
Appendix: Statistical Models of Attrition 

 

An alternative to the nonparametric approach discussed in Chapter 7 is to posit a 

parametric model of the attrition process and the potential outcomes.  Parametric models make 

assumptions about the functions linking cause and effect and the distributions from which 

unobserved causes are drawn.  The most widely used parametric model, first proposed by 

Heckman (1979), involves two regression equations.  The first equation offers a model of the 

outcome: 

 

  
            .        (A7.1) 

 

This “outcome equation” may also be expressed in terms of potential outcomes using the same 

form as equation (4.7).  

 

The second equation offers a model of the process that determines whether the outcome 

is observed or missing.  This “selection equation” predicts each subject’s propensity to render 

observed outcomes: 

 

  
                 .       (A7.2) 

 

where    is a variable (or collection of variables) that predict attrition but are unrelated to   .
1
  

This exclusion restriction is similar to the assumption we encountered in Chapter 5, when we 

discussed an “instrumental variable” that predicted whether a subject received treatment but had 

no causal effect on outcomes.   The strongest case for excludability of    occurs when the 

intensity of effort to obtain outcome data is randomly allocated.  DiNardo and McCrary (2010), 

for example, discuss an experiment in which researchers randomly varied the amount of effort 

they devoted to obtaining outcomes. 

     

The two equations work together in the following way.  Let    = 1 if   
   ; otherwise    

= 0.  In other words, we observe outcomes for subjects whose propensity to be observed is above 

a certain threshold.   In the case of the voucher lottery example, we would observe students 

whose potential test scores were above a certain cutoff level.  Thus, 

 

              if    = 1, otherwise    is missing.    (A7.3) 

 

Because we observe outcomes for some observations and not others, a regression of    on    may 

generate biased estimates.  Equation (A7.4) shows that the bias in the estimated treatment effect 

stems from the relationship between    and   .  The expected value of    can be written as  

 

    |       ]              |                ].   (A7.4) 
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 Although this approach can produce estimates even when there is no excluded variable in the selection 

equation, it is rarely applied without an excluded variable because in the absence of an instrument the results are 

entirely driven by the specific distributional and modeling assumptions.  

 



If    and    are independent, there is no bias.  However, the omitted factors predicting attrition 

(  ) are typically correlated with omitted factors predicting outcomes (  ).   

 

In order to eliminate this bias, the researcher imposes assumptions that allow the third 

term in equation (A7.4) to be measured and included as a control variable in a regression.  The 

critical assumptions are that    and    are bivariate normal (each is normally distributed, but they 

are correlated), with standard deviations normalized to 1, and s.  It is important to appreciate how 

strong these assumptions are: the errors are not only assumed to be bivariate normal, they are 

also assumed to be homoskedastic.    

 

Under these assumptions, 
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,     (A7.5) 

 

where   is the normal pdf and   is the normal cdf, and  ̂  is the predicted probability of      

based on a probit estimation of the selection model.  In order to estimate the average treatment 

effect, one regresses    on    and a “correction term,” 
   ̂  

   ̂  
. Although in general, controlling for a 

covariate is an inadequate remedy for systematic attrition, under the assumptions of this model, 

adding the correction term to the regression model produces unbiased estimates of   . Another 

interesting property of this model is that regressing    on    alone yields unbiased estimates so 

long as    is independent of the correction term, a condition that is satisfied when the expected 

rate of attrition is the same for the treatment and control group. 

 

The selection model above rests on strong assumptions. Homoskedasticity, for example, 

presupposes that the variance of    is the same for all subjects, an assumption that does not 

follow from random allocation of subjects to treatment.  A different set of assumptions leads to a 

different estimation approach, known as Tobit.  Recall from equation (7.10) that applying the 

difference-in-means estimator to observed outcomes is, in expectation, equivalent to estimating 

the treatment effect among those who would be observed if assigned to the control group, plus a 

term that represents the selection effect.  Suppose we assume that the treatment effect is positive 

for all subjects.  Under this assumption, the subjects who would be observed if assigned to the 

control group will also be observed if assigned to treatment, since         if        .  As for 

the term that represents the selection effect, if the treatment effect is positive,        |       
        |         ] will be positive.  The intuition here is that the set of subjects for whom 

        is a more select set with higher potential outcomes than the set of subjects for whom 

       .  When        ,        .  When        ,        , but this is an easier hurdle 

because       is greater than      . 

 

Based on the assumption of positive treatment effects, Angrist et al. (2006) propose a 

parametric model of the effects of vouchers on test scores: 

 

  
            ,        (A7.6) 

 

where      
  if   

   ; otherwise    is missing.  This model is similar to the selection model 

above except that now missingness is a function of latent outcomes, not covariates.  If the 



outcomes were not truncated, the parameters of equation (A7.6) could be estimated using 

regression.  Given truncation, regression is biased.  Angrist et al. assume that the    are drawn 

independently from a normal distribution and estimate this regression model for different values 

of the cutoff parameter,  . They term this approach artificial censoring, because for a small 

fraction of subjects, contrary to the model, observed values fall below the proposed censoring 

value  , in which case the researchers treat these subjects as though they were missing. 

 

 Table A7.1 shows the results of tobit estimation based on the assumption that outcomes 

are missing whenever the score the subject would have received is less than 32, which is the 1
st
 

percentile score among the observed scores.  In contrast to the missing at random assumption, 

this censoring value suggests that the missing subjects would have done very poorly on the 

exam. The details of estimating these models are as follows: To prepare the data for the 

command used to estimate the tobit moded, all outcome values less than or equal to 32 are set to 

32. The Stata command option ll in the command line below indicates that the smallest value in 

the data will be used as the left censoring value.  

 

The tobit estimates imply that attrition severely distorts simple regression results.  If the 

model is correct, the estimated effect of vouchers on reading scores is 3.3, rather than 0.7.  

Repeating this exercise for a range of censoring values indicates the sensitivity of the estimates 

to different assumptions about truncation.  

 

 
. tobit readcens1 vouch0 age sex_name, ll 

 

Tobit regression                                  Number of obs   =       3541 

                                                  LR chi2(3)      =     888.95 

                                                  Prob > chi2     =     0.0000 

Log likelihood = -6143.5532                       Pseudo R2       =     0.0675 

 

------------------------------------------------------------------------------ 

   readcens1 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      vouch0 |   3.289796   .7048559     4.67   0.000     1.907831    4.671761 

         age |  -9.029631   .3660284   -24.67   0.000    -9.747279   -8.311982 

    sex_name |  -1.673547   .6865377    -2.44   0.015    -3.019596   -.3274971 

       _cons |   137.9839   4.393478    31.41   0.000     129.3699    146.5979 

-------------+---------------------------------------------------------------- 

      /sigma |   16.29016    .385755                      15.53384    17.04649 

------------------------------------------------------------------------------ 

  Obs. summary:       2334  left-censored observations at readcens1<=32 

                      1207     uncensored observations 

                         0 right-censored observations 

 


