Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Glacial–interglacial changes in bottom-water oxygen content on the Portuguese margin

Abstract

During the last and penultimate glacial maxima, atmospheric CO2 concentrations were lower than present, possibly in part because of increased storage of respired carbon in the deep oceans1. The amount of respired carbon present in a water mass can be calculated from its oxygen content through apparent oxygen utilization; the oxygen content can in turn be calculated from the carbon isotope gradient within the sediment column2. Here we analyse the shells of benthic foraminifera occurring at the sediment surface and the oxic/anoxic interface on the Portuguese Margin to reconstruct the carbon isotope gradient and hence bottom-water oxygenation over the past 150,000 years. We find that bottom-water oxygen concentrations were 45 and 65 μmol kg−1 lower than present during the last and penultimate glacial maxima, respectively. We calculate that concentrations of remineralized organic carbon were at least twice as high as today during the glacial maxima. We attribute these changes to decreased ventilation linked to a reorganization of ocean circulation3 and a strengthened global biological pump4. If the respired carbon pool was of a similar size throughout the entire glacial deep Atlantic basin, then this sink could account for 15 and 20 per cent of the glacial P CO 2 drawdown during the last and penultimate glacial maxima.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationship between Δδ13C and [O2].
Figure 2: Historic changes in bottom-water [O2] at MD95-2042.

Similar content being viewed by others

References

  1. Sigman, D. A. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).

    Article  Google Scholar 

  2. McCorkle, D. C. & Emerson, S. R. The relationship between pore water carbon isotopic composition and bottom water oxygen concentration. Geochim. Cosmochim. Acta 52, 1169–1176 (1988).

    Article  Google Scholar 

  3. McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).

    Article  Google Scholar 

  4. Kohfeld, K. E., Le Quéré, C., Harrison, S. P. & Anderson, R. F. Role of marine biology in glacial–interglacial CO2 cycles. Science 308, 74–78 (2005).

    Article  Google Scholar 

  5. Anderson, L. A. & Sarmiento, J. L. Redfield ratios of remineralization determined by nutrient data analysis. Glob. Biogeochem. Cycles 8, 65–80 (1994).

    Article  Google Scholar 

  6. Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics (Princeton Univ. Press, 2006).

    Google Scholar 

  7. Gehlen, M., Mucci, A. & Boudreau, B. Modelling the distribution of stable carbon isotopes in porewaters of deep-sea sediments. Geochim. Cosmochim. Acta 63, 2763–2773 (1999).

    Article  Google Scholar 

  8. McCorkle, D. C., Keigwin, L. C., Corliss, B. H. & Emerson, S. R. The influence of microhabitats on the carbon isotopic composition of deep-sea benthic foraminifera. Paleoceanography 5, 161–185 (1990).

    Article  Google Scholar 

  9. Schmiedl, G. & Mackensen, A. Multispecies stable isotopes of benthic foraminifera reveal past changes in organic matter decomposition and deepwater oxygenation in the Arabian Sea. Paleoceanography 21, PA4213 (2006).

    Article  Google Scholar 

  10. Fontanier, C. et al. Live benthic foraminiferal faunas from the Bay of Biscay: Faunal density, composition, and microhabitats. Deep-Sea Res. I 49, 751–785 (2002).

    Article  Google Scholar 

  11. Geslin, E., Heinz, O., Jorissen, F. & Hemleben, Ch. Migratory responses of deep-sea benthic foraminifera to variable oxygen conditions: Laboratory investigations. Mar. Micropaleontol. 53, 227–243 (2004).

    Article  Google Scholar 

  12. Mackensen, A. in Biogeochemical Controls on Palaeoceanographic Environmental Proxies Vol. 303 (eds Austin, W. E. N. & James, R. H.) 121–133 (Geological Society, Special Publications, 2008).

    Google Scholar 

  13. Shackleton, N. J., Hall, M. A. & Vincent, E. Phase relationships between millennial-scale events 64,000–24,000 years ago. Paleoceanography 15, 565–569 (2000).

    Article  Google Scholar 

  14. Shackleton, N. J. et al. Stable carbon and oxygen isotope ratios of benthic foraminifera from sediment core MD95-2042 on the Iberian margin, North Atlantic. http://dx.doi.org/10.1594/PANGAEA.58220 (2000).

