Development of a techno-economic analysis tool for anaerobic digestion in smallholder farming systems in the context of the water-energy-food nexus

Date
2022-04
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH SUMMARY: Anaerobic digestion (AD) technology holds numerous potential benefits for the agricultural sector; however, challenges persist in terms of implementation and sustainability in the majority of the low- and middle-income countries. The main barriers to AD implementation in Sub-Saharan African countries include financial and technical factors. Implementation costs appear to remain financially prohibitive as many rural African households and smallholder farmers cannot afford the high initial investment costs of installing and maintaining AD plants. The technology also suffers shortcomings such as incomplete bioconversion, low methane yields, process instability and economic non-viability. A systematic evaluation tool that integrates both technical and economic performance will help smallholders and supporting governments identify an appropriate solution to a specific context. The first objective of this research project was to quantify the availability and potential of agricultural residue biomass feedstock for biogas and biofertilizer production in South African and Madagascan smallholder farming systems. The biomass estimations were done using a combination of smallholder surveys, literature models, and publicly available data. Annually, South African emerging smallholder farming households generate 12 and 121 tonnes of crop residues and animal manure, respectively. Agricultural households in Madagascar generate 7.3 and 19.4 tonnes of crop residues and animal manure on a fresh weight basis annually, respectively. The second objective was to assess the potential small-scale AD technologies to be used in smallholder farming systems using multi-criteria decision analysis (MCDA) methods. The Simple Multi-Attribute Rating Technique and the Analytical Hierarchy Process approaches of MCDA were used as a decision support tool, and the preferred AD technology (DIY Biobag digester design model) was selected from a list of potential small-scale AD technologies. Following completion of the first two objectives, objective three was included to establish the best co-digestion strategy for the potential agricultural substrates under different operating conditions using a combination of the Anaerobic Digestion Model No. 1 (ADM1) and a Monte Carlo approach for probabilistic simulation with the inclusion of parametric uncertainty. Results indicate that co-digestion increases mean methane content by up to 8% compared to mono-digestion of individual substrates. The resulting methane production probability distributions were fitted using a Gaussian Mixture Model, which can be used to account for uncertainty in techno-economic feasibility assessments. Despite all its potential advantages for farmers, AD technology implementation involves capital and operational costs to purchase, install and operate. Therefore, the fourth objective was to develop and demonstrate an analysis tool for techno-economic feasibility assessment, explicitly centred in the water-energy-food nexus context to evaluate the feasibility of anaerobic digestion. To this end, the co-production of biogas and biofertilizer resulted in the most sustainable solution in both financial and economic analysis, with a mean financial and economic rate of return of 14% and 67% and benefit-cost ratio of 1.40 and 5.97 respectively under different scenarios. Further work would be required to focus on the implementation and application of this methodology in other AD projects where a detailed analysis on the site for a particular application is required in the nexus context as resource availabilities of a specific village can vary. This could be done to maximize economic and/or environmental sustainability and contribute to rural economic development.
AFRIKAANS SUMMARY: Anaerobiese vertering (AV)-tegnologie hou ’n aantal potensiële voordele vir die landbousektor in, maar uitdagings duur voort in terme van implementasie en volhoubaarheid in die meeste lae- en middelinkomste lande. Die hoofhindernis vir AV-implementasie in Sub-Sahara Afrikalande sluit finansiële en tegniese faktore in. Implementasiekostes blyk om finansieel prohibitief te wees omdat baie landelike huishoudings in Afrika en kleinboere nie die hoë aanvangskostes van installering en handhawing van AV-aanlegte kan bekostig nie. Die tegnologie ly ook aan tekortkominge soos onvoltooide bio-omsetting, lae metaanopbrengste, prosesonstabiliteit en is nie ekonomies lewensvatbaar nie. ’n Sistematiese evaluasie-instrument wat met beide tegniese en ekonomiese werkverrigting integreer, sal kleinboere en ondersteunende regerings help om ’n gepaste oplossing vir ’n spesifieke konteks te identifiseer. Die eerste doelwit van hierdie navorsingsprojek was om die beskikbaarheid en potensiaal van landbouresidu biomassavoer vir biogas en biokunsmisproduksie in Suid-Afrikaanse en Madagassiese kleinboersisteme te kwantifiseer. Die biomassaberaminge is gedoen deur ’n kombinasie van kleinboeropnames, literatuurmodelle, en data beskikbaar vir die publiek. Jaarliks genereer opkomende Suid-Afrikaanse kleinboerhuishoudings 12 en 121 ton gewasresidu’s en diermis, onderskeidelik. Landbouhuishoudings in Madagaskar genereer jaarliks 7.3 en 19.4 ton gewasresidu’s en diermis op ’n vars-gewigbasis, onderskeidelik. Die tweede doelwit was om die potensiële kleinskaal AV-tegnologieë te assesseer wat gebruik sal word in kleinboersisteme deur multi-kriteria besluit analise (MCDA)-metodes te gebruik. Die Eenvoudige Multi-Eienskap Beoordelingtegniek en die Analitiese Hiërargie Proses-benaderinge van MCDA is gebruik as ’n besluit-ondersteuning-instrument, en die gekose AV-tegnologie (DIY Biobag verteerderontwerpmodel) is gekies uit ’n lys van potensiële kleinskaal AV-tegnologieë. Na die voltooiing van die eerste twee doelwitte, is doelwit drie ingesluit om die beste ko-verteerderstrategie vir die potensiële landbousubstrate onder verskillende bedryfskondisies te bepaal, deur ’n kombinasie van die Anaerobiese Verteerder Model No. 1 (ADM1) en ’n Monte Carlo-benadering vir waarskynlikheidsimulasie met die insluiting van parametriese onsekerheid, te gebruik. Resultate dui aan dat ko-vertering gemiddelde metaaninhoud met tot 8% verhoog in vergelyking met monovertering van individuele substrate. Die resulterende metaanproduksiewaarskynlikhiedsdistribusie is gepas deur ’n Gausiese Mengselmodel te gebruik, wat gebruik kan word om vir onsekerhede in tegno-ekonomiese uitvoerbaarheidassesserings te reken. Ten spyte van sy potensiële voordele vir boere, behels AV-tegnologie-implementering kapitaal en bedryfskostes om aan te koop, te installeer en bedryf. Daarom was die vierde doelwit om ’n analise-instrument te ontwikkel en demonstreer vir tegno-ekonomiese uitvoerbaarheidassessering, eksplisiet gesentreer in die water-energie-voedel-neksuskonteks om die uitvoerbaarheid van anaerobiese vertering te evalueer. Tot hierdie doel het die ko-produksie van biogas en biokunsmis geresulteer in die mees volhoubare oplossing in beide finansiële en ekonomiese analise, met ’n gemiddelde finansiële en ekonomiese opbrengskoers van 14% en 67% en voordeel-kostes-verhouding van 1.40 en 5.97 onderskeidelik onder verskillende scenario’s. Verdere werk word vereis om te fokus op die implementasie en toepassing van hierdie metodologie in ander AV-projekte waar ’n gedetaileerde analise van die ligging vir ’n spesifieke toepassing benodig word in die neksuskonteks omdat hulpbronbeskikbaarheid van ’n spesifieke dorp kan verskil. Dit kan gedoen word om ekonomiese en/of omgewingsvolhoubaarheid te maksimeer en by te dra tot landelike ekonomiese ontwikkeling.
Description
Thesis (PhD)--Stellenbosch University, 2022.
Keywords
Sewage -- Purification -- Anaerobic treatment, Multi-criteria decision analysis, Biomass, Smallholder farm, Techno-economic analysis, Water-Energy-Food nexus, UCTD
Citation