Publication:
Design of a tri-band wearable antenna for millimeter-wave 5G applications

Loading...
Thumbnail Image

Advisors

Tutors

Editor

Publication date

Defense date

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

publication.page.ispartofseries

Creative Commons license

Impact
Google Scholar
Export

Research Projects

Research Projects

Organizational Units

Journal Issue

To cite this item, use the following identifier: https://hdl.handle.net/10016/36747

Abstract

A printed monopole antenna for millimeter-wave applications in the 5G frequency region is described in this research. As a result, the proposed antenna resonates in three frequency bands that are designated for 5G communication systems, including 28 GHz, 38 GHz, and 60 GHz (V band). For the sake of compactness, the coplanar waveguide (CPW) method is used. The overall size of the proposed tri-band antenna is 4 mm × 3 mm × 0.25 mm. Using a watch strap and human tissue, such as skin, the proposed antenna gives steady results. At 28 GHz, 38 GHz, and 60 GHz, the antenna's gain is found to be 5.29 dB, 7.47 dB, and 9 dB, respectively. The overall simulated radiation efficiency is found to be 85% over the watch strap. Wearable devices are a great fit for the proposed tri-band antenna. The antenna prototype was built and tested in order to verify its performance. It can be observed that the simulated and measured results are in close contact. According to our comparative research, the proposed antenna is a good choice for smart 5G devices because of its small size and simple structure, as well as its high gain and radiation efficiency.

Note

This article belongs to the Special Issue RF and IoT Sensors: Design, Optimization and Applications.

Funder

Research project

Bibliographic citation

Ahmad, S., et al. (2022). Design of a Tri-Band Wearable Antenna for Millimeter-Wave 5G Applications. Sensors, 22(20), 8012.

Table of contents

Has version

Is version of

Related dataset

Related Publication

Is part of

Collections