Skip to main content

doi:10.14379/iodp.pr.362.2017

International Ocean Discovery Program
Expedition 362 Preliminary Report

Sumatra Seismogenic Zone

The role of input materials in shallow seismogenic slip and forearc plateau development1

6 August–6 October 2016

Brandon Dugan, Lisa McNeill, Katerina Petronotis, and the Expedition 362 Scientists

Published June 2017

See the full publication in PDF.

Abstract

Drilling the input materials of the north Sumatran subduction zone, part of the 5000 km long Sunda subduction zone system and the origin of the Mw ~9.2 earthquake and tsunami that devastated coastal communities around the Indian Ocean in 2004, was designed to groundtruth the material properties causing unexpectedly shallow seismogenic slip and a distinctive forearc prism structure. The intriguing seismogenic behavior and forearc structure are not well explained by existing models or by relationships observed at margins where seismogenic slip typically occurs farther landward. The input materials of the north Sumatran subduction zone are a distinctively thick (as thick as 4–5 km) succession of primarily Bengal-Nicobar Fan–related sediments. The correspondence between the 2004 rupture location and the overlying prism plateau, as well as evidence for a strengthened input section, suggest the input materials are key to driving the distinctive slip behavior and long-term forearc structure. During Expedition 362, two sites on the Indian oceanic plate ~250 km southwest of the subduction zone, Sites U1480 and U1481, were drilled, cored, and logged to a maximum depth of 1500 meters below seafloor. The succession of sediment/rocks that will develop into the plate boundary detachment and will drive growth of the forearc were sampled, and their progressive mechanical, frictional, and hydrogeological property evolution will be analyzed through postcruise experimental and modeling studies. Large penetration depths with good core recovery and successful wireline logging in the challenging submarine fan materials will enable evaluation of the role of thick sedimentary subduction zone input sections in driving shallow slip and amplifying earthquake and tsunami magnitudes, at the Sunda subduction zone and globally at other subduction zones where submarine fan–influenced sections are being subducted.


1Dugan, B., McNeill, L., Petronotis, K., and the Expedition 362 Scientists, 2017. Expedition 362 Preliminary Report: Sumatra Subduction Zone. International Ocean Discovery Program. https://doi.org/​10.14379/​iodp.pr.362.2017

This work is distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.