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An Overview on Data Assimilation 



Combination of Information 
through Data Assimilation 

Improved analysis and forecast 
 of, for example, 

- water temperature 
- ice coverage 

SST: Satellite (AVHRR)!SST: Simulation (BSHcmod)!

Concept of Data Assimilation 



System Information: Chlorophyll in the ocean 

mg/m3 mg/m3 

Information: Model	

 Information: Observation	


•  Generally correct, but has errors 

•  all fields, fluxes, …	


•  Generally correct, but has errors 

•  sparse information  
  (only surface, data gaps, one field)	
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Combine both sources of information by data assimilation	





• Data assimilation 

• Variational data assimilation 

•  3D-Var, 4D-Var, adjoint method 

• Sequential data assimilation 
• Kalman filters 

• Ensemble-based Kalman filters 
• SEIK and LSEIK filters 

Overview 
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Data Assimilation 

  Optimal estimation of system state: 

•  initial conditions     (for weather/ocean forecasts, …) 

•  trajectory                (temperature, concentrations, …) 

•  parameters             (growth of phytoplankton, …)  

•  fluxes                      (heat, primary production, …) 

•  boundary conditions and ‘forcing’       (wind stress, …) 
! 

  Characteristics of system: 

•  high-dimensional numerical model - O(107) 

•  sparse observations 

•  non-linear 
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Data Assimilation 

Consider some physical system (ocean, atmosphere,…)	



time	



observation	



truth	



model	



state	


Variational assimilation 
	



Sequential assimilation 
	



Two main approaches: 
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Optimal estimate basically by least-squares fitting	





Variational Data Assimilation 
 

3D-Var, 4D-Var, Adjoint method 



  Formulate cost function J in terms of “control variable” 
   Example: initial state x0 

  Problem:  
   Find trajectory (defined by x0) that minimizes cost J while 
   fulfilling model dynamics 

  Use gradient-based algorithm: 
  e.g. quasi-Newton 
  Gradient for J[x0] is computed using adjoint  
    of tangent linear model operator 
  The art is to formulate the adjoint model and weights in J 
    (No closed formulation of model operator) 
  Iterative procedure (local in control space) 

  3D-Var: optimize locally in time 

Variational Data Assimilation - 4D-Var  
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Adjoint method - 4D-Var algorithm 

1. Initialization: Choose initial estimate of x0 

2. Forward: Integrate model 
start from x0; store trajectory 

3. Compute cost function; 
exit, if cost is below limit 

4. Backward: Integrate adjoint model backward in time  
start from final residual (y-x); use trajectory from 2. 

5. Optimizer: Update x0  
with optimization algorithm 
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Serial operation; difficult to parallelize	





Sequential Data Assimilation 
 

Kalman filters 



Sequential Data Assimilation 

Consider some physical system (ocean, atmosphere,…)	



time	



observation	



truth	



model	



Sequential assimilation: correct model state 
estimate when observations are available 
(analysis); propagate estimate (forecast)	

state	



Size of correction 
determined by 
error estimates	
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Probabilistic view: Optimal estimation 

Consider probability distribution of model and observations	



observation	



time 0	

 time 1	

 time 2	



analysis	



forecast	


Kalman Filter:  
Assume Gaussian distributions 
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Gaussianity 

  Assumed by all KF-based filters 
  (for optimal minimum-variance estimate) 

  Gaussian forecast probability distribution 

  Observation errors Gaussian distributed 

  Analysis is combination of two Gaussian distributions 

  Estimation problem can be formulated in terms of means  
   and covariance matrices of probability distributions 

  Cost function J is consistent with Gaussian assumptions 

But: Nonlinearity will not conserve Gaussianity! 
 

 (Extended KF conserves Gaussianity by first-order 
approximation, but can be unstable) 
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•  Storage of covariance matrix can be unfeasible 

•  Evolution of covariance matrix extremely costly 

•  Linearized evolution (like in Extended KF) can be 
  unstable 
 

  Reduce cost 

  simplify dynamics 

  approximate state covariance matrix 

More issues … application side 
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Ensemble-based Kalman filters 



Ensemble-based Kalman Filters 

  Foundation: Kalman filter (Kalman, 1960) 
•  optimal estimation problem 

•  express problem in terms of state estimate x and  
  error covariance matrix P (Gaussian distributions) 

•  propagate matrix P by linear (linearized) model 

•  variance-minimizing analysis 

  Ensemble-based Kalman filter: 

•  sample state x and covariance matrix P by ensemble of  
  model states 

•  propagate x and P by integration of ensemble states 

•  Apply linear analysis of Kalman filter 

First filter in oceanography: “Ensemble Kalman Filter”  
(Evensen, 1994), second: SEIK (Pham, 1998) 



Ensemble-based Kalman Filter 

Approximate probability distributions by ensembles	



observation	



time 0	

 time 1	

 time 2	



analysis	



ensemble 
forecast	



Questions: 

•  How to generate initial ensemble? 

•  How to resample after analysis?	



resampling	


initial 

sampling	

 Please note: 

In general, this is  
not an approximation 
of the Kalman filter!	
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„The“ Ensemble Kalman Filter - EnKF (Evensen, 1994) 

Initialization: Sample state x and covariance matrix P 
by Monte-Carlo ensemble of model states 

Forecast: Evolve each of the ensemble members with 
the full non-linear stochastic model 

Analysis: Apply EKF update step to each ensemble 
member with observation from an observation 

ensemble. Covariance matrix approx. by ensemble 
statistics, state estimate by ensemble mean. 
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  Approximate state covariance matrix by low-rank matrix 

  Keep matrix in decomposed form (XXT, VUVT) 

Error Subspace Algorithms 

Mathematical motivation: 
•  state error covariance matrix represents  
  error space at location of state estimate 

•  directions of different uncertainty 

•  consider only directions with largest  
  errors (error subspace) 
⇒  degrees of freedom for state correction 
in analysis: rank(P) 

 = span(v1,v2,…) 

x 

P = VUVT 

v2 v1 

Error space: 
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Sampling Example 
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More ensemble-based/error-subspace Kalman filters 

  A little “zoo” (not complete): 

EAKF ETKF 

EnKF(94/98) 

SEIK 

EnSQRTKF 

SEEK RRSQRT ROEK 

MLEF 

(Properties and differences are hardly understood)  
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EnKF(2003) 

EnKF(2004) 

SPKF ESSE 



Computational Aspects 

  Ensemble integration can be easily parallelized 

  Filter algorithms can be implemented independently  
    from model 

  Observations need information about the fields and the  
    location of data 

•  Motivation for PDAF (Parallel Data Assimilation Framework) 
  Software framework (Fortran) to simplify implementation of  
    data assimilation systems based on existing models 

  Provide parallelization support for ensemble forecasts 

  Provide parallelized and optimized filter algorithms 

  Open source: http://pdaf.awi.de 
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The SEIK filter 
 



The SEIK* filter (Pham, 1998) 

  Use factorization of covariance matrix P = VUVT 

    (singular value decomposition) 

  Approximate P by truncation to leading singular values 
  (low rank r « state dimension n) 

  Forecast: Use ensemble of minimum size N = r+1  

  Analysis: 
•  Regular KF update of state estimate x  

•  Update P by updating U 

  Re-initialization: Transform ensemble states to  
   represent new x and P 

*Singular “Evolutive” Interpolated Kalman 
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The SEIK filter (Pham, 1998) - differences from EnKF 

Initialization: Approximate covariance matrix by low-
rank matrix in the form P=VUVT. Generate ensemble 
of minimum size exactly representing error statistics. 

Forecast: Evolve each of the ensemble members with 
the full non-linear stochastic model. 

Analysis: Apply EKF update step to ensemble mean 
and the „eigenvalue matrix“ U. Covariance matrix 

approx. by ensemble statistics. 

Re-Initialization: Transform state ensemble to exactly 
represent updated error statistics.  
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Overall: A more efficient ensemble-based Kalman filter	





The SEIK filter - Properties 

  Computational complexity 
•  linear in dimension of state vector 
•  approx. linear in dimension of observation vector 
•  cubic with ensemble size 

  Low complexity due to explicit consideration of  
   error subspace: 

  Degrees of freedom given by ensemble size -1 

  Analysis increment: combination of ensemble members  
    with weight computed in error subspace 

  Simple application to non-linear models due to  
   ensemble forecasts (e.g. no linearized or adjoint models) 
   but not “optimal” 

  Equivalent of ETKF under particular conditions 
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Issues of ensemble-based/error-subspace KFs 

  No filter works without tuning 

  forgetting factor/covariance inflation 

  localization 

  Other issues 

  Optimal initialization unknown (is it important?) 

  ensemble integration still costly 

  Simulating model error 

  Nonlinearity 

  Non-Gaussian fields or observations 

  Bias (model and observations) 

  … 
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Example: 
 

Assimilation of pseudo sea surface height  
observations in the North Atlantic 
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FEOM – Mesh for North Atlantic 

finite-element discretization 

surface nodes: 16000  
3D nodes: 220000 
z-levels: 23 
eddy-permitting 



Configuration of twin experiments 

  Generate true state trajectory for 12/1992 - 3/1993  

  Assimilate synthetic observations of sea surface height 
   (generated by adding uncorrelated Gaussian  
   noise with std. deviation 5cm to true state) 

  Covariance matrix estimated from variability of 9-year       
   model trajectory (1991-1999) initialized from climatology 

  Initial state estimate from perpetual 1990 model spin-up 

  Monthly analysis updates 
  (at initial time and after each month of model integration) 

  No model error; forgetting factor 0.8 for both filters 
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•  Not aimed at oceanographic  
  relevance!	



Modeled Sea Surface Height (Dec. 1992) 

-  large-scale deviations of small amplitude  

-  small-scale deviations up to 40 cm 



 Improvement of  Sea Surface Height (Dec. 1992) 

•  Improvement: red - deterioration: blue 

⇒  For N=8 rather coarse-scale corrections 

⇒  Increased ensemble size adds finer scales (systematically)  

N=8	

 N=32	
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Localization - LSEIK 



Global SEIK filter - filtering behavior 

•  SEIK performs global optimization 

•  Degrees of freedom is small (ensemble size - 1) 

Implications: 

•  Global averaging in analysis can lead to local  
  increase in estimation error 

•  Small-scale errors can be corrected, but error  
  reduction is small 

•  True errors are underestimated  
  (Due to inconsistency between true  
   and estimated errors)  
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Local SEIK filter 

•  Analysis: 
•  Update small regions  
   (e.g. single water columns) 

•   Consider only observations  
  within cut-off distance 

  neglects long-range  
    correlations 
 

•  Re-Initialization: 
•  Transform local ensemble 

•  Use same transformation matrix  
  in each local domain 

Nerger, L., S. Danilov, W. Hiller, and J. Schröter. Ocean Dynamics 56 (2006) 634 



Local SEIK filter II 

Localizing weight 

  reduce weight for remote  
    observations by increasing  
    variance estimates 

  use e.g. exponential decrease  
    or polynomial representing  
    correlation function of compact  
    support 

  similar, sometimes equivalent,  
    to covariance localization used  
    in other ensemble-based KFs 
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 Global vs. Local SEIK, N=32 (Mar. 1993) 

-  Improvement regions of global SEIK also improved  
   by local SEIK  

-  localization provides improvements in regions not  
  improved by global SEIK 

-  regions with error increase diminished for local SEIK 

rrms = 83.6% rrms = 31.7% 
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Relative rms errors for SSH 

-  global filter: significant improvement for larger ensemble 

-  global filter with N=100: relative rms error 0.74 

-  localization strongly improves estimate 
    - larger error-reduction at each analysis update 
    - but: stronger error increase during forecast 

-  very small radius results in over-fitting to noise  



Effect of assimilation on non-observed fields 

-  velocity field updated via cross-correlations 

-  localization improves estimates  

-  minimum errors for 100km (N=8), 200km (N=32) 

-  special behavor for total localization (l=0km): overfitting 
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Local SEIK filter - findings 

•  LSEIK performs series of local optimizations 

•  Degrees of freedom given by ensemble size - 1 
  for each analysis domain 

Implications: 
•  Localization can strongly improve filtering  
  performance over the global SEIK  

•  Localization can lead to faster error-increase  
  during forecast (imbalance problem) 

⇒  possible trade off between improved analysis  
    update and forecast error-increase 

•  LSEIK is more costly than global SEIK, but  
  computationally still efficient 
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Bias Estimation 



Bias Estimation 

  un-biased system:  
   fluctuation around true state  

  biased system:  
  systematic over- and underestimation 
  (common situation with real data) 

  2-stage bias online bias correction 
1. Estimate bias 
 (using fraction of covariance matrix used in 2.) 

2. Estimate de-biased state 

  Forecast 

1. forecast ensemble of biased states 

2. no propagation of bias vector 
 Nerger, L., and W.W. Gregg. J. Marine Systems, 73 (2008) 87-102 



Satellite Ocean Color (Chlorophyll) Observations 

Natural Color 3/16/2004 Chlorophyll Concentrations 

Source: NASA “Visible Earth”, Image courtesy the SeaWiFS Project, 
NASA/GSFC, and Orbimage 
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•  Daily gridded SeaWiFS chlorophyll data 

  gaps: satellite track, clouds, polar nights 

  ~13,000-18,000 data points daily  
    (of 41,000 wet grid points) 
  irregular data availability 

Assimilated Observations 
mg/m3 

Nerger, L., and W.W. Gregg. J. Marine Systems 68 (2007) 237 



Estimated Chlorophyll - April 15, 2004 

•  strongly improved surface  
  Chlorophyll estimate 

•  intended deviations (Arabian  
  Sea, Congo, Amazon) 

•  other deviations in high- 
  Chlorophyll regions 

mg/m3 mg/m3 

mg/m3 



Comparison with independent data  

•  In situ data from SeaBASS/NODC over 1998-2004 
   (shown basins include about 87% of data) 

•  Independent from SeaWiFS data  
  (only used for verification of algorithms) 

•  Compare daily co-located data points 

⇒  Assimilation in most regions below SeaWiFS error 

⇒  Bias correction improves almost all basins 
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Summary 

•  Data assimilation combines information from models and  
  observations to generate improve estimates of the system. 

•  Ensemble-based Kalman filters are efficient assimilation  
  methods. To some extent they can handle nonlinearity. 

•  Current assimilation algorithms require tuning 

•  There are various open issues regarding optimal  
  application of assimilation algorithms. 
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Thank you! 
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