Publication: Probabilistic MIMO symbol detection with expectation consistency approximate inference
Loading...
Advisors
Tutors
Editor
Publication date
Defense date
Journal Title
Journal ISSN
Volume Title
Publisher
IEEE
Serie/Núm
To cite this item, use the following identifier: https://hdl.handle.net/10016/28897
Abstract
In this paper, we explore low-complexity probabilistic algorithms for soft symbol detection in high-dimensional multiple-input multiple-output (MIMO) systems. We present a novel algorithm based on the expectation consistency (EC) framework, which describes the approximate inference problem as an optimization over a nonconvex function. EC generalizes algorithms such as belief propagation and expectation propagation. For the MIMO symbol detection problem, we discuss feasible methods to find stationary points of the EC function and explore their tradeoffs between accuracy and speed of convergence. The accuracy is studied, first in terms of input-output mutual information and show that the proposed EC MIMO detector greatly improves state-of-the-art methods, with a complexity order cubic in the number of transmitting antennas. Second, these gains are corroborated by combining the probabilistic output of the EC detector with a low-density parity-check channel code.
Note
ODS
Research project
Gobierno de España. TEC2014-61776-EXP/MIMOTEX, Gobierno de España. RTC-2015-4213-7/CIES, Gobierno de España. RTC-2014-59255-C3-3R/ELISA, Gobierno de España. TEC2016-78434-C3-3-R/FLUID, Gobierno de España. TEC2017-86921-C2-2-R/CAIMAN, Gobierno de España. IJCI-2014-19150, Gobierno de España. IJCI-2014-19150/Juan de la Cierva, Comunidad de Madrid. S2013/ICE-2845/CASI-CAM-CM
Bibliographic citation
IEEE Transactions on Vehicular Technology. (2018). 67(4), pp. 3481-3494.