Skip to main content
Log in

First-principles study of the formation energies and positron lifetimes of vacancies in the Yttrium-Aluminum Garnet Y3Al5O12

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Lattice vacancies are a major concern for the use of the Y3Al5O12 garnet (YAG) in optical applications. They are known to trap charge carriers preventing them from reaching luminescence centers. This reduces useful photon emission and deteriorates performance. Recent efforts to characterize such defects include experimental works by positron-annihilation spectroscopy (PAS) where extensive positron trapping was reported and attributed to defects made up of both cation and oxygen vacancies. The present study reports first-principles calculations for monovacancy and divacancy defects in YAG by means of conventional and two-component density-functional theory. The defect formation energies and corresponding charge-transition levels in the gap were initially determined. The ability of the lower-energy defects to act as positron-trapping centers was then examined. Corresponding positron lifetimes and binding energies to defects were calculated and compared to the experimental PAS data. The lifetimes of aluminum monovacancies agreed well with experiment if gradient corrections are included in the electron-positron correlation. Association of oxygen with aluminum vacancies was found to lead to stable negatively-charged divacancy complexes which also trap positrons. These defects are characterized by longer positron lifetimes, in agreement with the experimental observations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. Powell,Physics of Solid State Laser Materials (Springer-Verlag, New York, 1998)

  2. D.J. Robbins, B. Cockayne, B. Lent, C.N. Duckworth, J.L. Glasper, Phys. Rev. B 19, 1254 (1979)

    ADS  Google Scholar 

  3. C.R. Varney, D.T. Mackay, A. Pratt, S.M. Reda, F.A. Selim, J. Appl. Phys. 111, 063505 (2012)

    ADS  Google Scholar 

  4. D.T. Mackay, C.R. Varney, J. Buscher, F.A. Selim, J. Appl. Phys. 112, 023522 (2012)

    ADS  Google Scholar 

  5. E. Zych, C. Brecher, J. Glodo, J. Phys.: Condens. Matter 12, 1947 (2000)

    ADS  Google Scholar 

  6. F.A. Selim, C.R. Varney, M.C. Tarun, M.C. Rowe, G.S. Collins, M.D. McCluskey, Phys. Rev. B 88, 174102 (2013)

    ADS  Google Scholar 

  7. F.A. Selim, D. Winarski, C.R. Varney, M.C. Tarun, J. Ji, M.D. McCluskey, Results Phys. 5, 28 (2015)

    ADS  Google Scholar 

  8. M.J. Puska, R.M. Nieminen, Rev. Mod. Phys. 66, 841 (1994)

    ADS  Google Scholar 

  9. A. Dupasquier, A.P. Mills Jr. (eds),Positron Spectroscopy of Solids (IOS Press, Amsterdam, Oxford, Tokyo, Washington, DC, 1995)

  10. F. Tuomisto, I. Makkonen, Rev. Mod. Phys. 85, 1583 (2013)

    ADS  Google Scholar 

  11. J. Čížek, O. Melikhova, I. Procházka, J. Kuriplach, R. Kužel, G. Brauer, W. Anwand, T.E. Konstantinova, I.A. Danilenko, Phys. Rev. B 81, 024116 (2010)

    ADS  Google Scholar 

  12. S. Geller, Z. Kristallogr. 125, 1 (1967)

    Google Scholar 

  13. M.J. Puska, R.M. Nieminen, J. Phys. F: Met. Phys. 13, 333 (1983)

    ADS  Google Scholar 

  14. H.E. Hansen, R.M. Nieminen, M.J. Puska, J. Phys. F: Met. Phys. 14, 1299 (1984)

    ADS  Google Scholar 

  15. S. Hautakangas, I. Makkonen, V. Ranki, M.J. Puska, K. Saarinen, X. Xu, D.C. Look, Phys. Rev. B 73, 193301 (2006)

    ADS  Google Scholar 

  16. I. Makkonen, M.J. Puska, Phys. Rev. B 76, 054119 (2007)

    ADS  Google Scholar 

  17. R.A. Mackie, S. Singh, J. Laverock, S.B. Dugdale, D.J. Keeble, Phys. Rev. B 79, 014102 (2009)

    ADS  Google Scholar 

  18. G. Brauer, W. Anwand, D. Grambole, J. Grenzer, W. Skorupa, J. Cížek, J. Kuriplach, I. Procházka, C.C. Ling, C.K. So, D. Schulz, D. Klimm, Phys. Rev. B 79, 115212 (2009)

    ADS  Google Scholar 

  19. D.J. Keeble, S. Wicklein, R. Dittmann, L. Ravelli, R.A. Mackie, W. Egger, Phys. Rev. Lett. 105, 226102 (2010)

    ADS  Google Scholar 

  20. C. Rauch, I. Makkonen, F. Tuomisto, Phys. Rev. B 84, 125201 (2011)

    ADS  Google Scholar 

  21. J. Wiktor, G. Jomard, M. Torrent, M. Bertolus, Phys. Rev. B 87, 235207 (2013)

    ADS  Google Scholar 

  22. J. Wiktor, M.-F. Barthe, G. Jomard, M. Torrent, M. Freyss, M. Bertolus, Phys. Rev. B 90, 184101 (2014)

    ADS  Google Scholar 

  23. I. Makkonen, E. Korhonen, V. Prozheeva, F. Tuomisto, J. Phys.: Condens. Matter 28, 224002 (2016)

    ADS  Google Scholar 

  24. J. Wiktor, G. Jomard, M. Torrent, M. Bertolus, J. Phys.: Condens. Matter 29, 035503 (2017)

    ADS  Google Scholar 

  25. A.G. Marinopoulos, J. Phys.: Condens. Matter 31, 315503 (2019)

    ADS  Google Scholar 

  26. J. Chen, T.C. Lu, Y. Xu, A.G. Xu, D.Q. Chen, J. Phys.: Condens. Matter 20, 325212 (2008)

    Google Scholar 

  27. Z. Li, B. Liu, J. Wang, L. Sun, J. Wang, Y. Zhou, J. Am. Ceram. Soc. 95, 3628 (2012)

    Google Scholar 

  28. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    ADS  Google Scholar 

  29. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)

    ADS  Google Scholar 

  30. B. Chakraborty, Phys. Rev. B 24, 7423 (1981)

    ADS  Google Scholar 

  31. B. Chakraborty, R.W. Siegel, Phys. Rev. B 27, 4535 (1983)

    ADS  Google Scholar 

  32. E. Borónski, R.M. Nieminen, Phys. Rev. B 34, 3820 (1986)

    ADS  Google Scholar 

  33. F. Euler, J.A. Bruce, Acta Crystallogr. 19, 971 (1965)

    Google Scholar 

  34. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    ADS  Google Scholar 

  35. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    ADS  Google Scholar 

  36. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  37. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    ADS  Google Scholar 

  38. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    ADS  Google Scholar 

  39. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    ADS  Google Scholar 

  40. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    ADS  Google Scholar 

  41. Y.-N. Xu, W.Y. Ching, Phys. Rev. B 59, 10530 (1999)

    ADS  Google Scholar 

  42. A.B. Munoz-Garcia, E. Anglada, L. Seijo, Int. J. Quantum Chem. 109, 1991 (2009)

    ADS  Google Scholar 

  43. G.A. Slack, D.W. Oliver, R.M. Chrenko, S. Roberts, Phys. Rev. 177, 1308 (1969)

    ADS  Google Scholar 

  44. M. Marsman, J. Paier, A. Stroppa, G. Kresse, J. Phys.: Condens. Matter 20, 064201 (2008)

    ADS  Google Scholar 

  45. G. Makov, M.C. Payne, Phys. Rev. B 51, 4014 (1995)

    ADS  Google Scholar 

  46. M. Medraj, R. Hammond, M.A. Parvez, R.A.L. Drew, W.T. Thompson, J. Eur. Ceram. Soc. 26, 3515 (2006)

    Google Scholar 

  47. X. Gonze, F. Jollet, F. Abreu Araujo, D. Adams, B. Amadon, T. Applencourt, C. Audouze, J.-M. Beuken, J. Bieder, A. Bokhanchuk, E. Bousquet, F. Bruneval, D. Caliste, M. Côté, F. Dahm, F. Da Pieve, M. Delaveau, M. Di Gennaro, B. Dorado, C. Espejo, G. Geneste, L. Genovese, A. Gerossier, M. Giantomassi, Y. Gillet, D.R. Hamann, L. He, G. Jomard, J. Laflamme Janssen, S. Le Roux, A. Levitt, A. Lherbier, F. Liu, I. Lukačević, A. Martin, C. Martins, M.J.T. Oliveira, S. Poncé, Y. Pouillon, T. Rangel, G.-M. Rignanese, A.H. Romero, B. Rousseau, O. Rubel, A.A. Shukri, M. Stankovski, M. Torrent, M.J. Van Setten, B. Van Troeye, M.J. Verstraete, D. Waroquiers, J. Wiktor, B. Xu, A. Zhou, J.W. Zwanziger, Comput. Phys. Commun. 205, 106 (2016)

    ADS  Google Scholar 

  48. J. Wiktor, G. Jomard, M. Torrent, Phys. Rev. B 92, 125113 (2015)

    ADS  Google Scholar 

  49. N.A.W. Holzwarth, A.R. Tackett, G.E. Matthews, Comput. Phys. Commun. 135, 329 (2001)

    ADS  Google Scholar 

  50. M.J. Puska, A.P. Seitsonen, R.M. Nieminen, Phys. Rev. B 52, 10947 (1995)

    ADS  Google Scholar 

  51. B. Barbiellini, M.J. Puska, T. Torsti, R.M. Nieminen, Phys. Rev. B 51, 7341 (1995)

    ADS  Google Scholar 

  52. B. Barbiellini, M.J. Puska, T. Korhonen, A. Harju, T. Torsti, R.M. Nieminen, Phys. Rev. B 53, 16201 (1996)

    ADS  Google Scholar 

  53. J. Kuriplach, B. Barbiellini, Phys. Rev. B 89, 155111 (2014)

    ADS  Google Scholar 

  54. B. Barbiellini, J. Kuriplach, Phys. Rev. Lett. 114, 147401 (2015)

    ADS  Google Scholar 

  55. L. Schuh, R. Metselaar, C.R.A. Catlow, J. Eur. Ceram. Soc. 7, 67 (1991)

    Google Scholar 

  56. M.M. Kuklja, R. Pandey, J. Am. Ceram. Soc. 82, 2881 (1999)

    Google Scholar 

  57. K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)

    Google Scholar 

  58. A. Kokalj, Comput. Mater. Sci. 28, 155 (2003)

    Google Scholar 

  59. M.J. Puska, J. Phys.: Condens. Matter 3, 3455 (1991)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Marinopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marinopoulos, A.G. First-principles study of the formation energies and positron lifetimes of vacancies in the Yttrium-Aluminum Garnet Y3Al5O12. Eur. Phys. J. B 92, 242 (2019). https://doi.org/10.1140/epjb/e2019-100392-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100392-0

Keywords

Navigation