992).

    Article  Google Scholar 

  14. Colosimo, A. B., Bralower, T. J. & Zachos, J. C. in Proceedings of the Ocean Drilling Program, Scientific Results 198 (eds Bralower, T. J., Premoli Silva, I. & Malone, M. J.) 1–36 (Ocean Drilling Program, 2005).

    Google Scholar 

  15. Zachos, J. C. et al. Rapid acidification of the ocean during the Paleocene–Eocene Thermal Maximum. Science 308, 1611–1615 (2005).

    Article  Google Scholar 

  16. Dickens, G. R., Castillo, M. M. & Walker, J. C. G. A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25, 259–262 (1997).

    Article  Google Scholar 

  17. Cui, Y. et al. Slow release of fossil carbon during the Palaeocene-Eocene Thermal Maximum. Nature Geosci. 4, 481–485 (2011).

    Article  Google Scholar 

  18. Zachos, J. C. et al., The Palaeocene-Eocene carbon isotope excursion: constraints from individual shell planktonic foraminifer records. Phil. Trans. R. Soc. A 365, 1829–1842 (2007).

    Article  Google Scholar 

  19. Sluijs, A., Zachos, J. C. & Zeebe, R. E. Constraints on hyperthermals. Nature Geosci. 5, 231–231 (2012).

    Article  Google Scholar 

  20. Dickens, G. R., O'Neil, J. R., Rea, D. K. & Owen, R. M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995).

    Article  Google Scholar 

  21. Sluijs, A. & Dickens, G. R., Assessing offsets between the δ13C of sedimentary components and the global exogenic carbon pool across Early Paleogene carbon cycle perturbations. Glob. Biogeochem. Cycles 26, GB4005 (2012).

    Article  Google Scholar 

  22. Zeebe, R. E., Zachos, J. C. & Dickens, G. R. Carbon dioxide forcing alone insufficient to explain Palaeocene-Eocene Thermal Maximum warming. Nature Geosci. 2, 576–580 (2009).

    Article  Google Scholar 

  23. Pagani, M., Caldeira, K., Archer, D. & Zachos, J. C. An ancient carbon mystery. Science 314, 1556–1557 (2006).

    Article  Google Scholar 

  24. Sluijs, A. et al. Environmental precursors to light carbon input at the Paleocene/Eocene boundary. Nature 450, 1218–1221 (2007).

    Article  Google Scholar 

  25. Kurtz, A., Kump, L. R., Arthur, M. A., Zachos, J. C. & Paytan, A. Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18, 1090 (2003).

    Article  Google Scholar 

  26. DeConto, R. M. et al. Past extreme warming events linked to massive carbon release from thawing permafrost. Nature 484, 87–91 (2012).

    Article  Google Scholar 

  27. Bohaty, S. & Zachos, J. C. Significant Southern Ocean warming event in the late middle Eocene. Geology 31, 1017–1020 (2003).

    Article  Google Scholar 

  28. Bohaty, S. M., Zachos, J. C., Florindo, F. & Delaney, M. L. Coupled greenhouse warming and deep-sea acidification in the middle Eocene. Paleoceanography 24, PA2207 (2009).

    Article  Google Scholar 

  29. Bijl, P. K. et al. Environmental forcings of Paleogene Southern Ocean dinoflagellate biogeography. Paleoceanography 26, PA1202 (2011).

    Article  Google Scholar 

  30. Villa, G., Fioroni, C., Pea, L., Bohaty, S. & Persico, D. Middle Eocene–late Oligocene climate variability: Calcareous nannofossil response at Kerguelen Plateau, Site 748. Mar. Micropaleontol. 69, 173–192 (2008).

    Article  Google Scholar 

  31. Bijl, P. K. et al. Transient Middle Eocene atmospheric CO2 and temperature tariations. Science 330, 819–821 (2010).

    Article  Google Scholar 

  32. Spofforth, D. J. A. et al. Organic carbon burial following the middle Eocene climatic optimum in the central western Tethys. Paleoceanography 25, PA3210 (2010).

    Article  Google Scholar 

  33. Pälike, H. et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488, 609–614 (2012).

    Article  Google Scholar 

  34. Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).

