CGS LIBRARY

OPEN-FILE REPORT 80-2

DEEP COAL BED METHANE POTENTIAL
OF THE SAN JUAN RIVER COAL REGION, SOUTHWESTERN COLORADO
by

Bruce S. Kelso, Steven M. Goolsby, and Carol M. Tremain

COLORADO GEOLOGICAL SURVEY
DEPARTMENT OF NATURAL RESOURCES
DENVER, COLORADO 80203

1980

OPEN-FILE REPORT 80-2
 DEEP COAL BED METHANE POTENTIAL
 OF THE SAN JUAN RIVER COAL REGION, SOUTHWESTERN COLORADO

by

Bruce S. Kelso, Steven M. Goolsby, and Carol M. Tremain

```
Colorado Geological Survey
Department of Natural Resources Denver, Colorado 80203
```

1980
Funded by the U.S. Department of Energy
GRANT NUMBER DE-FG21-80MC14256

$$
\text { Price: } \$ 15.00
$$

Table of Contents

Page
Abstract 1
Introduction 1
Tectonic Setting 1
Stratigraphy 3
Cretaceous System 3
Dakota Sandstone 3
Mancos Shale 7
Mesaverde Group 7
Lewis Shale 7
Pictured Cliffs Sandstone 7
Fruitland Formation 8
Kirtland Shale 8
Cretaceous-Tertiary System 8
Animas Formation. 8
Tertiary System. 8
Coal 10
Coal Bearing Formations 10
Coal Fields 10
Production. 10
Resources. 12
Study Area 12
Maps 14
Plate 1 16
Plate 2 18
Plate 3 18
Map Interpretations 18
Oil and Gas Production. 19
Fields 19
Traps 21
Coal Bed Methane 21
Gas in Coal Mines 21
U.S. Bureau of Mines Direct Method. 21
Coal Rank 23
Gas Shows in Coal Beds 24
Methane Resource Estimates 24
Conclusions 25
References Cited 26
Appendix A. 29
Appendix B 54

ILLUSTRATIONS

Figure 1. Index map of the San Juan River Coal Region 2
Figure 2. Tectonic map 4
Figure 3. Stratagraphic chart 5
Figure 4. Stanolind Ute Indian B\#6 well log 6
Figure 5. Fruitland coal log responses 9
Figure 6. Generalized Fruitland formation column 11
Figure 7. Depositional environments block diagram 12
Figure 8. Mine location map 13
Figure 9. Coal rank data map 15
Figure 10. Coal rank related to hydrocarbon generation. 16
Figure 11. Coal responses on geophysical logs 17
Figure 12. Pipeline and oil and gas field map 20
Figure 13. Coal mines with gas occurrences 22
Figure 14. Methane desorption equipment 22
TABLE
San Juan River Region desorption measurements 23
PLATES
Plate 1. Map A. Well location map
Map B. Geologic mapMap C. Structure map of Pictured Cliffs sandstone
Plate 2. Map A. Isopach of Fruitland FormationMap B. Net coal thickness map of the Fruitland formationMap C. Coal percentage map of the Fruitland formation
Plate 3. Map A. Net sand thickness map of the Fruitland formationMap B. Sand percentage map of the Fruitland formationMap C. Resource estimate map
Plate 4. Southwest-Northeast stratagraphic cross section, A-A'
Plate 5. West-East stratagraphic cross section, B-B
Plate 6. West-East stratagraphic cross section, $C-C^{\prime}$

TITLE: Deep Coal Bed Methane Potential of the San Juan River Coal Region, Southwestern Colorado

AUTHORS: Bruce S. Kelso, Steven M. Goolsby, and Carol M. Tremain PERFORMING ORGANIZATIONS: Colorado Geological Survey Room 715, 1313 Sherman Street Denver, CO 80203

SPONSORING ORGANIZATION: U.S. Department of Energy
REPORT DATE: March 2, 1981
REPORT NUMBER: Final
GRANT NUMBER (US DOE): DE-FG21-80MC14256
ORIGINATOR KEY WORDS: methane, San Juan region, coal rank, coal mine data, oil and gas production

NUMBER OF PAGES: 56, including 14 figures, 2 appendices, 1 table, 6 plates

ACKNOWLEDGMENTS

The authors wish to thank the U.S. Department of Energy for funding this project and the U.S. Bureau of Mines for providing the background knowledge on coal bed methane and the sample analyses without which this project would not have been possible.

Also greatly appreciated is the assistance of the Colorado $0 i 1$ and Gas Conservation Commission, the Colorado Division of Mines and the Colorado State Archives in obtaining petroleum exploration and mine data.

Finally, special thanks goes to Donna L. Boreck and the supervisors and staff of the Colorado Geological Survey for their support and assistance in preparing and editing this report.

DISCLAIMER

"This report was prepared with the support of the U.S. Department of Energy (DOE), Grant No. DE-FG21-80MC14256.

However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of DOE."

The deepest, highest ranking and probably gassiest coals in the San Juan River coal region of southwestern Colorado are found in the 100 mile (mi) wide San Juan Basin of Colorado and New Mexico. The thickest and most continuous coal beds in the basin are found in the cretaceous Fruitland Formation.

Logs from 231 petroleum exploration drill holes were used to produce the following: a Fruitland Formation isopach, a Pictured Cliffs structure map, Fruitland Formation net coal and net sand isopachs, and Fruitland coal percentage and sand percentage maps. Of the 231 holes, 8 produced natural gas from sandstones in coal bearing zones, 5 were production tested in mixed sandstone and coal intervals (one well had an initial production of 1.6 MMCFGPD), and 5 were drill stem tested in coal bearing zones (one flowed 1 MMCFG in 35 min).

The authors calculate 19.7 billion tons of coal are present in the study area. The coals are ranked high-volatile B (hvB) and high-volatile A (hva) with local upgrading to medium-volatile (mv). Comparing gas contents of Cretaceous Raton Mesa coals to San Juan Basin coals, a gas potential ranging from 72 cubic feet/ton (cu ft/ton) to $514 \mathrm{cu} f t / t o n$ exists. The authors estimate a gas resource in the study area ranging from 1.4 to 10.0 trillion cubic feet.

INTRODUCTION

The Colorado Geological Survey (CGS) is currently involved in a U.S. Dept. of Energy grant entitled "Evaluation of the Methane Content of Unmined/Unminable Coal Beds in Colorado." Coal mine gas occurrences, coal analyses, coal gas content data, and the geologic literature indicate that the San Juan River coal region of southwestern Colorado contains methane gas trapped in coal beds. As noted by Ferebee (1955, p. 175), "the gas in the Fruitland-Pictured Cliffs reservoir [of the San Juan Basin] is exceptionally "dry", more than 98 percent methane, and contains almost no heavier hydrocarbons..some regard it as mostly coal gas." Such evidence justified a detailed methane study of the region. The results of that study are summarized below.

TECTONIC SETTING

Goolsby and others (1979, p. 38), have defined the San Juan River coal region as the area in southwestern Colorado bounded by the lower contact of the coal-bearing Dakota Formation (Figure 1). The primary structure of the coal region is the San Juan Basin, a deep, roughly circular depression approximately 100 mi in diameter (Woodward and Callender, 1977, p. 209). The study area lies within this basin (Figure 1).

Figure 1. San Juan River Coal Region, Southwestern Colorado.

The San Juan Basin is an assymetrical syncline (Figure 2) with at least $13,000 \mathrm{ft}$ of structural relief (Woodward and Callender, 1977, P . 210). The basin's arcuate axis lies south of the Colorado-New Mexico border. The U-shaped Hogback Monocline forms the northern rim of the basin. This monocline dips as much as 60° and has up to $8,000 \mathrm{ft}$ of structural relief (Woodward and Callender, 1977, p. 209). To the east, the Gallina-Archuleta Arch and the Nacimiento Uplift bound the basin. To the south, the basin grades into the chaco slope. The southwestern boundary of the basin is formed by the Defiance Monocline.

En echelon northwest-trending folds, and northeast trending high-angle faults of small displacement occur along the basin's eastern boundary (Woodward and Callender, 1977, p. 210). Around the basin's perimeter are radial folds plunging towards the basin's center and minor folds parallel to the basin's margins. The structures shown in Figure 2 formed principally during Late Cretaceous Laramide time. The entire area was eperogenically uplifted, as much as a mile (Kelly, 1951, p. 129), causing removal of upper, middle, and some lower Tertiary sediments. Igneous intrusions were emplaced along the basin's margin during Tertiary times.

STRATIGRAPHY

The Precambrian basement has been encountered between 4,685 and $14,030 \mathrm{ft}$ below the surface in the San Juan Basin. The basement is overlain by sediments from Cambrian to Quaternary in age. These sediments are briefly described in the stratigraphic chart of the San Juan Basin (Figure 3).

The Cretaceous system contains all the coal-bearing sediments in the basin, and for this reason, only the Cretaceous. stratigraphy will be discussed in this paper. The stratigraphic descriptions only apply to the Colorado portion of the basin.

In the study area, the Stanolind Ute Indian B\#6 well (SE1/4, NW1/4, Sec. 17, T.33N., R.7W.) penetrated over $5,000 \mathrm{ft}$ of Cretaceous sediments and the Precambrian was encountered at $13,047 \mathrm{ft}$. A combination Gamma Ray/SP-Resistivity log of the Cretaceous sediments is shown in Figure 4.

Cretaceous System

Dakota Sandstone

The Dakota Formation is the oldest Cretaceous unit in the basin. This formation represents a transgressive sequence, recording a marine advance from either east to west or east-southeast to west-northwest (Molenaar, 1977, p. 160). It ranges from 175 to 275 ft in thickness and is usually divided into three zones. The lowest zone, which unconformably overlies the Morrison Formation, is a fluvial coarse conglomerate. The middle zone is a paludal, carbonaceous shale and coal sequence with occasional fluvial sandstones. The upper zone is a fine grained, marginal marine sandstone. Facies changes make correlation of these three zones across the basin extremely difficult.

Figure 2. Tectonic map of the San Juan Basin (from Woodward and Callender, 1977, p. 210).

Figure 4. Coal-bearing Cretaceous (Dakota, Menefee, and Fruitland) and associated formations in the San Juan Basin.

Mancos Shale

The Mancos is a marine shale conformably resting on the Dakota. This formation, ranging from 400 to $2,000 \mathrm{ft}$ in thickness, makes up the bulk of the marine sediments of the basin. The Mancos was deposited in a deep water, low energy environment. It is predominantly a dark shale with a few calcareous concretions and bentonite beds. A thin limestone horizon occurs near its base, and offshore sandstone deposits near its top. Some authors divide the Mancos into two subgroups separated by an unconformity (Lamb, 1973, p. 72).

Mesaverde Group
The Mesaverde Group is a 350 to $1,100 \mathrm{ft}$ thick regressive sequence divided into three formations: the basal Point Lookout, the Menefee, and upper Cliff House.

The Point Lookout Formation is a regressive barrier beach sandstone deposited during a period of greater sediment influx than basin subsidence (Sears, et al, 1941, p. 116). It is a gray to brown, medium grained, sandstone ranging from 100 to 300 ft in thickness. Root marks occasionally occur in the contact zone between the Point Lookout and the overlying Menefee Formation.

The Menefee Formation is a series of paludal carbonaceous shales, fluvial sandstones, floodplain shales, and coals deposited above the barrier beach sands of the Point Lookout (Molenaar, 1977, p. 164). Its thickness ranges from 0 ft where the Point Lookout and Cliff House intertongue on the eastern edge of the study area to a maximum of 400 ft .

The Cliff House Formation is a transgressive sandstone sequence overlying the Menefee Formation. Formation thickness ranges from 150 to more than 450 ft . This gray sandstone weathers yellowish to a reddish brown. It contains lenses of hard, fine to medium grained sandstone, interbedded with softer, fine grained sandstones, mudstones, and shales. These lenses which intertongue with the Lewis and Menefee Formations are the result of minor regressions in the transgressive sequence.

Lewis Shale

The Lewis Shale is another major marine, transgressive deposit ranging in thickness from less than 100 ft to greater than $2,500 \mathrm{ft}$ in the northeast. The Lewis is dark gray, gray-green, and black in color. It contains sandy intervals, calcareous concretions, and numerous bentonite beds. The most prominant bentonite is the Huerfanito Bentonite Bed. This marker bed is usually picked on resistivity, conductivity, and transit-time geophysical logs and has been correlated across the entire basin (see Fassett and Hinds, 1971, p. 6).

Pictured Cliffs Sandstone

The Pictured Cliffs Formation is a regressive, coastal-barrier sandstone overlying the Lewis Shale. The formation thickness varies from

125 to 400 ft due to minor transgressions and regressions. The lower portion of the Pictured Cliffs is primarily interbedded sandstone and shales and the upper portion is a quartzitic, fine to medium grained sandstone.

Fruitland Formation

The Fruitland formation is a coastal plain deposit of paludal carbonaceous shales, siltstones, sandstones, and coals deposited behind the regressing Pictured Cliffs strand line (Figure 5). The formation ranges from less than 100 ft to greater than 600 ft in thickness and contains evidence of fresh and brackish water environments. The sandstones are soft to hard and gray-white to brown in color. The shales are firm and gray, brown and black in color. The coals were deposited in lagoons, marshes, swamps, and abandoned channels and covered by fluvial shales and sandstones. The Fruitland-Kirtland contact occurs at the top of the highest coal or carbonaceous shale bed, above the base of the Fruitland.

Kirtland Shale

The Kirtland Formation is a 1,000 to $1,200 \mathrm{ft}$ thick sequence deposited in back coastal areas and floodplains. Fassett and Hinds (1971, p. 23) divide this formation into two members. The lower member is a gray to gray-brown shale similar to the upper Fruitland shales. The upper Kirtland member, here called the Farmington-Upper Shale Member, is a combination of interbedded sandstones and shales. The shales of this member are gray, brown, green, and white in color and the sandstones are fine to medium grained and poorly sorted. The absence of carbonaceous shales and coals in this formation suggests a depositional environment in which higher stream gradients and good drainage prevented accumulation of organic material (Fassett and Hinds, 1971, p. 23).

Cretaceous-Tertiary System

Animas Formation

The Animas Formation is divided into two members: the lower McDermott Member and the Upper Member. The McDermott Member is up to 400 ft thick and is composed of lenticular sandstones, shales, and purplish conglomerates (rich in andesitic debris). The Upper Member is a grey-green to tan shale with numerous conglomerates. It is 1,100 to 2,600 feet thick (Newman and McCord, 1980, p. 3-14).

Tertiary System

The Tertiary System in the study area is a basin fill sequence consisting of the Cretaceous-Tertiary Animas Formation, and the Tertiary Nacimiento, and San Jose Formations. Since the Tertiary Formations do not contain coal, they are not discussed in this paper. A description of these formations can be found in Newman and McCord (1980, p. 3-16).

Figure 5. Upper Cretaceous formations of the San Juan Basin. Coals are shown in black.

Coal Bearing Formations

Three of the formations described previously contain coal in the San Juan River region. In ascending order, they are the Dakota, the Menefee (Mesaverde Group), and the Fruitland Formations.

Four major coal horizons have been delineated in surface exposures of the Dakota Formation (see Boreck and Murray, 1979, p. 54). Seams average from 2 to 8 ft in thickness (Wilson and Livingston, 1980, p. 70) but locally may reach 15 ft . All seams are discontinuous and grade laterally into carbonaceous shale. The Dakota Formation was probably deposited in a flood-plain/braided stream environment with greater peat accumulation during more stable periods.

Like the Dakota coals, the Menefee coals are extremely lenticular. There are 3 major coal bearing horizons, which may contain multiple beds of coal (Boreck and Murray, 1979, p. 55). The seams generally range from 2 to 8 ft in thickness and locally may attain thicknesses of 12 ft . Deposition of peat occurred on a delta-plain between distributary channels.

The Fruitland Formation, which averages 400 ft in thickness, has the thickest and most continuous coal seams in the region. It contains two major coal zones with an occasional third zone where a Fruitland Formation tongue is present (Figure 6). The thickest and most continuous seams are found in the lowermost 70 ft of the formation. Seam thicknesses throughout the entire formation range from less than 1 ft to 72 ft (see Appendix A). The areas of greatest peat deposition probably occurred behind the barrier coastline in brackish to fresh-water. lagoons and marshes, with minor deposition on the upper coastal plain (Figure 7).

Coal Fields

The study area includes part of the Durango Coal Field where Menefee and Fruitland coals have been mined. Figure 8 shows the locations of the mines in the study area and the surrounding region. Over 30 mines have produced Fruitland Formation coals since the mid-1880's. Coal bed names generally vary with the location of the mine and with the operator (Figure $6)$.

Production

Production data on the mines of this area are hard to obtain. Often, no records were kept and many mines were not operated on a year-round basis, due to the lack of a rail system and a small local demand. As of 1977, the available cummulative production figures for the mines in the Fruitland Formation were 141,765 short tons of bituminous coal and 17,728 short tons of subbituminous coal (Boreck and Murray, 1979, p. 57).

SAN JUAN RIVER REGION - DURANGO FIELD - FRUITLAND FM.

Figure 6. Generalized columnar section of coal-bearing rocks in the Fruitland Formation, Durango field, San Juan River region, Colorado (from Boreck and Murray, 1979, p. 56).

Figure 7. Schematic block diagram showing depositional environments of Fruitland coals.

Resources

Study Area

The authors chose a 590 sq mi study area in the colorado portion of the basin for coal resource and coal bed methane evaluation because it contained some coals of medium-volatile rank (Figure 9). A great deal of methane gas is generated at this rank (Figure 10). In addition, the overburden in this area is probably sufficient to prevent gas loss and there are enough logs available in the area so that the coals can be mapped. The Fruitland coals are considered the best potential methane targets in this area for the following reasons:

1. The Fruitland Formation contains a larger number of thick coal beds than either the Menefee or Dakota Formations. Individual coal beds up to 72 feet have been identified in the Fruitland Formation in the study area (see Appendix A), while typical thicknesses of Menefee and Dakota coal beds average 8 ft or less.

2. The Fruitland Formation coal beds formed behind regressive barrier islands in marshes and lagoons (see Figure 6 and Fassett and Hinds, 1971, p. 17; Shomaker and Holt, 1973, p. 6; Fassett, 1977, p. 193). Such coal beds are more continuous than those formed in the deltaic depositional environments of the Menefee and Dakota Formations.
3. Overburden thicknesses on Fruitland Formation coal beds are $4,000 \mathrm{ft}$ or less. In comparison, overburdens on Menefee coals often exceed $5,000 \mathrm{ft}$ and overburdens on Dakota coals can exceed $8,000 \mathrm{ft}$.

Please note: The study area and target Fruitland Formation were chosen not only because of high methane potential but also because of data availability. Additonal areas within the San Juan Basin and the deeper Menefee and Dakota Formations could also contain large quantities of methane gas (see Appendix B).

Maps

Nine maps were constructed to show the coal resources of the Fruitland Formation in the study area. Logs from 231 of 719 drill holes in the study area could be used for coal bed determination. Radioactivity logs (gamma ray-neutron logs), bulk density logs, sonic logs, neutron porosity logs, density porosity logs, and compensated density porosity logs were used to identify coal beds.

Interpretation of these logs was based on the following observations. Coals usually have low natural radiation which is seen as a low response on gamma ray logs. They also reflect low apparent density (high apparent porosity) on neutron, sonic, and density logs (Figure 11). Caliper logs were used when available to prevent confusing caved zones with coal seams.

