Publication: Asymptotics for Sobolev orthogonal polynomials for exponential weights
Loading...
Advisors
Tutors
Editor
Publication date
Defense date
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
publication.page.ispartofseries
To cite this item, use the following identifier: https://hdl.handle.net/10016/5950
Abstract
^aLet $\lambda >0,\alpha >1$, and let $W( x) =\exp ( -\vert x\vert ^{\alpha }) $, $x\in \mbox{\smallbf R}$. Let $\psi \in L_{\infty }(\mbox{\smallbf R}) $ be positive on a set of positive measure. For $n\geq 1$, one may form Sobolev orthonormal polynomials $( q_{n}) $, associated with the Sobolev inner product \[ ( f,g) =\int_{\mbox{\scriptsize\bf R}}fg( \psi W) ^{2}+\lambda \int_{\mbox{\scriptsize\bf R}}f^{\prime }g^{\prime }W^{2}. \] We establish strong asymptotics for the $( q_{n}) $ in terms of the ordinary orthonormal polynomials $( p_{n}) $ for the weight $W^{2}$, on and off the real line. More generally, we establish a close asymptotic relationship between $( p_{n}) $ and $( q_{n}) $ for exponential weights $W=\exp ( -Q) $ on a real interval $I$, under mild conditions on $Q$. The method is new and will apply to many situations beyond that treated in this paper.
Note
38 pages, no figures.-- MSC2000 codes: 42C05, 33C25.
MR#: MR2164139 (2006c:41040)
Zbl#: Zbl 1105.42016
MR#: MR2164139 (2006c:41040)
Zbl#: Zbl 1105.42016
Keywords
Funder
Research project
Bibliographic citation
Constructive Approximation, 2005, vol. 22, n. 3, p. 309-346