A Model Intercomparison Analysis for Controls on C Accumulation in North American Peatlands


Contact
claire.treat [ at ] awi.de

Abstract

Peatland biogeochemical processes have not been adequately represented in existing earth system models, which might have biased the quantification of Arctic carbon-climate feedbacks. We revise the Peatland Terrestrial Ecosystem Model (PTEM) by incorporating additional peatland biogeochemical processes. The revised PTEM is evaluated by comparing with Holocene Peatland Model (HPM) in simulating peat physical and biogeochemical dynamics in three North American peatlands: a permafrost-free fen site, a permafrost-free bog site and a permafrost bog site. Peatland carbon dynamics are simulated from peat initiation to 1990 and then to year 2300. Model responses to the changes in temperature and precipitation are analyzed to identify key processes affecting peatland carbon accumulation rates. We find that the net C balance is sensitive to water table depth and nutrient availability. Future simulations to year 2300 are conducted with both models under RCP 2.6, RCP 4.5, and RCP 8.5. PTEM predicts these peatlands to be C sources or weaker C sinks when insufficient precipitation suppresses soil moisture and thereby net N mineralization and net primary production, while HPM predicts the same when drier climate leads to increasing water table depth. Our results highlight the importance of water balance and C-N feedback on peatland C dynamics. With a warmer climate, these peatlands could become a weaker C sink or a source under drier conditions, otherwise a larger C sink if wetter. Improved understanding to peatland processes can help future quantification of peatland C dynamics in the boreal and Arctic regions.



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Publication Status
Published
Eprint ID
56111
DOI 10.1029/2021JG006762

Cite as
Zhao, B. , Zhuang, Q. , Treat, C. and Frolking, S. (2022): A Model Intercomparison Analysis for Controls on C Accumulation in North American Peatlands , Journal of Geophysical Research: Biogeosciences, 127 (5), e2021JG006762 . doi: 10.1029/2021JG006762


Download
[thumbnail of Zhao_2022_JGR-B.pdf]
Preview
PDF
Zhao_2022_JGR-B.pdf

Download (1MB) | Preview

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email


Citation

Research Platforms
N/A

Campaigns
N/A

Funded by
info:eu-repo/grantAgreement/EC/H2020/851181


Actions
Edit Item Edit Item