SP-resistivity and gamma ray neutron logs can mislead the interpreter when looking for coals. The response of a SP-resistivity log in a freshwater-bearing sandstone is very similar to the response in coal zone. The Fruitland Formation has freshwater sandstones interbedded with the coals; therefore these logs were not used for picking coals. The response of gas bearing sandstones and coals can be confused on gamma-ray neutron logs. Since this type of log was used for picking coals in this study, it should be noted that the total coal thickness may be exaggerated by the inclusion of gas-bearing sandstones.

Coal bed and sandstone thicknesses obtained from the geophysical logs are conservative estimates. Coal thicknesses, depths, partings, and roof and floor rocks are listed in Appendix A. The subsurface maps on Plates 1,2 , and 3 were constructed from the data in Appendix A.

IFROM GOOLSEY AND OTHERS, 1979)
EXPLANATION
KIRTLAND SHALE AND FRUITLAND FORMATION OUTCROP study area
encloses area of detailed subsurface mapping coal rank sample location (mmme fci) medium volatile rank coal

Figure 9. Coal rank sample location map of the study area and $\begin{aligned} & \text { Surrounding region (from Goolsby and others, 1979). }\end{aligned}$

* \% VOLATILE mATTER in parenthesis is suitable only for humic, vitrinitic COALS.

Figure 10. Organic metamorphism in coals and its relation to hydrocarbon generation (from Dolly and Meissner, 1977, p. 261).

Plate 1

Map A, Plate 1 shows the location of petroleum exploratory drill holes used in this study.

Map B, Plate 1 is a surface geologic map. The Cretaceous-Tertiary Animas Formation and younger sediments outcrop within the study area. The Fruitland Formation is only exposed at the basin's steeply dipping margins.

Map C, Plate 1 is a structure map contoured on the Fruitland-Pictured Cliffs contact. Periods of stability and minor transgressions, during the overall regression, created intertonguing of the pictured cliffs and Fruitland Formations in some areas. The gray shaded areas on Map C show

Ficure 11

Figure 11. Appearances of coal and associated lithologies on geophysical logs (from Kowalski and Fertl, 1976, p. 2).
where the intertonguing is visable on the geophysical logs used in this study. Due to the presence or absence of intertonguing, three different depositional sequences are possible in the Fruitland-Pictured Cliffs contact zone. The three sequences are described along with the contacts chosen by the authors.

1. Non-tonguing contact-The coals, shales, and sandstones of the Fruitland can directly overlie the obviously massive Pictured Cliffs Sandstone. In this case, the contact was chosen atop the thick Pictured Cliffs Sandstone, below the lowest Fruitiand coal bed (see Fassett and Hinds, 1971, p. 19).
2. Tonguing with coal contact-A coal bearing tongue of the Fruitland can bisect the Pictured Cliffs Sandstone. Here, the contact was chosen at the base of the lowest coal within the tongue (gray shaded area on Map C, Plate l).
3. Tonguing without coal contact-A shaley, non-coal bearing tongue of the Fruitland can bisect the Pictured Cliffs Sandstone. Since the authors found this case hard to distinguish on the geophysical logs, they used the same contact as in case one--the top of the Pictured Cliffs Sandstone, beneath the lowest Fruitland coal bed.

Map A, Plate 2 is an isopach map of the Fruitland Formation.
Map B, Plate 2 (a net coal thickness map of the fruitland coals) shows the areas of greatest coal development.

Map C, Plate 2 is a coal percentage map of the Fruitland Formation in the study area.

Plate 3

Map A, Plate 3 is a net sand thickness map of the Fruitland Formation.

Map B, Plate 3 is a sand percentage map of the Fruitland.
These maps were constructed to locate the major channel systems in the Fruitland Formation study area. The areas on these maps of greatest net sand thickness and sand percentage should represent areas of major stream develoment and channel overlapping.

Map C, Plate 3 is the map used to determine the coal resource estimate of the study area. It is modified from the net coal thickness map (Map B, Plate 2). Areas of average coal thickness are screened and shaded to show how the map is broken down for planimetering. The total planimetered area is 276.48 square miles. In this area, a reserve of 1.97 $X 1010$ short tons (bituminous) is estimated (see map key for further explanation).

Map Interpretations

Several conclusions can be drawn from these maps:

1. The isopach shows the Fruitland Formation is thickest in the western part of the study area or west and south of the migrating regressive strand line (the gray area on the structure map). The net coal thickness map shows that the greatest amount of coal also occurs landwards (southwestwards) of this strand line. Stable continental deposition continued in these areas for relatively long periods of time, resulting in the formation of a thick Fruitland Formation containing thick coal bodies. Planimetering the total coal thickness map of the Fruitland coals (as shown in Map C, Plate 3) gives a Fruitland coal resource in the study area of 19.7 billion short tons.
2. The areas of greatest coal percentage are found north and east of the strand line. Rapid change in sedimentation occurred during the final regression of the Cretaceous epicontinental sea. As a result, the Fruitland Formation is generally thinner in the northeast and coal represents a larger percentage of the formation.
3. No obvious stream patterns are visible on the sand percentage or net sand thickness maps. This is probably due to the wide spacing of the data points and the ambiguous manner of choosing the upper Fruitland Formation contact on the top of the uppermost coal bed.

OIL AND GAS PRODUCTION

$0 i 1$ was first discovered in the San Juan Basin during 1911 in New Mexico. From 1911 to 1951, exploration was sporadic due to unfavorable market conditions and transportation costs (Barnes, 1951, p. 156). The completion of El Paso Natural Gas Company's 24 in. pipeline to California in 1951 (Figure 12) and the recent increase in stimulation of "tight" formations has regenerated interest in this region.

Fields

The four major oil and gas fields in the study area are: the Barker Dome Field, the Alkali Gulch Field, the Red Mesa Field, and the Ignacio Blanco Field (Figure 12). They produce oil and gas from Pennsylvanian, Jurassic, and Cretaceous rocks.

Barker Dome Field produces natural gas from the Pennsylvanian Ismay and Paradox Formations and a small amount of oil from the Paradox Formation. The Colorado 0 il and Gas Commission reports a total production of 1,084 barrels of oil and $1,534,271 \mathrm{MCF}$ of gas from this field during 1979.

Alkali Gulch Field also produces natural gas from the Pennsylvanian Paradox Formation. The 1979 production was 334,387 MCF.

Red Mesa Field produces oil and natural gas from several Cretaceous horizons. The Dakota Formation produces both oil and gas, the Gallup and Mancos Formations oil only, and the Mesaverde Group natural gas only. The 1979 production for this field was 47,603 barrels of oil and $56,310 \mathrm{MCF}$ of gas.

The largest field in the study area is the Ignacio-Blanco field (Blanco Mesaverde-Basin Dakota in New Mexico). Production is primarily natural gas from the Jurassic Morrison and the Cretaceous Dakota, Lewis, Gallup, Mesaverde, Pictured Cliffs, and Fruitland Formations. Dual completions are common and the total field production in Colorado for 1979 was $25,192,481$ MCF of natural gas.

Traps

The Pennsylvanian producing formations are carbonates: limestones, dolomites, oolititic limestones, calcarenites, and calcirudites. Traps are either anticlinal, stratigraphic, or a combination of both. However, it is generally agreed that "stratigraphic variations, from porous reservoir beds to nonporous units, are a major factor in the control of the gas accumulations" (Picard, 1968, p. 1341). Porosity is either intercrystalline, vuggy, intra-oolitic, fracture or some combination of these.

Most Jurassic and Cretaceous reservoirs in the study area are lithologically similar sandstones. These sandstones are medium to fine-grained, argillaceous, slightly calcareous, and somewhat fractured (Silver 1950, p. 117). They often have low permeabilities and porosities. Traps are either anticlinal, stratigraphic or a combination of both.

COAL BED METHANE

In a 1955 discussion of Ignacio-Blanco field, Ferebee stated that "the Fruitland Formation contains gas in tight, shaley sands, sandy shale, and coal beds." He further noted that this gas was "exceptionally dry, more than 98 percent methane and contains almost no heavier hydrocarbons" and that "some regard it as mostly coal gas."

Since that time, a number of methods for locating coal bed methane have been developed: 1) locating gas occurrences in coal mines, 2) direct desorption of coal samples, 3) locating high ranking coal, and 4) searching for coal gas shows in petroleum exploratory drill holes.

Gas in Coal Mines

Fender and Murray (1978, Plate 1), mapped gas occurrences in 3 mines in the San Juan River coal region. Their map is reproduced in Figure 13. However, these gas occurrences cannot be correlated directly with the gas content of the coal (see Boreck and Strever, 1980, p. 10).

U.S. Bureau of Mines, Direct Method

Coal gas content can be measured directly by the U.S. Bureau of Mines direct desorption method. In this method, a sample of coal approximately $1,000 \mathrm{~g}$ in weight is obtained from a conventional core. This sample is sealed in a desorption cannister immediately after the core has been removed from the core barrel. The gas emitted by the encapsulated coal is measured daily by water displacement in a graduated cylinder until emission (desorption) ceases (Figure 14). The gas lost from the coal between the time it was first penetrated by the core bit and the time it was sealed in the cannister is estimated using a "back calculation" method. After desorption (1 week to 6 months), the residual gas in the coal is measured as the coal is crushed in a sealed ball mill. The estimated lost gas, plus the measured desorbed and residual gas, are added to give the total in-place gas content (in cc/g or cu ft/ton) of the coal bed. [Refer to McCulloch and others, (1975, p. 3) for a more complete description of this method].

Figure 13. Gassy mines of the San Juan River region.

Figure 14. Methane desorption equipment (from Tremain, 1980, p. 35).