  15. Shackleton, N. J., Fairbanks, R. G., Chiu, T. & Parrenin, F. Absolute calibration of the Greenland time scale: Implications for Antarctic time scales and for Δ14C. Quat. Sci. Rev. 23, 1513–1522 (2004).

    Article  Google Scholar 

  16. Jorissen, F. J., de Stigter, H. C. & Widmark, J. G. V. A conceptual model explaining benthic foraminiferal microhabitats. Mar. Micropaleontol. 26, 3–15 (1995).

    Article  Google Scholar 

  17. Key, R. M. et al. A global ocean carbon climatology: Results from the Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles 18, GB4031 (2004).

    Article  Google Scholar 

  18. Broecker, W. S. Massive iceberg discharges as triggers for global climate change. Nature 372, 421–424 (1994).

    Article  Google Scholar 

  19. Adkins, J. S., McIntyre, K. & Schrag, D. P. The salinity, temperature and δ18O of the glacial deep ocean. Science 298, 1769–1773 (2002).

    Article  Google Scholar 

  20. Skinner, L. C. & Shackleton, N. J. Rapid transient changes in northeast Atlantic deep water ventilation age across termination I. Paleoceanography 19, PA2005 (2004).

    Article  Google Scholar 

  21. Curry, W. B. & Oppo, D. W. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanography 20, PA1017 (2005).

    Article  Google Scholar 

  22. Gutjahr, M., Frank, M., Stirling, C. H., Keigwin, L. D. & Halliday, A. N. Tracing the Nd isotope evolution of North Atlantic Deep and intermediate waters in the western North Atlantic since the Last Glacial Maximum from Blake Ridge sediments. Earth Planet. Sci. Lett. 266, 61–77 (2008).

    Article  Google Scholar 

  23. Toggweiler, J. R. Variation of atmospheric CO2 by ventilation of the ocean’s deepest water. Paleoceanography 14, 571–588 (1999).

    Article  Google Scholar 

  24. Stephens, B. B. & Keeling, R. F. The influence of Antarctic sea ice on glacial–interglacial CO2 variations. Nature 404, 171–174 (2000).

    Article  Google Scholar 

  25. Martin, J. H. Glacial–interglacial CO2 change: The iron hypothesis. Paleoceanography 6, 1–13 (1990).

    Article  Google Scholar 

  26. Martínez-García, A. et al. Iron fertilization of the subantarctic ocean during the last ice age. Science 343, 1347–1350 (2014).

    Article  Google Scholar 

  27. Debelius, B., Gómez-Parra, A. & Forja, J. M. Oxygen solubility in evaporated seawater as a function of temperature and salinity. Hydrobiologia 632, 157–165 (2009).

    Article  Google Scholar 

  28. Ito, T., Marshall, J. & Follows, M. What controls the uptake of transient tracers in the Southern Ocean? Glob. Biogeochem. Cycles 18, GB2021 (2004).

    Article  Google Scholar 

  29. Parmentier, F. J. et al. The impact of lower sea-ice extent on Arctic greenhouse-gas exchange. Nature Clim. Change 17, 195–202 (2013).

    Article  Google Scholar 

  30. Jaccard, S. L. & Galbraith, E. D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nature Geosci. 5, 151–156 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by UK Natural Environment Research Council (NERC) grant NE/I020563/1 (to B.A.A.H.). This research used samples and/or data provided by the Ocean Drilling Program (ODP). ODP is sponsored by the US National Science Foundation and participating countries (Natural Environment Research Council in the UK) under management of the Joint Oceanographic Institutions (JOI).

Author information

Authors and Affiliations

Authors

Contributions

B.A.A.H. conceived and coordinated the work, carried out data analyses and synthesis, and constructed the figures. B.A.A.H. wrote the paper with contributions from the other co-authors.

Corresponding author

Correspondence to Babette A. A. Hoogakker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 504 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoogakker, B., Elderfield, H., Schmiedl, G. et al. Glacial–interglacial changes in bottom-water oxygen content on the Portuguese margin. Nature Geosci 8, 40–43 (2015). https://doi.org/10.1038/ngeo2317

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2317

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology