Publication:
On the interplay between material flaws and dynamic necking

Loading...
Thumbnail Image

Advisors

Tutors

Editor

Publication date

Defense date

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

publication.page.ispartofseries

Creative Commons license

Impact
Google Scholar
Export

Research Projects

Research Projects

Organizational Units

Journal Issue

To cite this item, use the following identifier: https://hdl.handle.net/10016/29278

Abstract

In this paper we investigate the interplay between material defects and flow localization in elastoplastic bars subjected to dynamic tension. For that task, we have developed a 10 finite difference scheme within a large deformation framework in which the material is modelled using rate-dependent J(2) plasticity. A perturbation of the initial yield stress is introduced in each node of the finite difference mesh to model localized material flaws. Numerical computations are carried out within a wide spectrum of strain rates ranging from 500 s(-1) to 2500 s(-1). On the one hand, our calculations reveal the effect of the material defects in the necking process. On the other hand, our results show that the necking inception, instead of being a random type process, is the deterministic result of the interplay between the mechanical behaviour of the material and the boundary conditions. This conclusion agrees with the experimental evidence reported by Rittel et al. [1] and Rotbaum et al. [2].

Note

Funder

Research project

Bibliographic citation

Mechanics Research Communications, vol. 72, March 2016, pp. 53-58.

Table of contents

Has version

Is version of

Related dataset

Related Publication

Is part of