University of Illinois at Chicago
Browse
eva12015.pdf (1.09 MB)

Riparian ecosystems in human cancers

Download (1.09 MB)
journal contribution
posted on 2013-12-13, 00:00 authored by Khalid O. Alfarouk, Muntaser E. Ibrahim, Robert A. Gatenby, Joel S. Brown
Intratumoral evolution produces extensive genetic heterogeneity in clinical cancers. This is generally attributed to an increased mutation rate that continually produces new genetically defined clonal lineages. Equally important are the interactions between the heritable traits of cancer cells and their microenvironment that produces natural selection favoring some clonal ‘species’ over others. That is, while mutations produce the heritable variation, environmental selection and cellular adaptation govern the strategies (and genotypes) that can proliferate within the tumor ecosystem. Here we ask: What are the dominant evolutionary forces in the cancer ecosystem? We propose that the tumor vascular network is a common and primary cause of intratumoral heterogeneity. Specifically, variations in blood flow result in variability in substrate, such as oxygen, and metabolites, such as acid, that serve as critical, but predictable, environmental selection forces. We examine the evolutionary and ecological consequences of variable blood flow by drawing an analogy to riparian habitats within desert landscapes. We propose that the phenotypic properties of cancer cells will exhibit predictable spatial variation within tumor phenotypes as a result of proximity to blood flow. Just as rivers in the desert create an abrupt shift from the lush, mesic riparian vegetation along the banks to sparser, xeric and dry-adapted plant species in the adjacent drylands, we expect blood vessels within tumors to promote similarly distinct communities of cancer cells that change abruptly with distance from the blood vessel. We propose vascular density and blood flow within a tumor as a primary evolutionary force governing variations in the phenotypic properties of cancer cells thus providing a unifying ecological framework for understanding intratumoral heterogeneity.

Funding

This work is supported by grant 1U54CA143970-01.

History

Publisher Statement

This is a copy of an article published in the Evolutionary Applications © 2013 Wiley Open Access. DOI: 10.1111/eva.12015

Publisher

Wiley Open Access

Language

  • en_US

issn

1752-4571

Issue date

2013-01-01

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC