Skip to main content
Log in

Current-induced domain wall motion with adiabatic and nonadiabatic spin torques in magnetic nanowires

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

We investigate current-driven domain wall (DW) propagation in magnetic nanowires in the framework of the modified Landau-Lifshitz-Gilbert equation with both adiabatic and nonadiabatic spin torque (AST and NAST) terms. By employing a simple analytical model, we can demonstrate the essential physics that any small current density can drive the DW motion along a uniaxial anisotropy nanowire even in absence of NAST, while a critical current density threshold is required due to intrinsic anisotropy pinning in a biaxial nanowire without NAST. The DW motion along the uniaxial wire corresponds to the asymptotical DW oscillation solution under high field/current in the biaxial wire case. The current-driven DW velocity weakly depends on the NAST parameter β in a uniaxial wire and it is similar to the β = α case (α: damping) in the biaxial wire. Apart from that, we discuss the rigid DW motion from both the energy and angular momentum viewpoints and point out some physical relations in between. We also propose an experimental scheme to measure the spin current polarization by combining both field- and current-driven DW motion in a usual flat (biaxial) nanowire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kläui, J. Phys.: Condens. Matter 20, 313001 (2008)

    Article  ADS  Google Scholar 

  2. S.S.P. Parkin et al., Science 320, 190 (2008)

    Article  ADS  Google Scholar 

  3. D.A. Allwood et al., Science 309, 1688 (2005)

    Article  ADS  Google Scholar 

  4. T. Ono et al., Science 284, 468 (1999)

    Article  ADS  Google Scholar 

  5. D. Atkinson et al., Nature Mater. 2, 85 (2003)

    Article  ADS  Google Scholar 

  6. G.S.D. Beach et al., Nature Mater. 4, 741 (2005)

    Article  ADS  Google Scholar 

  7. N.L. Schryer, L.R. Walker, J. Appl. Phys. 45, 5406 (1974)

    Article  ADS  Google Scholar 

  8. A.P. Malozemoff, J.C. Slonczewski, Domain Walls in Bubble Materials (Academic, New York, 1979)

  9. X.R. Wang et al., Europhys. Lett. 86, 67001 (2009)

    Article  ADS  Google Scholar 

  10. X.R. Wang et al., Ann. Phys. (N.Y.) 324, 1815 (2009)

    Article  ADS  MATH  Google Scholar 

  11. Z.Z. Sun, J. Schliemann, Phys. Rev. Lett. 104, 037206 (2010)

    Article  ADS  Google Scholar 

  12. J. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996)

    Article  ADS  Google Scholar 

  13. L. Berger, Phys. Rev. B 54, 9353 (1996)

    Article  ADS  Google Scholar 

  14. Y.B. Bazaliy et al., Phys. Rev. B 57, R3212 (1998)

    Article  ADS  Google Scholar 

  15. S. Zhang, Z. Li, Phys. Rev. Lett. 93, 127204 (2004)

    Article  ADS  Google Scholar 

  16. A. Thiaville et al., Europhys. Lett. 69, 990 (2005)

    Article  ADS  Google Scholar 

  17. G. Tatara, H. Kohno, Phys. Rev. Lett. 92, 086601 (2004)

    Article  ADS  Google Scholar 

  18. M. Kläui et al., Phys. Rev. Lett. 94, 106601 (2005)

    Article  ADS  Google Scholar 

  19. G.S.D. Beach et al., Phys. Rev. Lett. 97, 057203 (2006)

    Article  ADS  Google Scholar 

  20. M. Hayashi et al., Phys. Rev. Lett. 96, 197207 (2006)

    Article  ADS  Google Scholar 

  21. M. Hayashi et al., Phys. Rev. Lett. 98, 037204 (2007)

    Article  ADS  Google Scholar 

  22. L. Thomas et al., Nature 443, 197 (2006)

    Article  ADS  Google Scholar 

  23. A. Fert, L. Piraux, J. Magn. Magn. Mater. 200, 338 (1999)

    Article  ADS  Google Scholar 

  24. M. Yan et al., Phys. Rev. Lett. 104, 057201 (2010)

    Article  ADS  Google Scholar 

  25. S.E. Barnes, S. Maekawa, Phys. Rev. Lett. 95, 107204 (2005)

    Article  ADS  Google Scholar 

  26. Y. Tserkovnyak et al., Phys. Rev. B 74, 144405 (2006)

    Article  ADS  Google Scholar 

  27. M.D. Stiles et al., Phys. Rev. B 75, 214423 (2007)

    Article  ADS  Google Scholar 

  28. A.V. Khvalkovskiy et al., Phys. Rev. Lett. 102, 067206 (2009)

    Article  ADS  Google Scholar 

  29. C.T. Boone et al., Phys. Rev. Lett. 104, 097203 (2010)

    Article  ADS  Google Scholar 

  30. A. Thiaville, J.M. Garcia, J. Miltat, J. Magn. Magn. Mater. 242-245, 1061 (2002)

    Article  ADS  Google Scholar 

  31. S.E. Barnes, S. Maekawa, Phys. Rev. Lett. 98, 246601 (2007)

    Article  ADS  Google Scholar 

  32. S.A. Yang et al., Phys. Rev. Lett. 102, 067201 (2009)

    Article  ADS  Google Scholar 

  33. S.J. Barnett, Phys. Rev. 6, 239 (1915)

    Article  ADS  Google Scholar 

  34. S.J. Barnett, Rev. Mod. Phys. 7, 129 (1935)

    Article  ADS  Google Scholar 

  35. A. Einstein, W.J. de Haas, Deutsche Physikalische Gesellschaft, Verhandlungen 17, 152 (1915)

    Google Scholar 

  36. G.E.W. Bauer et al., Phys. Rev. B 81, 024427 (2010)

    Article  ADS  Google Scholar 

  37. P. Yan, X.R. Wang, Phys. Rev. B 80, 214426 (2009)

    Article  ADS  Google Scholar 

  38. R.A. Duine, Phys. Rev. B 77, 014409 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Z. Sun or P. Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Z., Schliemann, J., Yan, P. et al. Current-induced domain wall motion with adiabatic and nonadiabatic spin torques in magnetic nanowires. Eur. Phys. J. B 79, 449–453 (2011). https://doi.org/10.1140/epjb/e2011-10699-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-10699-7

Keywords

Navigation