Publication:
Resonator-based detection in nanorods

Loading...
Thumbnail Image

Advisors

Tutors

Editor

Publication date

Defense date

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

publication.page.ispartofseries

Creative Commons license

Impact
Google Scholar
Export

Research Projects

Research Projects

Organizational Units

Journal Issue

To cite this item, use the following identifier: https://hdl.handle.net/10016/35594

Abstract

In this paper the axial vibrational behavior of nanorods with an attached point-mass is studied, using the modified strain energy theory. The natural frequencies of the nanorod with the concentrated mass are obtained for different boundary conditions. The effects of the concentrated mass intensity, mass location, as well as the value of scale parameters have been analysed. For the case of small intensity of the concentrated mass, the natural frequencies of the nanorod can be estimated using a first order perturbative solution. These approximate results are compared with those corresponding to the exact solution. For this case, from the properties of the eigenvalue perturbative theory, the identification of single point mass in uniform nanorods (mass intensity and position) is addressed. The results obtained encourage the use of axial vibrations of nanorods as a very precise sensing technique.

Note

Research project

Bibliographic citation

Mechanical Systems and Signal Processing, (2017), v. 93, pp.: 645-660.

Table of contents

Has version

Is version of

Related dataset

Related Publication

Is part of

Collections