This desorption procedure has also been attempted on coal cuttings and coal sidewall cores. Gas contents of desorbed cuttings and sidewall cores seem to be lower than gas contents of conventional core samples of the same coal bed.

Lent (1980, p. 5-7) gives the results of 10 desorption measurements in the San Juan River coal region (see Table 1).

Coal Rank

Coal rank indicates the degree of metamorphism a coal has undergone. There are two standard methods of determining rank--proximate and/or ultimate analyses of coal samples and vitrinite reflectance. In proximate and ultimate analyses, the chemical constituents of a coal sample (100 g or more in weight) are determined in the laboratory using ASTM (American Society of Testing Materials) procedures (see 1978 Annual Book of ASTM Standards, Part 26, p. 380). In the vitrinite reflectance method, the percentage of light reflected by a polished surface of the vitrinite maceral (equivalent to a mineral) indicates the rank of a coal (see Crelling and Dutcher, $1980, \mathrm{p} .15)$. A 100 g sample of coal is needed for this method also.

Table 1. Desorption results of coal samples from the San Juan River coal region, New Mexico and Colorado.

Test No.	State	Formation	Collector	Depth to bed (ft)	Bed thickness(ft)	cu ft methane/ ton $_{3}$ of coal $\left(\mathrm{cm}^{3} / \mathrm{gm}\right)$	Apparent rank
1	Colorado	Menefee	Cogs	295	$9.0+$	5.3(.17)	hvA
2	Colorado	Menefee	Cogs	310	7.5	10.2(.32)	hva
3	Mexico	Fruitland	TRW	407	8	44.5(1.5)	hv8
4	$\begin{aligned} & \text { New } \\ & \text { Mexico } \end{aligned}$	Fruitland	TRW	407	8	10.3(0.3)	hvB
5	$\begin{aligned} & \text { New } \\ & \text { Mexico } \end{aligned}$	Fruitland	BuM	1475	11	134.0(4.2)	hvA
6	$\begin{aligned} & \text { New } \\ & \text { Mexico } \end{aligned}$	Fruitland	BuM	1475	11	123.0(3.8)	---
7	$\begin{aligned} & \text { New } \\ & \text { Mexico } \end{aligned}$	Fruitland	BuM	640	7	$65.0(2.0)$	hvC
8	New Mexico	Fruitland	BuM	733	23	61.0(1.9)	hvc
9	New Mexico	Fruitland	BuM	458	5	124.0(3.9)	hvC
10	$\begin{aligned} & \text { New } \\ & \text { Mexico } \end{aligned}$	Fruitland	BuM	580	12	$79.0(2.5)$	hvB

BuM - U.S. Bureau of Mines
CoGS - Colorado Geological Survey
TRW - TRW,Inc. (DOE contractor)

Goolsby and others (1979, Plate 2) mapped coal analyses data for numerous Fruitland coal samples in and around the study area (Figure 9). The three samples in the study area are medium volatile in rank. It has been shown that gas generation increases as rank increases. In addition, the greatest amount of gas is generated when a coal is medium to low volatile in rank (see Figure 10).

Gas Shows in Coal Beds

Once the boundaries of a high coal bed methane potential area are ascertained by checking coal thickness, rank, depth, desorption data, etc., gas shows found in coals in petroleum exploratory drill holes can substantiate the presence of a resource. After the coals were located in the 231 drill holes of the mapped area, the authors searched Petroleum Information completion cards and Colorado $0 i l$ and Gas Commission well file data for any indication of gas in the coals or coal zones of these wells.

1. Two wells had gas kicks in coal beds (Nos. 18 and 32). These wells are represented by a () on Map A, Plate 1.
2. The five wells marked with a (■) on this map were drill stem tested in coal-sandstone zones. Well number 80 produced an estimated 1 million cubic ft of gas in 35 minutes from a 111 ft zone containing 33 ft of coal.
3. The five wells marked with a (_ _) were perforated in both sandstones and coals and were production tested in these zones. Well No. 109 had an initial production of 1,585 MCFGPD from a 130 ft zone containing 54 ft of coal.
4. The 8 wells marked by a (*) on the map, were found to be producing from Fruitland or Mesaverde sandstones interbedded with coal.

Drilling report data, drill stem test data, and production test data from coal beds or mixed sandstone and coal zones are listed in Appendix B.

Methane Resource Estimates

As mentioned in the Coal Section of this text, planimetering the net coal thickness map (as seen in Map C, Plate 3) gives a Fruitland coal resource in the study area of 19.7 billion short tons. Since the authors had no deep desorption data for the study area, they used gas content data for correlative coals from the Raton Mesa region of Colorado. This correlation is based on the following similarities of the two regions: coal rank, overburden depth, stratigraphic positions, and localized upgrading due to intrusives. Using gas contents obtained in the Raton region (see Tremain, 1980, p. 34) the following range of methane resource estimates were obtained:

Example 1. Assuming all coal is hvB and has a gas content of 72 cu ft/ton--
1.97×10^{10} tons $\times 72 \mathrm{cu} \mathrm{ft/ton}=1.4 \times 10^{12} \mathrm{cu} \mathrm{ft}$ methane
Example 2. Assuming all coal is mv and has a gas content of $514 \mathrm{cu} \mathrm{ft} / \mathrm{ton--}$
1.97×10^{10} tons $\times 514 \mathrm{cu} \mathrm{ft/ton}=1.0 \times 10^{13} \mathrm{cu} \mathrm{ft}$ methane
The lack of deep sample analysis and sample desorption prevents the authors from concluding that the study area contains coals of a specific rank and a specific gas content. Therefore the authors estimate a range of 1.4 trillion cubic feet to 10.0 trillion cubic feet of coal gas could be present in the study area.

CONCLUSIONS

The data indicates that gas is present in the coals of the study area. This gas has been produced from sandstones adjacent to the coals and possibly from the coals themselves. Therefore, it might pay to test the Fruitland coals encountered while drilling for deeper targets. With the right economic factors and development of completion techniques for coal bed methane, this gas resource may prove to be important. Data gained from vitrinite reflectance of cuttings, desorption of cuttings, and desorption of conventional cores will continue to support the existing evidence that coal bed gas is being generated and trapped in the deeper portions of the San Juan Basin.

References Cited

American Society for Testing and Materials, 1978, Classification of coals by rank: Part 26, D 388-77, p. 220-223.

Barnes, F. C., 1951, History of development and production of oil and gas in the San Juan Basin, in Guidebook of the South and West sides of the San Juan Basin, New Mexico and Arizona: New Mexico Geological Society, Second Field Conference, p. 155-160.

Barnes, F. C., and Hemenway, G., 1950, Generalized geologic column of the San Juan Basin, in Guidebook of the San Juan Basin, New Mexico and Colorado: New Mexico Geological Society, First Field Conference, p. 97.

Boreck, D. L., and Murray, D. K., 1979, Colorado coal reserves depletion data and coal mine summaries: Colorado Geological Survey Open-File Report 79-1, 65 p .

Boreck, D. L., and Strever, M. T., 1980, Conservation of methane from Colorado's mined/minable coal beds - A feasibility study: Colorado Geological Survey Open-File Report 80-5, 95 p.

Crelling, J. C., and Dutcher, R. R., 1980, Principles and applications of coal petrology: Society of Economic Paleontologists and Mineralogists, SEPM Short Course Notes No. 8, 127 p.

Dolly, E. D., and Meissner, F. F., 1977, Geology and gas exploration potential, Upper Cretaceous and Lower Tertiary strata, northern Raton Basin, Colorado, in Exploration frontiers of the Central and Southern Rockies: Rocky Mountain Association of Geologists, p. 247-270.

Fassett, J. E., 1977, Geology of the Point Lookout, Cliff House, and Picture Cliffs Sandstone of the San Juan Basin, New Mexico and Colorado, in Guidebook to the San Juan Basin III: New Mexico Geological Society, 28th Field Conference, p.193-197.

Fassett, J. E., and Hinds, J. S., 1971, Geology and fuel resources of the Fruitland formation and Kirtland shale of the San Juan Basin, New Mexico and Colorado: U.S. Geological Survey Professional Paper 676, 76 p.

Fender, H. B., and Murray, D. K., 1978, Data accumulation on the methane potential of the coal beds of Colorado: Colorado Geological Survey Open-File Report 78-2, 25 p.

Ferebee, D. M., 1955, Ignacio gas field, La Plata County, Colorado: American Association of Petroleum Geologists, Rocky Mountain Section, Geological Records, p. 173-184.

Goolsby, S. M., Reade, N. B. S., and Murray, D. K., 1979, Evaluation of coking coals in Colorado: Colorado Geological Survey Resource Series 7, 72 p.

Kelly, V. C., 1951, Tectonics of the San Juan Basin, in Guidebook of the south and west sides of the San Juan Basin, New Mexico and Arizona: New Mexico Geological Society, 2nd Field Conference, p. 124-131.

Kowalski, J., and Fertl, W. H., 1976, Application of geophysical well logging to coal mining operation: Dresser Technical Memorandum, v. 7, no. 8, 11 p.

Lamb, G. M., 1973, The lower Mancos Shale in the northern San Juan Basin, in Cretaceous and Tertiary rocks of the Southern Colorado Plateau, A Memoir: Four Corners Geological Society, p. 72-77.

Landis, E. R., 1959, Coal resources of Colorado: U.S. Geological Survey Bulletin 1072-C, p. 131-132.

Lent, J., 1980, San Juan Basin Report - A study of Upper Cretaceous geology, coal, and coal bed methane resources of the San Juan Basin, in Colorado and New Mexico: Prepared by TRW Energy Systems, Planning Division for the U.S. Dept. of Energy under contract number DE-AC21-78MC08089.

McCulloch, C. M., Levine, J. R., Kissel, F. N., and Deul, M., 1975, Measuring the methane content of bituminous coal beds: U.S. Bureau of Mines Report of Investigations, RI 8043, 22 p.

Molenaar, C. M., 1977, Stratigraphy and depositional history of Upper Cretaceous rocks of the San Juan Basin area, New Mexico and Colorado, with a note on economic resources, in Guidebook to the San Juan Basin III: New Mexico Geological Society, 28th Field Conference, p. 159-166.

Newman, K., and McCord, J., 1980, Detailed Site Investigation Northern San Juan Basin: Prepared by TRW Energy Systems, Planning Division for the U.S. Dept. of Energy under contract number DE-AC21-78MC08089.

Peterson, J. A., and others, 1949, Sedimentary history and economic geology of the San Juan Basin: Bulletin of the American Association of Petroleum Geologists, v. 49, no. 11, p. 2076-2119.

Picard, M. Dane, 1968, Outline of occurrences of Pennsylvanian gas in Four Corners Region, in Natural Gases of North America: American Association of Petroleum Geologists, Memoir 9, v. 2, p. 1327-1356.

Sears, J. D., Hunt, C. B., and. Hendricks, T. A., 1941, Transgressive and regressive Cretaceous deposits in southern San Juan Basin, New Mexico, in Shorter contributions to general geology, 1938-40: U.S. Geological Survey Professional Paper 193-F, p. 101-121.

Shomaker, J. W., and Holt, R. D., 1973, Coal resources of Southern Ute and Ute Mountain Ute Indian Reservations, Colorado and New Mexico:

New Mexico Bureau of Mines and Mineral Resources, Circular 134, 2 22 p.

Silver, C., 1950, The occurrence of gas in the Cretaceous rocks of the San Juan Basin, New Mexico and Colorado, in Guidebook of the San Juan Basin, New Mexico and Colorado: New Mexico Geological Society, lst Field Conference, p. 109-123.

Wilson, W. L., and Livingston, A. L., 1980, Stratigraphy and coal resources of Dakota Sandstone in Sage Plain, Southwestern Colorado and Southeast Utah, in Proceedings of the Fourth Symposium on the Geology of Rocky Mountain Coal: Colorado Geological Survey Resource Series 10, p. 69-72.

Woodward, L. A., and Callender, J. F., 1977, Tectonic framework of the San Juan Basin, in Guidebook to the San Juan Basin III: New Mexico Geological Society, 28 th Field Conference.

$\begin{aligned} & \text { Map } \\ & \text { Number } \end{aligned}$	Urill hate dentificatiun
1	Allerican Petrotemin - Aryentale $11 /$ (Set. 3 1.327.K. Wh.)
c	tebit \& Haytag - Ute Gurt. Nu. I (Sec. 4 r. 3 äth R. GW.)
3	taylar Bri Carp. - He monald (sec. / I.JEN. R.GH.)
4	Kımbark Operating cu. - Penrose No. I (sec. 8 1.32. K. ok.
؛	telut \& Maytay - lubbs No. 1 (sec. 9 f. $32 \mathrm{~N} . \mathrm{H} . \mathrm{tw}$.)
\checkmark	telat 8 Martay - Haltan No. I (sec. 10 I. $32 \mathrm{~N} . \mathrm{K} .6 \mathrm{~W}$.)
1	American petro. theryy co. lac. Aryents (sce. $111.32 \mathrm{~N} . \mathrm{K} . \mathrm{GW}$.)
\%	Celdt a Maytag - Luchimi Nu. 1 (ser. 12 I.32N. R.GW.
y	felal \& Maytay - Perimo No. 1 (sect 11 I. 3:N. R. UW.)
111	
11	1aldl \& Maylay - McKeell Nu. 1 (sec. If I. sch. K. (W.)
12	letat \& Maytay - Liplinuadno. 1 (sec. 16 f. 32N. K. 6 WH .)
11	11. M. terater - tuper No. 1 (sec. $181 . \sin$. H. GM.)
14	II Pasa Natural bas do. - Allison No. 30 (sec. so f. Sew. H. UW.)
13	(SW. 24 I. JiN. K.OH.)

 \bar{i}
家

ジ
$\frac{2}{3}$
$\underset{3}{3}$
$\stackrel{3}{3}$
$\stackrel{\text { ² }}{ }$
$\stackrel{3}{3}$
$\stackrel{\Im}{0}$
$\stackrel{\Omega}{\bullet}$

31	（Sec． 18 I．san．R．M．）
8	（s．6．H．1．Sch．R．M．）
＂	（Set．Iy 1．sion．K．IW．）
310	
11	（ \sec ．I I．J2N．H．BW．）
3＇	（3me．1 1．SiN．R．EH．）
31	（sel．© I．s．all R．iw．）
39	（ix．：I．siH．R．isW．）
3，	（SAC． 4 I．SiN．R．BH．）
31	

\pm

3
合
$\stackrel{3}{\underset{~ a ~}{2}}$
$\stackrel{8}{2}=$

-

Appendix A (cont linacd)

$\begin{gathered} \text { Mup } \\ \text { number } \end{gathered}$	Urill Hole Idemiticalion
$1 /$	Ara Uil \& Las Ca. - Sunthern Ule $11-2,32-8$ (sec. 11 T. J2N. R.bW.)
38	Allantic Richtield Eo. Sombliern Ute 12-J, 32-8 (sec. 12 1.32N. R. 8 HE .)
39	Allantic kichtield co. subthern tie 12-4, je-8 (sec. 12 T. JaN. R.bw.)
40	(Sec. 13 I. $32 \mathrm{~N} . \mathrm{R} . \mathrm{BN}$.)
41	Allumic kichfield lo. - Sunthern Ule 14-2, 32-6 (Sece. 14 T. 32N. R. BW .)
42	Allantic Michtield Co. - Senthera Ute $16-1,32-8$ (sec. 16 f.jen. R. bW .)
43	Murchisun Bras. - Bluck J Ho. t-lb (Sec. 18 l. JiAN. R. BW.)
44	Healo turp. - Black 3, ys-19x (3世4. 19 T.3CN. K.8W.)
43	Alluntit kichlield Co. jumthern Ule 22-1, 3Z-U (sec. 22 1. JiN. K. BW.)

 $\stackrel{\rightharpoonup}{+}$ $\stackrel{\rightharpoonup}{\dot{-}}$

$\frac{2}{3}$
$\underset{3}{3}$
テั
ミ
$\stackrel{2}{2}$
三
$\underset{3}{3}$
3
3
$\overrightarrow{3} \quad \stackrel{3}{3}$

．Partinys
$\stackrel{-}{2}$

$\frac{3}{3}$

峝
－ $\stackrel{3}{8}$

3
\cong
$\stackrel{3}{2}$
1229.5 $\underset{\sim}{N}$

ミ
$\stackrel{2}{-}$ $\underset{\sim}{2}$
$\stackrel{A}{3}$
$\frac{7}{3}$
$\stackrel{7}{3}$

Hop Number	DIII Hule ldentI！Itatlun
54	iseliy 0if Lo．－Suan Burinh Me．I （Sec．y J．JeN．K．YW．）
2．	Gelty Uil Lo．－Salit Barch Nu．$/$ （sec． 10 J．3LN．R．yw．）
$\downarrow 6$	Alldatic Kichifield Co．－Southern Ute 11－C． $32-9$ （Sec．II T．32N．R．YN．）
」）	（sec． 11 1．SCN．R．JH．）
4.8	Marchisun bros．－Block 11，No．3－1： （sec．la I．sen．R．gh．）
59	Atlatile Hichtiald tu．－southerin Ule 1J－1，36－y （sec． 13 1．3CN．K．MW．）
1,11	Arca 1118 Las Lo．－southera Ule 1b－1，32－y （ H e．1t T．3iN．K．9W．）
41	Mirichisom Jiusts－diack IC，No．I－It （inc．16 I．Jïli．K．9W．）

 3
 3
3

$\begin{gathered} \text { Map } \\ \text { Number } \end{gathered}$		$\begin{aligned} & \text { Ground } \\ & \text { Hevalugen(1)! } \end{aligned}$	$\begin{aligned} & \text { beopitysical } \\ & \text { Dog tument } \end{aligned}$
u'	Mutchisun bros. - 4-1/ Ute (Sec. $1 /$ I. SHA. R. Hith.)	6445	0454
W	(sme. aul.32N. R. 3 . .)	6521	63s
1,4	Arcu ond dias lo. - Juntiern Ute az-1, si-y (Sel. iz 1.jen. R.yN.)	6690	$0 / 01$
6	Aran (1a) 8 Las Lo. - Sountirin Ute 23-1, 32-4 (sect. 23 1. Jen. 11.90.)	6913	6924
i.t.	1.mpinas: 1 phtuatiun - Bumad No. z(sice. I I. I/N. R.INW.)	6049	6059
(1)	Ladd teltulaum - Hurth tor Lanyon No. R-Z (Me. Z I. JiN. R. ItM.)	6380	${ }^{0} 392$
1.6	 (5.4.3 1.3.N. R.IOH.)	0611	0628
1.9	Murahsuan lrases Black b. Nu. z-4 (sice 4 I. SiN. R. InW.)	6491	4501

Loal bidd
ionalli（ti）

11	（（ in．！1．int．K．HM．）	1301	1500
11	 	6429	い3 ${ }^{\text {a }}$
1%	Hurnhlan liast－Bluck／，Fow．ذ－y 	0496	いうい
1＇	32－10，\＃13－10（sec． 10 1．Síll．K．Jun．$)$	4354	631.5
14	 	0014	6020
1	（S．4．14．1．sill．R．10w．）	wizy	6， 36
A．	 	（？）64ty	（？）64／1
11	Hutchasm bow．－Black／\＃／－10 	6413	6420
／．	（ine t／I．S．W．R．low．）	いら81	ぃЈч9．
$1 /$	 	1，440	6！じ

