Skip to main content
Log in

Phase structure of intrinsic curvature models on dynamically triangulated disk with fixed boundary length

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

A first-order phase transition is found in two types of intrinsic curvature models defined on dynamically triangulated surfaces of disk topology. The intrinsic curvature energy is included in the Hamiltonian. The smooth phase is separated from a non-smooth phase by the transition. The crumpled phase, which is different from the non-smooth phase, also appears at sufficiently small curvature coefficient α. The phase structure of the model on the disk is identical to that of the spherical surface model, which was investigated by us and reported previously. Thus, we found that the phase structure of the fluid surface model with intrinsic curvature is independent of whether the surface is closed or open.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • D. Nelson, Statistical Mechanics of Membranes and Surfaces, 2nd edn., edited by D. Nelson, T. Piran, S. Weinberg (World Scientific, 2004), p. 1

  • G. Gompper, M. Schick, Self-assembling amphiphilic systems, in Phase Transitions and Critical Phenomena 16, edited by C. Domb, J.L. Lebowitz (Academic Press, 1994), p. 1

  • M.J. Bowick, A. Travesset, Phys. Rept. 344, 255 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • K.J. Wiese, Phase Transitions and Critical Phenomena 19, edited by C. Domb, J.L. Lebowitz (Academic Press, 2000), p. 253

  • J.F. Wheater, J. Phys. A: Math. Gen. 27, 3323 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  • F. David, E.Guitter, Europhys. Lett. 5, 709 (1988)

    ADS  Google Scholar 

  • L. Peliti, S. Leibler, Phys. Rev. Lett. 54, 1690 (1985)

    Article  ADS  Google Scholar 

  • M.E.S. Borelli, H. Kleinert, A.M.J Schakel, Phys. Lett. A 267, 201 (2000)

    Article  ADS  Google Scholar 

  • M.E.S. Borelli, H. Kleinert, Phys. Rev. B 63, 205414 (2001)

    Article  ADS  Google Scholar 

  • H. Kleinert, Eur. Phys. J. B 9, 651 (1999)

    Article  ADS  Google Scholar 

  • S.M. Catterall, J.B. Kogut, R.L. Renken, Nucl. Phys. Proc. Suppl. B 99A, 1 (1991)

    Google Scholar 

  • J. Ambjorn, A. Irback, J. Jurkiewicz, B. Petersson, Nucl. Phys. B 393, 571 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  • M. Bowick, P. Coddington, L. Han, G. Harris, E. Marinari, Nucl. Phys. Proc. Suppl. 30, 795 (1993); M. Bowick, P. Coddington, L. Han, G. Harris, E. Marinari, Nucl. Phys. B 394, 791 (1993)

    Article  ADS  Google Scholar 

  • K. Anagnostopoulos, M. Bowick, P. Gottington, M. Falcioni, L. Han, G. Harris, E. Marinari, Phys. Lett. B 317, 102 (1993)

    Article  ADS  Google Scholar 

  • H. Koibuchi, Phys. Lett. A 300, 586 (2002)

    Article  ADS  Google Scholar 

  • H. Koibuchi, N. Kusano, A. Nidaira, K. Suzuki, Phys. Lett. A 332, 141 (2004)

    Article  ADS  MATH  Google Scholar 

  • H. Koibuchi, Eur. Phys. J. B 45, 377 (2005)

    Article  ADS  Google Scholar 

  • H. Koibuchi, N. Kusano, A. Nidaira, K. Suzuki, M. Yamada, Phys. Lett. A 319, 44 (2003)

    Article  ADS  Google Scholar 

  • H. Koibuchi, N. Kusano, A. Nidaira, Z. Sasaki, K. Suzuki, Eur. Phys. J. B 42, 561 (2004)

    Article  ADS  Google Scholar 

  • M. Igawa, H. Koibuchi, M. Yamada, Phys. Lett. A 338, 433 (2005)

    Article  ADS  MATH  Google Scholar 

  • I. Endo, H. Koibuchi, Phys. Lett. A 350, 11 (2006)

    Article  ADS  Google Scholar 

  • M. Bowick, S. Catterall, M. Falcioni, G. Thorleifsson, K. Anagnostopoulos, J. Phys. I France 6, 1321 (1996); M. Bowick, S. Catterall, M. Falcioni, G. Thorleifsson, K. Anagnostopoulos, Nucl. Phys. Proc. Suppl. 47, 838 (1996); M. Bowick, S. Catterall, M. Falcioni, G. Thorleifsson, K. Anagnostopoulos, Nucl. Phys. Proc. Suppl. 53, 746 (1997)

