Publication:
Forecast-informed power load profiling: A novel approach

Loading...
Thumbnail Image

Advisors

Tutors

Editor

Publication date

Defense date

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

publication.page.ispartofseries

Creative Commons license

Impact
Google Scholar
Export

Research Projects

Research Projects

Organizational Units

Journal Issue

To cite this item, use the following identifier: https://hdl.handle.net/10016/33849

Abstract

Power load forecasting plays a critical role in the context of electric supply optimization. The concept ofload characterization and profiling has been used in the past as a valuable approach to improve forecasting performance as well as problem interpretability. This paper proposes a novel, fully fledged theoretical framework for a joint probabilistic clustering andregression model, which is different from existing models that treat both processes independently. The clustering process is enhanced by simultaneously using the input data and the prediction targets during training. The model is thus capable of obtaining better clusters than other methods, leading to more informativedata profiles, while maintaining or improving predictive performance. Experiments have been conducted using aggregated load data from two U.S.A. regional transmission organizations, collected over 8 years. These experiments confirm that the proposed model achieves the goalsset for interpretability and forecasting performance.

Note

Bibliographic citation

García Hinde, S., Gómez Verdejo, V. & Martínez-Ramón, M. (2020). Forecast-informed power load profiling: A novel approach. Engineering Applications of Artificial Intelligence, 96, 103948.

Table of contents

Has version

Is version of

Related dataset

Related Publication

Is part of

Collections