ArcticBeach v1.0: A physics-based parameterization of pan-Arctic coastline erosion


Contact
hugues.lantuit [ at ] awi.de

Abstract

In the Arctic, air temperatures are increasing and sea ice is declining, resulting in larger waves and a longer open water season, all of which intensify the thaw and erosion of ice-rich coasts. Climate change has been shown to increase the rate of Arctic coastal erosion, causing problems for Arctic cultural heritage, existing industrial, military, and civil infrastructure, as well as changes in nearshore biogeochemistry. Numerical models that reproduce historical and project future Arctic erosion rates are necessary to understand how further climate change will affect these problems, and no such model yet exists to simulate the physics of erosion on a pan-Arctic scale. We have coupled a bathystrophic storm surge model to a simplified physical erosion model of a permafrost coastline. This Arctic erosion model, called ArcticBeach v1.0, is a first step toward a physical parameterization of Arctic shoreline erosion for larger-scale models. It is forced by wind speed and direction, wave period and height, sea surface temperature, all of which are masked during times of sea ice cover near the coastline. Model tuning requires observed historical retreat rates (at least one value), as well as rough nearshore bathymetry. These parameters are already available on a pan-Arctic scale. The model is validated at three study sites at 1) Drew Point (DP), Alaska, 2) Mamontovy Khayata (MK), Siberia, and 3) Veslebogen Cliffs, Svalbard. Simulated cumulative retreat rates for DP and MK respectively (169 and 170 m) over the time periods studied at each site (2007–2016, and 1995–2018) are found to the same order of magnitude as observed cumulative retreat (172 and 120 m). The rocky Veslebogen cliffs have small observed cumulative retreat rates (0.05 m over 2014–2016), and our model was also able to reproduce this same order of magnitude of retreat (0.08 m). Given the large differences in geomorphology between the study sites, this study provides a proof-of-concept that ArcticBeach v1.0 can be applied on very different permafrost coastlines. ArcticBeach v1.0 provides a promising starting point to project retreat of Arctic shorelines, or to evaluate historical retreat in places that have had few observations.



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Publication Status
Published online
Eprint ID
58258
DOI 10.3389/feart.2022.962208

Cite as
Rolph, R. , Overduin, P. P. , Ravens, T. , Lantuit, H. and Langer, M. (2022): ArcticBeach v1.0: A physics-based parameterization of pan-Arctic coastline erosion , Frontiers in Earth Science, 10 , p. 962208 . doi: 10.3389/feart.2022.962208


Download
[thumbnail of feart-10-962208.pdf]
Preview
PDF
feart-10-962208.pdf

Download (3MB) | Preview

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email


Citation

Research Platforms


Actions
Edit Item Edit Item