Skip to main content
Log in

The influence of Fe(III) on oil biodegradation in excessively moistened soils and sediments

  • Degradation, Rehabilitation, and Conservation of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Soils are self-purified from oil slowly, in the north, in particular, where hydromorphic conditions and low temperatures hinder the process. Oxidation of oil hydrocarbons depends on the type of electron acceptors and decreases in the following sequence: denitrification > Mn4+ reduction > Fe3+ reduction > sulfate reduction > methanogenesis. Usually, not all of these redox reactions develop in contaminated excessively moistened soils and sediments. Fe(III) reduction and methanogenesis are the most common: the latter is manifested near the contamination source, while the former develops in less contaminated areas. Fe reduction hinders the methanogenesis. In oil-contaminated areas, Fe reduction is also combined with sulfate reduction, the latter intensifying Fe reduction due to the formation of iron sulfides. Concurrently with oil degradation in excessively moistened soils and sediments, the composition of iron compounds changes due to the increasing Fe(II) share magnetite, as well as siderite and ferrocalcite (in calcareous deposits), and iron sulfides (in S-containing medium) are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. A. Avetov and E. A. Shishkonakova, “Oil pollution of mires in Western Siberia,” Priroda, No. 11, 14–24 (2010).

    Google Scholar 

  2. E. S. Vasil’konov, Candidate’s Dissertation in Biology (Moscow, 2009).

  3. Y. N. Vodyanitskii, “Iron hydroxides in soils: a review of publications,” Eurasian Soil Sci. 43(11), 1244–1254 (2010).

    Article  Google Scholar 

  4. Y. N. Vodyanitskii, Iron Compounds and Their Role in Soil Protection (Dokuchaev Soil Science Institute, Moscow, 2010) [in Russian].

    Google Scholar 

  5. Y. N. Vodyanitskii, N. A. Avetov, S. Y. Trofimov, A. T. Savichev, and E. A. Shishkonakova, “Influence of oil and stratal water contamination on the ash composition of oligotrophic peat soils in the oil-production area (the Ob’ region),” Eurasian Soil Sci. 46(10), 1032–1041 (2013).

    Article  Google Scholar 

  6. I. I. Grinberg, Organic Chemistry (Drofa, Moscow, 2002) [in Russian].

    Google Scholar 

  7. G. A. Zavarzin and N. N. Kolotilova, Introduction to Environmental Microbiology (Universitet, Moscow, 2001) [in Russian].

    Google Scholar 

  8. D. G. Zvyagintsev, Soil and Microorganisms (Moscow State University, Moscow, 1987) [in Russian].

    Google Scholar 

  9. S. A. Illarionov, Environmental Aspects of Remediation of Oil-Polluted Soils (Ural Branch, Russian Academy of Sciences, Yekaterinburg, 2004) [in Russian].

    Google Scholar 

  10. I. S. Kaurichev and D. S. Orlov, Oxidative-Reduction Processes and Their Role in the Genesis and Fertility of Soils (Kolos, Moscow, 1982) [in Russian].

    Google Scholar 

  11. F. I. Kozlovskii and E. A. Kornblyum, Meliorative Problems of the Development of Floodplains in the Steppe Zone (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  12. N. G. Kuramshina, E. M. Kuramshin, U. B. Imashev, T. I. Nikolaeva, and G. I. Safina, “Ecogeochemical analysis of atmospheric air, snow, and soil cover in the zone affected by oil fields in Western Siberia,” Probl. Biogeokhim. Geokhim. Ekol., No. 3, 17–23 (2011).

    Google Scholar 

  13. A. V. Pinevich, Microbiology of Iron and Manganese (St. Petersburg State University, St. Petersburg, 2005) [in Russian].

    Google Scholar 

  14. Yu. I. Pikovskii, A. N. Gennadiev, S. S. Chernyanskii, and G. N. Sakharov, “The problem of diagnostics and standardization of the levels of soil pollution by oil and oil products,” Eurasian Soil Sci. 36(9), 1010–1017 (2003).

    Google Scholar 

  15. N. P. Solntseva, Oil Mining and Geochemistry of Natural Landscapes (Moscow State University, Moscow, 1998) [in Russian].

    Google Scholar 

  16. S. A. Shoba, S. Y. Trofimov, N. A. Avetov, et al., “Ecological standardization of oil concentrations in taiga soils of Western Siberia,” in International Conference “New Technologies for Purification of Petroleum-Polluted Waters, Soil, Processing and Utilization of Petroleum Wastes” (Moscow, 2001), pp. 125–127.

    Google Scholar 

  17. R. T. Anderson and D. R. Lovley, “Ecology and biogeochemistry of in situ groundwater bioremediation,” Adv. Microbial Ecol. 15, 289–350 (1997).