    Article  Google Scholar 

  35. Zeebe, R. E. LOSCAR: Long-term ocean-atmosphere-sediment carbon cycle reservoir model v2.0.4. Geosci. Mod. Dev. 5, 149–166 (2012).

    Article  Google Scholar 

  36. Kump, L. R. & Arthur, M. A. Interpreting carbon-isotope excursions: carbonates and organic matter. Chem. Geol. 161, 181–198 (1999).

    Article  Google Scholar 

  37. Dawber, C. F., Tripati, A. K., Gale, A. S., MacNiocaill, C. & Hesselbo, S. P. Glacioeustasy during the middle Eocene? Insights from the stratigraphy of the Hampshire Basin, UK. Palaeogeogr. Palaeoclimatol. Palaeoecol. 300, 84–100 (2011).

    Article  Google Scholar 

  38. Berger, W. H. Increase of carbon dioxide in the atmosphere during deglaciation: the coral reef hypothesis. Naturwissenschaften 69, 87–88 (1982).

    Article  Google Scholar 

  39. Kump, L. R. & Arthur, M. A. in Tectonic Uplift and Climate Change (ed. Ruddiman, W.) 399–426 (Plenum, 1997).

    Book  Google Scholar 

  40. Opdyke, B. N. & Wilkinson, B. H. Carbonate mineral saturation state and cratonic limestone accumulation. Am. J. Sci. 293, 217–234 (1993).

    Article  Google Scholar 

  41. Archer, D. E., An atlas of the distribution of calcium carbonate in sediments of the deep sea. Glob. Biogeochem. Cycles 10, 159–174 (1996).

    Article  Google Scholar 

  42. Sundquist, E. T. in The Changing Carbon Cycle, A Global Analysis (eds Trabalka, J. R. & Reichle, D. E.) 371–402 (Springer, 1986).

    Book  Google Scholar 

  43. Hancock, H. J. L. & Dickens, G. R. in Proceedings of the Ocean Drilling Program, Scientific Results 198 (eds Bralower, T. J., Premoli Silva, I. & Malone, M. J.) 1–24 (Ocean Drilling Program, College Station, Texas, 2005).

    Google Scholar 

  44. Lyle, M., Lyle, A. O., Backman, J. & Tripati, A. in Proceedings of the Ocean Drilling Program Scientific Results 199 (eds Wilson, P. A., Lyle, M. & Firth, J. V.) (Ocean Drilling Program, College Station, Texas, 2005).

    Google Scholar 

  45. Vandenberghe, N., Speijer, R. P. & Hilgen, F. J. in The Geologic Time Scale 2012 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. & Ogg, G.) 855–921 (Elsevier, 2012).

    Book  Google Scholar 

  46. Zeebe, R. E. & Zachos, J. C. Reversed deep-sea carbonate ion basin gradient during the Paleocene–Eocene thermal maximum. Paleoceanography 22, PA3301 (2007).

    Article  Google Scholar 

  47. Zeebe, R. E. & Wolf-Gladrow, D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes. (Elsevier, 2001).

    Google Scholar 

  48. Tyrrell, T. & Zeebe, R. E. History of carbonate ion concentration over the last 100 million years. Geochim. Cosmochim. Acta 68, 3521–3530 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This research used data generated on sediments provided by the Integrated Ocean Drilling Program (IODP). We thank L. Kump (Penn State) for discussions and T. Markus (Utrecht University) for illustration support. The European Research Council under the European Community's Seventh Framework Program provided funding for this work by ERC Starting Grant #259627 to A.S. This paper resulted from a sabbatical stay of R.E.Z. at Utrecht University, funded through a Visitors Travel Grant awarded to A.S. by the Netherlands Organisation for Scientific Research (NWO grant #040.11.305).

Author information

Authors and Affiliations

Authors

Contributions

A.S. identified the carbon cycle conundrum. R.E.Z. carried out the modelling. P.K.B. and S.M.B. provided ideas and performed the final data compilation. A.S. wrote the paper with input from all authors.

Corresponding author

Correspondence to Appy Sluijs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sluijs, A., Zeebe, R., Bijl, P. et al. A middle Eocene carbon cycle conundrum. Nature Geosci 6, 429–434 (2013). https://doi.org/10.1038/ngeo1807

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1807

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology