Open Access Te Herenga Waka-Victoria University of Wellington
Browse
thesis_access.pdf (1.09 MB)

Mitigating Ruminant Methane: Exploring the Commercialisation of Technologies for Reducing Livestock Methane Emissions

Download (1.09 MB)
Version 2 2023-09-22, 02:14
Version 1 2021-12-07, 13:37
thesis
posted on 2023-09-22, 02:14 authored by Easter, Mitchell

Climate change is a global issue requiring unified action. Methane gas is a major component of greenhouse gas emissions contributing to global warming. This project is exploring the commercial potential of Pastoral Greenhouse Gas Research Consortium (PGgRc) developed technologies designed to mitigate the largest source of agricultural methane emissions. These technologies are methane vaccines and inhibitors targeting emissions from enteric fermentation in ruminant livestock. The two technologies share functional aspects but require different administration and upkeep.  As novel technologies designed for a developing market the commercial potential of PGgRc’s methane vaccines and inhibitors is uncertain. To validate the potential methane mitigation products this project focuses on farmer adoption and interaction with the technologies. Interviews with farmers around New Zealand have been used to identify the strengths and weaknesses of methane vaccines and inhibitors from the perspective of the end user.  A thematic analysis of the transcribed data highlighted various concerns among the participating farmers and provides a map of areas needing further investigation when moving forward with developing the technologies. Of key importance was the value methane vaccines and inhibitors offered the participants. Currently, methane mitigation offers no financial benefits to participants and good feelings about acting against climate change are not substantial enough to mitigate purchase and administration costs.  There is potential that using PGgRc’s methane vaccines and inhibitors could improve livestock productivity, but it is yet to be verified based on current testing and development. Establishing that using the technologies leads to increased live weight gain or milk and wool production could provide profitability benefits that farmers would value. This hinges on any benefits providing substantial enough gains to the farmer to offset the purchase and administration costs.  If no productivity benefits are identified government regulations creating a methane cost or subsidising the technologies could be necessary for methane vaccines and inhibitors to have value within the agricultural sector. Alternatively, if consumer purchasing behaviour shifts in favour of low emissions products the agricultural sector will need to shift production methods to remain competitive in the new market environment.  PGgRc aims to employ a licensing business model using the methane vaccine and inhibitor IP they possess. Partnering with an experienced company would provide PGgRc with the market knowledge and manufacturing capabilities producing their technologies requires. As part of their development strategy they aim to develop their technology to a proof of concept stage before forming any production partnerships.  This project highlights the critical factors for successfully commercialising PGgRc’s technologies. It is designed to guide the continued development of the methane mitigation technologies and help shape PGgRc’s market approach.

History

Copyright Date

2019-01-01

Date of Award

2019-01-01

Publisher

Te Herenga Waka—Victoria University of Wellington

Rights License

CC BY-ND 4.0

Degree Discipline

Innovation and Commercialisation

Degree Grantor

Te Herenga Waka—Victoria University of Wellington

Degree Level

Masters

Degree Name

Master of Innovation and Commercialisation

ANZSRC Type Of Activity code

3 APPLIED RESEARCH

Victoria University of Wellington Item Type

Awarded Research Masters Thesis

Language

en_NZ

Victoria University of Wellington School

School of Chemical and Physical Sciences

Advisors

Kerr, Suzi