    Article  Google Scholar 

  18. R. T. Anderson and D. R. Lovley, “Naphthalene and benzene degradation under Fe(III)-reducing conditions in petroleum-contaminated aquifer,” Bioremediation J. 3, 121–135 (1999).

    Article  Google Scholar 

  19. R. T. Anderson, J. N. Rooney-Varga, and D. R. Lovley, “Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum-contaminated aquifer,” Environ. Sci. Technol. 32, 1222–1229 (1998).

    Article  Google Scholar 

  20. M. J. Baedecker, I. M. Cozzarelli, D. I. Siegel, P. C. Bennet, and R. P. Eganhouse, “Crude oil in a shallow sand and gravel aquifer. 3. Biochemical reactions and mass balance modeling in anoxic groundwater,” Appl. Geochem. 8, 569–586 (1993).

    Article  Google Scholar 

  21. B. A. Bekins, I. M. Cozzarelli, E. A. Godsy, E. Warren, H. I. Essaid, and M. E. Tuccillo, “Progression of natural attenuation processes at a crude oil spill site: II. Controls on spatial distribution of microbial populations,” J. Contam. Hydrol. 53, 387–406 (2001).

    Article  Google Scholar 

  22. B. A. Bekins, E. A. Godsy, and E. Warren, “Distribution of microbial physiologic types in an aquifer contaminated by crude oil,” Microbiol. Ecol. 37, 263–275 (1999).

    Article  Google Scholar 

  23. C. M. Bethke, R. A. Sanford, M. F. Kirk, Q. Jin, and T. M. Flynn, “The thermodynamic ladder in geomicrobiology,” Am. J. Sci. 311, 183–210 (2011).

    Article  Google Scholar 

  24. J. D. Coates, V. K. Bhupathiraju, L. A. Achenbach, M. J. Mclnerney, and D. R. Lovley, “Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)reducers,” Int. J. Syst. Evol. Microbiol. 51, 581–588 (2001).

    Google Scholar 

  25. R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses (Wiley, Weinheim, 2003).

    Book  Google Scholar 

  26. I. M. Cozzarelli, B. A. Bakins, M. J. Baedecker, G. R. Aiken, R. P. Eganhouse, and M. E. Tuccillo, “Progression of natural attenuation processes at a crude oil spill site: I. Geochemical evolution of the plume,” J. Contam. Hydrol. 53, 369–385 (2001).

    Article  Google Scholar 

  27. I. M. Cozzarelli, J. S. Herman, M. J. Baedecker, and J. M. Fischer, “Geochemical heterogeneity of a gasoline-contaminated aquifer,” J. Contam. Hydrol. 40, 261–284 (1999).

    Article  Google Scholar 

  28. H. I. Essaid, B. A. Bekins, E. M. Godsy, and E. Warren, “Simulation of aerobic and anaerobic biodegradation processes at a crude oil spill site,” Water Resour. Res. 31(12), 3309–3327 (1995).

    Article  Google Scholar 

  29. W. Fan, Y. S. Yang, X. Q. Du, Y. Lu, and M. X. Yang, “Finger-printing biodegradation of petroleum contamination in shallow groundwater and soil system using hydro-bio-geochemical markers and modeling support,” Water Air Soil Pollut. 220, 253–263 (2011).

    Article  Google Scholar 

  30. R. Jakobsen and D. Postma, “Redox zoning, rates of sulfate reduction and interactions with Fe-reduction and methanogenesis in a shallow sandy aquifer, Romo, Denmark,” Geochim. Cosmochim. Acta 63, 137–151 (1999).

    Article  Google Scholar 

  31. M. F. Kirk, E. E. Roden, L. J. Crossy, A. J. Brearly, and M. N. Splide, “Experimental analysis of arsenic precipitation during microbial sulfate and iron reduction in modal aquifer sediment reactors,” Geochim. Cosmochim. Acta 74, 2538–2555 (2010).

    Article  Google Scholar 

  32. D. R. Lovley, “Dissimilatory Fe(III) and Mn(IV) reduction,” Microbiol. Rev. 55(2), 259–287 (1991).

    Google Scholar 

  33. D. R. Lovley, “Microbial Fe(III) reduction in subsurface environments,” FEMS Microbiol. Rev. 20, 305–313 (1997).

    Article  Google Scholar 

  34. D. R. Lovley, D. J. Lonergan, M. J. Baedecker, I. M. Cozzarelli, E. J. P. Phillips, and D. I. Siegel, “Oxidation of aromatic contaminants coupled to microbial iron reduction,” Nature 339, 297–299 (1989).

    Article  Google Scholar 

  35. D. R. Lovley and D. J. Lonergan, “Anaerobic oxidation of toluene, phenol, and para-cresol by the dissimilatory iron-reducing organism, GS-15,” Appl. Environ. Microbiol. 56, 1858–1864 (1990).

    Google Scholar 

  36. D. R. Lovley, J. C. Woodward, and F. H. Chapelle, “Stimulation anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands,” Nature 370, 128–131 (1994).

    Article  Google Scholar 

  37. A. L. Neal, S. Techkarjanaruk, A. Dohnalkova, D. McCready, B. M. Peyton, and G. G. Gessey, “Iron sulfides and sulfur species produced at hematite surfaces in the presence of sulfate-reducing bacteria,” Geochim. Cosmochim. Acta 65, 223–235 (2001).

    Article  Google Scholar 

  38. E. E. Roden, “Fe(III) oxide reactivity toward biological versus chemical reduction,” Environ. Sci. Technol. 37, 1319–1324 (2003).

    Article  Google Scholar 

  39. E. E. Roden and M. M. Urrutia, “Influence of biogenic Fe(II) on bacterial crystalline Fe(III) oxide reduction,” Geomicrobiol. J. 19, 209–251 (2002).

    Article  Google Scholar 

  40. E. E. Roden and J. M. Zachara, “Microbial reduction of crystalline iron(III) oxides: Influence of oxide surface area and potential for cell growth,” Environ. Sci. Technol. 30, 1618–1628 (1996).

    Article  Google Scholar 

  41. J. N. Rooney-Varga, R. T. Anderson, J. L. Fraga, D. Ringelberg, and D. R. Lovley, “Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer,” Appl. Environ. Microbiol. 65, 3056–3063 (1999).

    Google Scholar 

  42. T. Satapanajaru, P. J. Shea, S. D. Comfort, and Y. Roh, “Green rust and iron oxide formation influences metolachlor dechloration during iron treatment,” Environ. Sci. Technol. 37, 5219–5227 (2003).

    Article  Google Scholar 

  43. R. P. Schwarzenbach, B. I. Escher, K. Fenner, T. B. Hofstetter, C. A. Johnson, U. von Gunten, and B. Wehrli, “The challenge of micropollutants in aquatic systems,” Science 313, 1072–1077 (2006).

    Article  Google Scholar 

  44. E. S. Shelobolina, R. T. Anderson, Y. N. Vodyanitskii, A. V. Sivtsov, R. Vuretich, and D. R. Lovley, “Importance of clay size minerals for Fe(III) respiration in a petroleum-contaminated aquifer,” Geobiology 2, 67–76 (2004).

    Article  Google Scholar 

  45. N. B. Tobler, T. B. Hofstetter, K. L. Straub, D. Fontana, and R. P. Schwarzenbach, “Iron-mediated microbial oxidation and abiotic reduction of organic contaminants under anoxic conditions,” Environ. Sci. Technol. 41, 7765–7772 (2007).

    Article  Google Scholar 

  46. M. M. Urrutia, E. E. Roden, J. K. Fredrickson, and J. M. Zachara, “Microbial and geochemical controls on synthetic Fe(III) oxide reduction by Shewanella alga strain BrY,” Geomicrobiol. J. 15, 269–191 (1998).

    Article  Google Scholar 

  47. M. M. Urrutia, R. E. Roden, and J. M. Zachara, “Influence of aqueous and solid-phase Fe-complexants on microbial reduction of crystalline Fe(III) oxides,” Environ. Sci. Technol. 33, 4022–4028 (1999).

    Article  Google Scholar 

  48. E. K. Web and M. P. Anderson, “Simulation of preferential flow in three-dimensional, heterogeneous conductivity fields with realistic internal architecture,” Water Resour. Res. 32, 533–545 (1996).

    Article  Google Scholar 

  49. J. M. Zachara, J. K. Fredrickson, S. M. Li, D. W. Kennedy, S. C. Smith, and P. L. Gassman, “Bacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials,” Am. Miner. 83, 1426–1443 (1998).

    Google Scholar 

  50. J. M. Zachara, R. K. Kukkadapu, P. L. Gassman, A. Dohnalkova, J. K. Fredrickson, and T. Anderson, “Biogeochemical transformation of Fe minerals in petroleum-contaminated aquifer,” Geochim. Cosmochim. Acta 68, 1791–1805 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Vodyanitskii.

Additional information

Original Russian Text © Yu.N. Vodyanitskii, S.Ya. Trofimov, S.A. Shoba, 2015, published in Pochvovedenie, 2015, No. 7, pp. 877–886.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vodyanitskii, Y.N., Trofimov, S.Y. & Shoba, S.A. The influence of Fe(III) on oil biodegradation in excessively moistened soils and sediments. Eurasian Soil Sc. 48, 764–772 (2015). https://doi.org/10.1134/S1064229315070121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229315070121

Keywords

Navigation