    Article  Google Scholar 

  • J.F. Wheater, Nucl. Phys. B 458, 671 (1996)

    Article  ADS  Google Scholar 

  • Y. Kantor, D.R. Nelson, Phys. Rev. A 36, 4020 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  • G. Gompper, D.M. Kroll, Phys. Rev. E 51, 514 (1995)

    Article  ADS  Google Scholar 

  • H. Koibuchi, A. Nidaira, T. Morita, K. Suzuki, Phys. Rev. E 68, 011804 (2003)

    Article  ADS  Google Scholar 

  • H. Koibuchi, N. Kusano, A. Nidaira, K. Suzuki, M. Yamada, Phys. Rev. E 69, 066139 (2004)

    Article  ADS  Google Scholar 

  • J.-P. Kownacki, H.T. Diep, Phys. Rev. E 66, 066105 (2002)

    Article  ADS  Google Scholar 

  • H. Koibuchi, Z. Sasaki, K. Shinohara, Phys. Rev. E 70, 066144 (2004)

    Article  ADS  Google Scholar 

  • H. Koibuchi, T. Kuwahata, Phys. Rev. E 72, 026124 (2005)

    Article  ADS  Google Scholar 

  • I. Endo, H. Koibuchi, Nucl. Phys. B 732 [FS], 426 (2006)

  • Y. Kantor, Statistical Mechanics of Membranes and Surfaces, 2nd edn., edited by D. Nelson, T. Piran, S. Weinberg (World Scientific, 2004), p. 111

  • Y. Kantor, M. Karder, D.R. Nelson, Phys. Rev. A 35, 3056 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  • M. Bowick, A. Cacciuto, G. Thorleifsson, A. Travesset, Eur. Phys. J. E 5, 149 (2001)

    Article  Google Scholar 

  • M.J. Bowick, Statistical Mechanics of Membranes and Surfaces, Second Edn., edited by D. Nelson, T. Piran, S. Weinberg (World Scientific, 2004), p. 323

  • D. Nelson, Statistical Mechanics of Membranes and Surfaces, Second Edn., edited by D. Nelson, T. Piran, S. Weinberg (World Scientific, 2004), p. 131

  • R. Goetz, R. Lipowsky, J. Chem. Phys. 108, 7397 (1998)

    Article  ADS  Google Scholar 

  • H. Noguchi, M. Takatsu, J. Chem. Phys. 115, 9547 (2001)

    Article  ADS  Google Scholar 

  • H. Noguchi, M. Takatsu, Biophys. J. 83, 299 (2002)

    Article  Google Scholar 

  • I.R. Cooke, K. Kremer, M. Deserno, Phys. Rev. E 72, 011506 (2005)

    Article  ADS  Google Scholar 

  • C.F. Baillie, D.A. Johnston, Phys. Rev. D 48, (1993) 5025; Phys. Rev. D 49, 4139 (1994)

    Article  Google Scholar 

  • C.F. Baillie, D. Espriu, D.A. Johnston, Phys. Lett. B 305, 109 (1993)

    Article  ADS  Google Scholar 

  • C.F. Baillie, A. Irback, W. Janke, D.A. Johnston, Phys. Lett. B 325, 45 (1994)

    Article  ADS  Google Scholar 

  • W. Helfrich, Z. Naturforsch 28c, 693 (1973)

    MathSciNet  Google Scholar 

  • A.M. Polyakov, Nucl. Phys. B 268, 406 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  • H. Kleinert, Phys. Lett. B 174, 335 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  • P.G. De Gennes, C. Taupin, J. Phys. Chem. 82, 2294 (1982)

    Article  Google Scholar 

  • H.A. Pinnow, W. Helfrich, Eur. Phys. J. E 3, 149 (2000)

    Article  Google Scholar 

  • F. David, Nucl. Phys. B 257[FS14], 543 (1985)

  • M. Matsumoto, T. Nishimura, ACM Trans. on Modeling and Computer Simulation, Vol. 8, No. 1, January, pp. 3–30 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Koibuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koibuchi, H. Phase structure of intrinsic curvature models on dynamically triangulated disk with fixed boundary length. Eur. Phys. J. B 52, 265–273 (2006). https://doi.org/10.1140/epjb/e2006-00287-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00287-5

PACS.

Navigation