

Transcriptomic responses of *Emiliania huxleyi* to Ocean Acidification

Sebastian D. Rokitta, Uwe John and Björn Rost

Ocean Acidifcation

Coccolithophores

Biological carbon pumps

OA-responses in *E. huxleyi*

Study	Strain	Gı	rowth		P _{PIC}	P _{PO}	c	PIC	:POC
Feng et al. 2008	CCMP371°								
lglesias-Rodriguez et al. 2008	NZEH _R]				
Hoppe et al. 2011	RCC1256 _A C		_						$\overline{}$
	NZEH _R								\square
Langer et al. 2009	RCC1212 _B o								
	RCC1216 _R 0								
	RCC1238 _A C						$\overline{}$		
	RCC1256 _A C						$\overline{\ }$		
Lefebvre et al. 2012	CCMP371 _A C						_	_	
Richier et al. 2011	RCC1216 _R o								
Riebesell et al. 2000	PLYB92/11 _A °								$\overline{}$
Rokitta and Rost 2012 (Low light)	RCC1216 _R º								
Rokitta and Rost 2012 (High light)	RCC1216 _R °								
Sciandra et al. 2003	TW1						<u> </u>		
Shi et al. 2009	NZEH _R			N]				
	Sum	12	3 -	3 2	10 -	6 6 1	2	6 -	9 -

Energization?

The matrix approach

Light vs. pCO ₂	380 µatm	1000 µatm		
50 μmol photons m ⁻² s ⁻¹				
300 µmol photons m ⁻² s ⁻¹				

- Acclimation data (μ, POC, PIC)
- Physiology (C_i acquisition, light reactions)
- Transcriptomics (gene expression)

Phenomenology

- PIC production drops (especially under low light!)
- POC production is boosted (especially under low light!)
- TPC production is insensitive

Rokitta & Rost (2012)

Physiology

- More POC despite less pigmentation and O₂ evolution
 - → Improved energy efficiency under OA

Gene expression?

Transcriptomics

OA responsive genes

Low-light acclimation

<u>1172</u> ↑ 861 ↓

High-light acclimation

1082↑ 814↓

Transcriptomics

Transcriptomics

Carbon metabolism

Light physiology

Signalling

Ion fluxes

Pentose phosphate pathway ↑ Glycolysis ↓	Regulation of C fluxes ↑	Organellar shuttling ↑
Fatty Acid & Glucan anabolism↑		
Energy dissipation ↑	Energy dissipation ↑	
Lipid and IP ₃ signaling ↑		
Membrane potentials ↑		

OA re-wires carbon fluxes

Future 1000 µatm

OA affects the redox hub

Conclusions

 OA causes a shunting of carbon from calcification towards biomass production

 OA-Responses are modulated by energy availability and typically attenuated by high light

 OA affects cellular signaling and the redox hub and thereby re-wires carbon flux networks