Publication:
Asymptotics for Sobolev orthogonal polynomials for exponential weights

Loading...
Thumbnail Image

Advisors

Tutors

Editor

Publication date

Defense date

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

publication.page.ispartofseries

Impact
Google Scholar
Export

Research Projects

Research Projects

Organizational Units

Journal Issue

To cite this item, use the following identifier: https://hdl.handle.net/10016/5950

Abstract

^aLet $\lambda >0,\alpha >1$, and let $W( x) =\exp ( -\vert x\vert ^{\alpha }) $, $x\in \mbox{\smallbf R}$. Let $\psi \in L_{\infty }(\mbox{\smallbf R}) $ be positive on a set of positive measure. For $n\geq 1$, one may form Sobolev orthonormal polynomials $( q_{n}) $, associated with the Sobolev inner product \[ ( f,g) =\int_{\mbox{\scriptsize\bf R}}fg( \psi W) ^{2}+\lambda \int_{\mbox{\scriptsize\bf R}}f^{\prime }g^{\prime }W^{2}. \] We establish strong asymptotics for the $( q_{n}) $ in terms of the ordinary orthonormal polynomials $( p_{n}) $ for the weight $W^{2}$, on and off the real line. More generally, we establish a close asymptotic relationship between $( p_{n}) $ and $( q_{n}) $ for exponential weights $W=\exp ( -Q) $ on a real interval $I$, under mild conditions on $Q$. The method is new and will apply to many situations beyond that treated in this paper.

Note

38 pages, no figures.-- MSC2000 codes: 42C05, 33C25.
MR#: MR2164139 (2006c:41040)
Zbl#: Zbl 1105.42016

Funder

Research project

Bibliographic citation

Constructive Approximation, 2005, vol. 22, n. 3, p. 309-346

Table of contents

Has version

Is version of

Related dataset

Related Publication

Is part of

Collections