保

$\begin{aligned} & \text { Map } \\ & \text { NumLic! } \end{aligned}$		$\begin{aligned} & \text { Grournd } \\ & \text { Ilevallan(1) } \end{aligned}$			$\begin{aligned} & \text { Rool } \\ & \text { 1illo.10gy } \end{aligned}$	$\begin{aligned} & \text { t luor } \\ & \text { Llliololyy } \end{aligned}$	Cual Bed $\text { (hickness }\} t \mid$	No．l＇urtriys dand H1日ckiless（11）
Yi＇	（sec．IS I．JiN．K．IIW．）	6上94	LuU4	3213	511	$?$	10	（1－4）
				11／5	$\mathrm{s}^{\text {li }}$	51 t	11	
				3095	stit	511	4	（4－11）
				3065	sll	sht	3	
				ju20	ss	sh	4	
				くり安	516	sh	8	
				2986	sit	stit	4	
				2936	511	511	4	
				ctis	sh	Sth	3	
				z8u0	Ss	sh	4	
43	＇unallan Unton Gus lu．－Het $z^{2}-\mathrm{A}$ （sice 14 I．3iN．R．11W．）	6346	い」」	ぐら	511	sh	2	
				chas	sh	sh	29	$(2-4)$
				2184	511	sh	31	（2－4）
				2682	slt	sh	3	
14	Sbuchern Unton bus lo．－Iarimer Nu．I （sme d 1．32N．R．Hin．）	63ub	6314	2154	511	5 h	25	$(1-3)$
				26／0	sh1	sh	36	（1－6）
				2649	s 11	sh	＇	
				2b／y	slt	slt	$\frac{1}{4}$	
				2365	sit	sil	4	
96	（sec．lb 1．J2N．R．llW．）	6280	U291	2゙ら1	511	sh	29	（1－2）
				2486	sh1 sht	sht	48	（3－7）
				2646 2060	sht sht	sh sht	，	
				くらノ9	sh	sh1	4	
				2ち6y	sti	sh	2	
4	```sauthern Ungon lass lo. - Vte fl (sec. 16 I. siN. R.JIW.)```	6201	6211	2567	Slt	sh	26	
				2bul	sil	shi	43	$\binom{1-3}{1-2}$
				2480	51	shi	2	
				$24: 4$	Ss	slio	\％	
				2410	Sh	sh1	3	
				く3と	sil	sh	3	
91	Horchason lousts－Blact 1／，4－18 （sce．Its l．bitt．R．IIN．）	L64	610，	150＇	Sll	？	${ }^{\text {b }}$	（1－1）
				1454	sh	sh	3	（1－4）
				1312	ss	sh	46	（ $2-4$ ）
				1150	sil	sit	3	
98	Mrachason \＆liusis－Black 1／，Nu．2－14 （Sre．I＇1．J＇til．R．I IW．）	byy／	U008	2160	sh	Slt	4	
				211.	514	sh	28	（2－3）
				1944	sht	sti	48	（3－b）
				1868	sht	sht	3	
				1860	ss	sht	2	
9	Phrchlson 8 frusts－Block $1 /$ Well i－zu （Soce 20 I．Jen．R．Itw．）	0184	0194	2621 $24 / 4$	sh 5s	ch sit	13 10	
				2160	Ss	sti	40	
			6216	ccibu	516	sh1	c	
100	Sulllort than bas（a．－Ule No．b （stc．©ll I．Jeth．K．IIW．）	6208		2usu	sh	sh	2	
				2030	shit	sh	6	
				2684	sh	sh	1	
				$2 \mathrm{c} / 6$	sh1	sh	4	
				2ち05	sh1	sh	45	（9－4）
				2315	ss	sh	2	（4．j）
101	sumthorl Warun bas to．－Ule Hos 4 （Sec． 21 I．SiN．K．IIH．）	6290	usuz	2714 2640	S11 511	sh sh sh	30 $4 i$	$\left(\begin{array}{ll}1 & -4 \\ -2\end{array}\right)$
				＜¢ ¢ b	511	sh sh	$4!$ 2	
113	（sec．ía l．sin．R．IIW．）	（3）${ }^{\text {a }}$	し． 398	2850	sit	sh1	\cdots	（1－3）
				280u	sh	shi	40	（1－3）
				ごs	sit	511	\％	
		．4／1	4483	2081	ss	Sth	3	
111）	Apron－Virbeth I and（1）．H1－A （			2988 2879	s11	sit	49	（9－6）
				$28 / 9$ 2840	sit ss	S 11	10	
				2815	sh	5 lh	110	．
				2803	sho	shis	4	
			6583	2609	sit	sh		
1114	Sullthroll bitull tas lu．Hir tuvt．\＃4＂A＂ （314．4 l．Jitt．R．IIW．）	しち／4		3 c 40	sti	Sll	${ }^{\text {b }}$	
				$31 / 4$	sit	sh	4	
				suyy	sul	sh	41	（1－5）
				$30<3$	511	sht	7	
				29.0	sit	sh	：	

Puctuys
$(2-c)$
$(1-3)$ $\begin{array}{lll}\stackrel{3}{2} & \vdots & \vdots \\ \vdots & \vdots & \vdots\end{array}$

3
3
3

O

$\stackrel{3}{3}$
6529
$\stackrel{-7}{7}$
$\underset{0}{x}$
$\stackrel{\underset{\sim}{2}}{\substack{5}}$

家
き 引 引 ミ ミ ヨ ヨ
$\cong \quad \Xi$
ミ ミ ミ ミ
き
 1

Geophysical
$\frac{\text { Log }}{\text { Datum（ft）}}$
6781 Ground
Elevation（ft）
$01 / 9$
N゙
$\stackrel{\rightharpoonup}{3}$
$\stackrel{\grave{0}}{\stackrel{\circ}{0}}$
$\stackrel{\sim}{\sim}$
7408
$\stackrel{?}{\sim}$
7251.5
芭 $\begin{array}{r}\square \\ \hline 0 \\ \hline 0\end{array}$
Aplendix A（continued）

9
0
0

$\frac{\Omega}{3}$
Pan Ancrican Petroleum corf．－Pan American fee Gas Unit＂B＂
Nu． 1 Inc．（Sec． 23 T． 33 N ．R．BW．）
Pan American petroleula Corp．－Wirt gas Unit C－1
（Suc． 25 K． 3 jn．R．bid．）

$$
\text { (Sec. } 25 \text { I. } 3 \text { NN. R. BH.) }
$$

$\frac{5}{8}$
1320
$\stackrel{\circ}{\mathbf{R}}$
$\stackrel{刃}{2}$
$\underset{\sim}{\underset{\sim}{7}}$
$\stackrel{\sim}{0}$
$\stackrel{\Im}{0}$
T．II．MCLIvain－Ducar Nu．C
（Sec． 26 T． 33 N．R．dyr．）
Penrose－Lachary Uperating Cu．－Jaquez No． 4
（Sec． 21 1．33N．R．BH．）
Northese Production Co．－Igracio 33－8．No．11－30
（Sec． 30 f． 33 N. R．BH．）

$\underset{\sim}{Z}$
Ξ
$\stackrel{\rightharpoonup}{\Xi}$
Atlantic Richtield Co．－Southern vie ysz－1，33－8
（sec． 32 T． 33 N．R．BH．）

굴 咅咅
$\bar{\Xi}$
菏

皆烒

Geophysical
Log
$\frac{\text { Oatumlfy }}{}$
6517
6480

6400.5
セั
$\stackrel{0}{6}$
～
$\stackrel{\pi}{8}$
$\stackrel{\vdots}{\stackrel{j}{6}}$

앙
$\stackrel{\text { D．}}{6}$
ペٌ
ल
商
$\stackrel{\AA}{8}$
$\stackrel{\rightharpoonup}{6}$
Appendix A（continued）

$$
\begin{aligned}
& \text { Drill Hole Identification } \\
& \text { Pan Anerican Petroleum Curp. - Wirt Gas Unit "B" No. } 1 \\
& \text { (Sec. } 36 \mathrm{~T} .33 \mathrm{~N} . \text { R. } 8 \mathrm{H} . \text {) }
\end{aligned}
$$

Pocific Northwest pipeline Curp．－Bondad 33－9，No．22－2
（Sec． 2 T．33N．R． PN ．）
Pacific Northwest pipeline Corp．－Bondad 33－9，No．5－3
（Sec． 3 T．33N．R．Yw．）
，

Northest Production Co．－Bundad 33－9．No．20－5
（Sec． 5 I． 33 N．R． 94. ．）
Macric NH Pipeline corp．－Bondad 33－9，No．13－6
（Sec． 6 T．J3N．R．SN．）
Pacific NH Pipeline corn．－Bondad 33－y．No．6－7
（Sec． 7 T．33N．R．9H．）
I
准
$\stackrel{\rightharpoonup}{2}$
\approx

$\begin{gathered} \text { Maj } \\ \text { Nunber } \end{gathered}$	a A (comblnued) erill hole ldentitication	Ground Elevation(fi)	Geophysical Log Datum(f)	Coal bed Depth(ft)	Huaf Lithology	$\begin{aligned} & \text { + loor } \\ & \text { Lithology } \end{aligned}$	Coal Bed Thickuess(fl)	No. Portings and Thickness(fi)
158	Mesa Petruleam - Ule lindian dia (Sec. y l. j3N. R.yH.)	6360	63/3	2/3	sh	ss	2	
				2740	sh	sit	6	
				2130	sh	sth	6	
				2708	sit	sh	8	
				2631	sh	sh	13	
				2629	sh	sh	8	
				2530	slt	sh	5	
				2513	sit	sit	4	
				2462 2451	sht slt	sh sh	8 3	(1-1)
				2451 2443	s11 sil	sht	4	
				2429	sh	sit	2	
				2345	slt	sit	2	
				2330	sh	sit	8	(2-3)
159	Mesa Peliculeam Co. - Ute Indian 3 A (Sec. 10 T. $33 \mathrm{~N} . \mathrm{K} .9 \mathrm{H}$.)	6734	674	3030 3020	Sll	sit sh	${ }_{3}^{46}$	(2-8)
				3020 2989	sh	sh	3	
				2989 2974	sht	sht sit	9	
				2947	sit	${ }_{5} \mathrm{~h}$	3	
				2899	sit	sh	13	(1-2)
		-		2866	sit	slt	2	
				2845	sit	slt	15 9	$\left(\begin{array}{c}1-3 \\ 1-2\end{array}\right\}$
				- 2828	sit sit	sit	9 8	(1-2)
				2695	sh	sIt	10	(3-4)
100	Mesu Petruleam Cu. - Ute Indian \#Ba (Sec. 11 T. 33N. R.9世.)	6546	bste	2963 2953	sit s1t	sit sit sit	4 5	
				2953 2908	sit sit	sit sit	4	
				2877	ss	sh	${ }_{5}^{6}$	
				2824	sit	slt	5	
				2813 2741	ss	sht sh	3	
				2693	sh	sh	2	
				2660	sll	sit	13	(4-1)
				2599 2591	silt sil	sit sit	14 4	(1-1)
				2552	sh	sh	3	
14	Mesa Petrolean Lo. - Ute dindan illa 	6625	6639	3022	sit	sh	4	
				2980	sh	511	12	(1-1)
				2927	stit	sh	${ }_{8}$	
				2881 2864	sh1 shi	sht sil	8 9	
				2822	stit	sh	4	
				2745	s1t	sh	3	
				2764 2742	s11 sli	sht sh	8 2 2	(1-2)
				2717	sh	sil	2	
				2694	ss	sh	+	
				2670	sh	sit	10	(2-5)
$16:$	Facific Northwest Pipetise Corp. - Boldad Unit 33-9 No. 7-13 (sec. 13 I .3 NH . R.9W.)	6668	6678	2634 2900	sh ss	sh sh	${ }_{4}^{2}$	
				2938	stil	sh	4	
				2901	sh	sh	15	(1-1)
				2870	sh	sh	20	(1-1)
				2815	sin	sh	6	
				2718	sh	${ }_{5} \mathrm{sh}$	2	
				2697	ss	sh	3	
(1) 1	Shandarl 0 Il alid las Lu. - J. L. Melarville No. I (Si.4. 14 I. J3N. K.9W.)	6754	0713	3080 3038	ss sh sht	sh sh	15 2	(2-4)
				3038 3008	sti	sh sh	5	
				2925	sh	sh	11	
				2898	sh	sh	4	
				2870	ss	sh	3	
				2855	ss	5s	3	
				2837	sh	sh	3	
				2820 7806	Sh	sht shtil	3 4	

Appendix A (cuntiliued)			
$\begin{aligned} & \text { Map } \\ & \text { number } \end{aligned}$	Orill hole ldentitication	${ }_{\text {Ground }}$	Geophysical \log
		Elevationfti)	
180	Lyanco 0il Co. - West Allimas 1 (Sec. 3 T. $33 \mathrm{~N} . \mathrm{K} .10 \mathrm{~W}$.)	63	6530
181	Iyrico 0il lu. - Jacquez No. 1 (Sec. 4 I. 33 N. R. 10 W .)	6553	6564
182	Lynco 0il lo. - La Posta Can on No. (Sec. 5 I. 33 N. R.I(N.)	6709	6720
183	American Petrolemu Lnergy Co. Inc. - Argenta Ute Hell No. 5 (sec. 6 f.33N. R. luw.)	1037	7048
184	Iymcu Uil Curp. - Black Muuntain No. (Sec. 6 I. 33 N. K.ION.)	6864	6876
185	shelly unc cu. Vice"t"no. 1 (sec. y i.dis. k. 10w.)	6515	28
186	Jusephib. Guald - Lumldute "D" No. B (sec. 10 1.3js. R. 1 luH .)	${ }^{6393}$	6406

No．Partiogs
and
Thickness（fit）

\grave{y}
\vdots

\square
\vdots
\vdots

0

 －号

\qquad $\stackrel{m}{c}$
侖
～20
$\stackrel{3}{3}$
号
$\underset{\square}{\square}$

N

各
$\stackrel{\cong}{\square}$

0
0

Appendix A（conlinued）
Urill mole ldemification
Compass Exploratiun－Animas Nu．1－11
（Sec． 11 1．33N．K．10W．）
tI Masu Natural las Lurp．－No．20－14
（Sec． 14 T．J3N．H．Iow．）

Murchisun liusts－bluck b．No．3－22
（Sec． 27 f．33N．R．low．）

3
$\overrightarrow{7}$

Pultic Nurthest Pipeline Corp．－No．3－2t
（sec． 25 1．33N．R．juH．）

き
$\underset{\sim}{x}$
き
J

$\begin{array}{ll}\underset{i}{2} & \underset{\sim}{3} \\ \stackrel{3}{2} & \end{array}$
$\begin{array}{ll}\underset{3}{2} & \vdots \\ \dot{2} & \dot{2}\end{array}$

flour
Litholuyy
 － Gad bed
anjull！

$\stackrel{3}{3}$
$\stackrel{3}{3}$
$\stackrel{3}{3}$
$\stackrel{2}{2}$
7
0
0
$\stackrel{3}{3}$
\equiv
Giculad
Ilevalium（11）
를
3
3
3
合
$\stackrel{\Im}{3}$
$\stackrel{7}{0}$
$\stackrel{\rightharpoonup}{0}$
苞
豆

[^0]\cdots

\qquad

-

IT

Apremilx A (cuntrined)			
$\begin{aligned} & \text { Mup } \\ & \text { MumL } \underline{1} \end{aligned}$	Wrill llule ldentillcullun	Ground Elevation(ft)	Geophysical Log Datulle(1t)
204	Amesican betroteumblergy Co. Dic. - Argenta-Ute No. y (sece. 13 f.33N. H. IIN.)	6780	$6 / 95$
Cot	Amerlcan fetruleam thergy Co. Anc. - Aryemta-Ule No. 16 (Sec. 14 1. 33 H .11 .11 W.)	6845	6860
(16)	Ableridall petruleum tnegy inc. - Argenta ute No. y (sec. 14 I. $33 \mathrm{~N} . \mathrm{H.11W}$.)	7083	7095
201	American Petroleum tnergy Lo. - Argenta Ute Lease 10 (Sec. 23 I.J3N. R.JIW.)	61/1	6786
iU14	Itun HII Co. - Ada No. I (Sec. 24 I. 3sh. R.IIW.)	6534	6545
zuy	$\begin{aligned} & \text { loun uil (u. - Ute No. I } \\ & \text { (Ser. } 2 / \text { I.j3N. R. IIW.) } \end{aligned}$	$6 / 25$	6/36
410	Val R. Hexse and Assuc. - Ute Z-3A (Sec. 14 r.j3N. K.llw.)	$00 / 5$	6686
211	Lansolidated Uil and lias Lo. - Spring lreek No. 2-29 (sec. 2y I. 34N. K. UH.)	6895	6906
416	1atera - Sumbliern Uta Nu. 1 (set. ic 1. 14N. K./W.)	$6 / 05$	$6 / 18$

(

Appendix A (cuntinued)	
May Humber	Undll llule ldeml!licatlun
cis	(sec. B 1. 34N. H. BW.)
$\angle 14$	Tuelce - No. 1 Sun-Iymer Lunt (Stic. 18 J. 34 N. R. BW.)
213	Kincan uperating Cu. - HEA No. I (Sec. Ji [. $34 \mathrm{~N} . \mathrm{K} . \mathrm{BW}$.)
216	Ranton Operating gu. - Berry Ho. l (sec. 13 I. 34N. K. 8 W.)
211	Nuitliwest Pruductian Curp. - Jymacio 34-6, No. 1-34 (Sec. 34 I. J4N. R. 8 W.)
218	rucleo - Lady No. I (SuC. ic I. 34N. K.9W.)
219	kaman 0perstimy Cu. R Rllean Cbatey Nu. I (Erc. 19 1.34N. R. 9W.)
220	suathern Union Prodaction Co. - Masun I (sec. 29 1.34N. R.9H.)
$\cdots 1$	sullheral Untun Gas lu. Beston No. 1 (sec. <9 1. $54 \mathrm{~N} . \mathrm{H} .9 \mathrm{H}$.
226	Comuss lapluatron Beaston lee No. I-30 (bec. 30 I. JaN. R. 'm.)

$\begin{aligned} & \text { Row } \\ & \text { HumLu } \end{aligned}$	Whll luge demblnathun	Gronad Elevation(f)		Coal bed Depoth(t)	$\begin{aligned} & \text { Rout } \\ & \text { Lichology } \end{aligned}$	$\begin{aligned} & \text { Hoor } \\ & \text { Lilholugy } \end{aligned}$	Lus) Bed (hichness(t)	Nu. Parchitys and thickness(th)
2es		6.16	6,33	2863 2873	511 511	sh sht	5	
				2848 2792 298	sht sil sil	sh1 Sh	${ }_{3}^{6}$	(1-1)
				2742	sl1	sit	36	
				2634	sh	S11	2	.
$\therefore 4$		$60 / 6$	6ut	3614	55 51	$\mathrm{sh}^{\text {s }}$	4	
	(S.C. SS 1.34N. K.yw.)		60%	3048	sh	Sha	5	
				3036	ss	sh1	?	
				3000	sht	511	9	
				2983	sh	sti	6	
				2971 2932	sh	sht sh	${ }_{3}$	
\%				2846	sti	55	4	
		6024	6031	2815 2807	sh1 sit	sh1 sht	4	
				2796	sh1	511	6	
				2654	sht	sti	23	(1-3)
				2743	sh	sh	3	
				2676	sil	$\mathrm{sh}^{\text {S }}$	2	(1-3)
				2650	sit	she	2	
			,	2505	sh	sh	28	(2-6)
				255]	ss	ss	3	
				2436 2985	Sti	sh sh	4	
\therefore				2431	$?$?	4	
	(S.e. '4 I. 34 M . R. Jow.)	6371	${ }^{\text {b } 382}$	2587 2569	511 55	sit sit	14 9	$\binom{2-4}{1-4}$
				<556	shl	sh	3	
				2504	811	stt	8	(1-2)
				2474	slt	sit	${ }^{2}$	(4-7)
				23/5	55	s1t	20	(4-6)
				2320	sil	sh	3	
				2273	shi	sh	3	
				2252	sil	ss	3	
				2156 2136	ss sit	51 514 51t	H 2	(1-2)
(1)		6879	6892	3325	s16	sit	3	
				3273	sil	5 t	21	(3-12)
				3204 3114	sil	511 511	21	(2-6)
				3038	sit	sh	10	(1-2)
				3015 2996	s5 511	sht sil	12	$\left(\begin{array}{c}(3-6) \\ (1-2)\end{array}\right.$
				2964	ss	sh1	3	
				2870	55	st1	3	
a	(Sie. 3i 1. 34N. R. Jum.)	6862	6873	3230	sh	sh	8	
				3221	shit	sh	s	
				3214	shir	511	3	
				3147 3122	sht sh	sh sh	19 3	(1-3)
				3084	sh	sil	12	(12)
				3019	51	511	3	
				2986 2973	sht	sh sti	$\stackrel{8}{?}$	
				2967 2944	sit	516	?	
				2944	shi	sh	4	

$\stackrel{\Im}{\underset{~}{~}}$

$\begin{aligned} & \text { Ground } \\ & \text { Elevation(ft) }\end{aligned}$
6942
Appendix A (conlinued)
Э
6485
$\stackrel{\square}{3}$
Bundad 34-19, No. 3-36

Juthinstur-Shear. Cu. Bondad No. 2-34
(Sec. $34 \mathrm{~T} .34 \mathrm{~N} . \mathrm{H}$ Hum.)
Pacitic Noritiwest Pipeline cory.
(Sec. 36 I. $34 \mathrm{~N} . \mathrm{R} .10 \mathrm{~W}$.)
言咅
シ
ज

Well Nos.	Details
18	"Gas kick 2875-96'." "Mud:9.5\#" (Coal at 2894-2899')
32	"Sml gas kick 03185'." "Mud:9.3\#" (Coal at 3180-3190')
Drill Stem Tests Over Mixed Sandstone and Coal Zones	
Well Nos.	Details
80	"DST-2888-2997, 2 hrs, SI 30 min , gas in 25 min , rec $60 \mathrm{GCM}, \mathrm{FPO}$-625\#." (Coal at 2936-2954').
	"DST-3000-3147', $21 / 2 \mathrm{hrs}, \mathrm{SI} 30 \mathrm{~min}$, gas in 4 min , est 1000 MCF in 35 min , flowed wtr in 2 hrs , FP 500-1305\#." (Coal at 3036-3051'; 3057-3069'; 3086-3092')
107	"DST 2641-2725, op 23, SI 45, op 47, SI 45, GTS in 9 min , no gauge, rec 250 GCM, FP 137-157, SIP 1219-1258, HP 1487-1461." (Coal at 2674-2716')
109	"DST 2756-2916 (Fruitland) 1 hr , gas in 2 min 0200 MCFPD, rec 165 GCM, FP 96\#, SIP (30 min) 1240\# HP 1400\#." (Coal at 2775-2784', 2813-2816', 2865-2910')
160	"DST 2505-2965, op 10, SI 30, op 150, SI 240, rec 441 mud, 1125 HGCM, FP 235-374, 511-702, SIP 1131-1386, HP 2487-2961." (61' coal between 2552-2967, see Appendix A)
163	"DST 2790-3107, 2 hrs, gas in 9 min, orate 75 MCF, 1345' GMC, FP 560-830\#, SIP (1 1/2 hrs) 1420\#." (52' coal between 2806-3905', see Appendix A)
Production Tests in Mixed Sandstone and Coal Zones	

Production Tests in Mixed Sandstone and Coal Zones

Well Nos.
107

109

Details

"Perf 2607*, 2614, 2621, 2628, 2635, 2642, 2649, 2654, 2660, 2665. Acidized w/500 gals. Perf 2680-89 w/1 pf. Acidized w/500 gals. Perf 2720-24 w/lpf. Acidized w 500 gals. F 6 MCFGPD."
(Coals at 2603-2608', 2674-2716')
"Jet-2 per ft- 2744-50, 2760-68, 2778-82, 2790-97, 2801-08, 2870-74, 1 per ft-2820-60; sdfract.

```
28,000#sd, 31,000 gals water. l PF (Fruitland)
1585 MCFGPD, 3/4 "ck" (Coals at 2775-2784',
2865-2910')
```

"12-4-73 perforated Fruitland intervals 2505-09, 2521-24, 2578-82, 2592-96 with 2 SPF. Displaced hole with 1% KCl water. Spotted 500 gallons 15% HCl at 2596'. Pumped in 3500 gallons water treated with $1 \% \mathrm{KCl}$ and 10 pounds Gel per 1,000 gallons. Sand-water fraced with 6,630 gallons water, treated as above, and 6,000 pounds $10-20$ sand. BDP 1200. Established injection rate of 36 BPM at 3200 psi. After 6,000 pounds sand in formation, rate dropped from 36 to 30 BPM and pressure increased to 3500 psi in 45 seconds. Bled off pressure and attempted to frac again. Only got 18 BPM at 3500 psi.

On 12-5-73 spotted 500 gallons $15 \% \mathrm{HCl}$ acid and reperfed intervals 2502-09, 2521-24, 2578-96 with 2 SPF. Pumped 3,240 gallons treated water and sand-water fraced with 17,870 gallons treated water, 5,800 pounds $20-40$ sand and 8,000 pounds $10-20$ sand and started to sand off. Rate dropped to 10 BPM with 3500 psi. Backflowed for 8 minutes and flushed. Maximum and average pressure 3500 psi. AIR 31 BPM. Tested well by alternately flowing and swabbing well with gas too small to measure. (Coals at 2459-2461', 2501-2511', 2521-2526', 2572-2615')
"Initial Production: 622 MCF Gas Per Day, SIP 1379\#, Perf. 292 shots 2569-2640'." (Coal at 2581-84')
"Perf 2596-2610, 2614-20, 2666-74, 2679-83 w/2pf. Fract w/40,320, gals wtr, 40,000 sd" "made large quantities of water and very little gas." (Coal at 2607-2621', 2666-2684')
*underlined perforations are in coal beds
$\frac{\text { Wells Producing from Sandstones in Coal Bearing Zones }}{(\text { coals are listed in Appendix } A)}$

Well Nos.
83

Details

"IPF 377 MCFGPD, 3/4" ck, TP 19\#, CP 84\#." in Fruitland sandstone, "perf. 2520-38 w/2pf."
"IPF 2237 MCFGPD, 3/4" ck, 3 hrs., TP 172\#, CP 349\#" in Fruitland and Picture Cliffs sandstones, "perf 2448-62 w/2pf sdwtrfract" and "perf 2796-2820 w/lpf sdwtrfract."
"IPF 824 MCFGPD, $3 / 4 " \mathrm{ck}, \mathrm{TP} 56 \#, \mathrm{CP}$ 184\#" in

Fruitland sandstone, "perf 2610-30 w/2pf sdwtrfract."
"IPCAOF 7326 MCFGPD" in Mesaverde sandstones, "perf 5317-5801" gross
"IPF 44 MCFGPD, $3 / 4$ " ck, CAOF 351 MCFGPD" in Fruitland sandstones, "perf 2416-2552 (gross)"
"IPF 7653 MCFGPD" in Mesaverde sandstones, "perf 5079-5560 (gross)."
"SI Gas" perf "2610-85 (gross)" in Fruitland sandstones
"IPCAOF (Fruitland) 420 MCFGPD," perf Fruitland sandstones 2769-96 (gross)

MAP A - PETROLEUM EXPLORATION HOLE LOCATION MAP, A PORTION OF THE SAN JUAN BASIN, COLORADO

MAP B - GEOLOGIC MAP OF A PORTION OF THE SAN JUAN BASIN, COLORADO

MAP C - STRUCTURE MAP ON THE LOWER-MOST FRUITLAND-PICTURED CLIFFS CONTACT, A PORTION OF THE SAN JUAN BASIN, COLORADO

MAP A - ISOPACH MAP OF THE COAL-BEARING FRUITLAND FORMATION, A PORTION OF THE SAN JUAN BASIN, COLORADO

MAP B - NET COAL THICKNESS MAP OF THE COAL-BEARING FRUITLAND FORMATION, A PORTION OF THE SAN JUAN BASIN, COLORADO

MAP C - COAL PERCENTAGE MAP OF THE COAL-BEARING FRUITLAND FORMATION, A PORTION OF THE SAN JUAN BASIN, COLORADO

MAP A - NET SAND THICKNESS MAP OF THE COAL-BEARING FRUITLAND FORMATION, A PORTION OF THE SAN JUAN BASIN, COLORADO

MAP B - SAND PERCENTAGE MAP OF THE COAL-BEARING FRUITLAND FORMATION, A PORTION OF THE SAN JUAN BASIN, COLORADO

MAP C - COAL RESOURCE ESTIMATE MAP OF THE COAL-BEARING FRUITLAND FORMATION, A PORTION OF THE SAN JUAN BASIN, COLORADO

[^0]:

