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ABSTRACT

The estimation of probability distributions of maximum annual flood peak by using a combination of proba-
bility distributions of the number and the magnitude of flood peaks that exceed a selected truncation level, is
the subject matter of this paper. This method of estimation is tested on the 17 daily streamflow series of
gaging stations in the United States. Five discrete and six continuous probability distribution functions were
used to fit their frequency distributions of the number and the magnitude of exceedances above the selected
truncation level of partial flood series, respectively. From them the best fit functions are selected. For
these functions inferred, the goodness-of-fit statistics are related to the truncation level of partial series.
The probability distribution of the largest annual exceedance of the instantaneous flood peak (represented by
highest daily discharge), with assumptions postulated and tested on these 17 time series. The sequential depen-
dence in partial and annual flood peak series is also investigated, with the dependence of partial flood peak
series increasing with a decrease of the truncation level. For the range of truncation levels studied in this
paper, the average number of exceedances per year varied from one to four, with the sequential dependence
relatively small for the rivers used as examples.

The mathematical model for generating samples of daily flow series is selected and refined. The daily
flow series of two gaging stations, with different runoff regimes were used in testing the model. With the
models based on statistics of the samples of the daily flow series of these two river examples, as well as of
their derived annual flood peak series, the generated samples of daily flows showed the parameters to be close
to the inferred parameters of historic daily flow series. The generated samples reproduced well the flood
extremes. These samples then were used to investigate the properties of flood peaks.

By using the generated samples of daily flows, the efficiency of estimated annual flood peaks of given
return periods was investigated by using both the annual and the partial flood peak series. The sampling
variances of annual flood peaks of given return periods, obtained from each of these two flood peak series,
were compared both analytically and experimentally from generated samples. The estimates of annual flood peaks
of given return periods from the partial flood peak series showed a smaller sampling variance than the corres-
ponding estimates from the annual flood peak series, when the average number of exceedances per year in partial
flood series was at least 1.65 for an exact analytical comparison, and at least 1.50 for an approximate analyti-
cal comparison. The ratios of sampling variances of estimated annual flood peaks for these two approaches did
not show a dependence on the sample size.

In case of the use of the empirical approach, the sampling variance of estimated annual flood peaks from
the partial flood series showed to be smaller than the corresponding sample variance of estimated annual flood
peaks from the annual flood series, for the range of investigated return periods and for the average number of
exceedances in partial flood series of at least 1.95 for the sample sizes 10-25, and somewhat larger than 1.95
for the larger sample sizes.



Chapter |
INTRODUCTION

1.1 Introductory Remarks

Floods and droughts as runoff extremes represent
some of the most damaging natural disasters, with which
humanity has to live and struggle through all the re-
corded history. Floods represent a rapidly evolving
disaster. Basic flood risks are functions of climatic
factors, conditions of river basins, and the state and
occupancy of river floodplains. These risks can be
changed only by changing these factors, conditions,
state, and occupancy.

The analysis of flood frequency distributions, as
the inference making about flood probability distri-
butions, plays a major role in hydrologic and economic
evaluations of water resources projects and in es-
tablishing project design criteria. The large highway
programs that include bridges and drainage design
belong to the major undertakings which depend on flood
frequency analysis, because they require large expendi-
tures of public funds. In the construction of dams,
the spillways account for a sizable portion of the
total cost. The capacity of a spillway is governed
by flood characteristics of given frequency or re-
currence interval. Besides the usual needs for infor-
mation on floods for most water resources projects,
this information has become of paramount importance
for flood insurance. The most reliable determination
of flood levels for given return periods is needed in
floodplain delineation and for establishing the
appropriate flood insurance rates.

The definition of a flood often is not precise.
In general, a flood is a relatively high flow that may
or may not overtop the banks of a stream, and which
may or may not cause damage. The general public
usually refers to floods as high flows that cause
damage. The water resource specialists frequently
define floods as flows of the magnitude close to or
higher than the one-year return flood. Usually, the
maximum instantaneous annual flood peak discharges of
each year are used in flood analysis. Often the maximum
instantaneous flood peak discharge. To avoid the
division of the water year by the arbitrariness in
selecting 365 daily values of the calendar year, many
countries use the water year beginning with usually
lowest flows (dry seasong rather than using January 1
as the year beginning.

Two types of flood peak series, the annual flood
series and the partial flood series, are considered in
this study. The annual series consists of the largest
flood in each year, as defined above. The partial
flood series consists of all well-defined flood peaks
above a specified magnitude, often called the flood
truncation level. Partial flood series is approxi-
mately derived from the mean daily flows, since instan-
taneous peak flows for events smaller than the annual
maximum peak are not readily available. While the
time series of mean daily peak flows are close to the
instantaneous peak flows of large catchments, the
partial series of mean daily flows is only an approxi-
mation to instantaneous peak partial series for small
flashy catchments, since the instantaneous peaks are
smoothed in daily averaging of flows.

1.2 Major Problems Needing Studies

A classical dilemma in flood frequency analysis
is whether to use either the annual flood peak series,
or the partial flood series of all the peaks above a
given truncation level. The most frequent objection

encountered with respect to the use of annual flood
series is that it uses only one flood for each year.

In certain cases the second largest flood in a year,
which the annual flood series neglects, may outrank
many annual floods. of other years. The largest annual
discharges in dry years of some rivers in arid or semi-
arid regions may be so small that calling them floods
may be misleading. Another increasingly important
shortcoming of annual flood series is that only a small
number of floods is considered. On the other hand, the
partial flood series appears to be more useful for
theoretical analysis than the annual flood series,
since the objections raised on annual flood series do
not apply. The major drawback of partial flood series
is that the sequence of flood events might not be
independent time series since some flood peaks may
occur on the recession 1imbs of preceding floods.
However, the dependence of partial flood series is a
function of the selected truncation level which defines
a particular partial flood series. If the truncation
level is selected in such a way that the average number
of floods per year is greater than one, and the assump-
tion of independence of these floods still valid, the
partial flood series may become more useful for theo-
retical analyses than the annual flood series. Con-
sequently, in order to ascertain whether the partial
flood series is more efficient for estimating the flood
values of given return periods than the annual flood
series, the comparison of sampling variances of f1ood
peaks of given return periods obtained from each of

the two flood peak series needs to be investigated.

Another problem of continuing interest in flood
frequency analysis in case of annual flood series with
small sample size is the reliability of estimates of
skewness coefficients of historical flood series.
Regional estimates of these coefficients may be the
only solution in case of short historical records.

To overcome the problems of short annual flood
series, the consideration of all the flood peaks above
the given truncation level, as partial flood series
should be used. This approach provides an alternative
a€proach of estimating the probabilities of annual
flood peaks by a combination of distributions of the
number and the magnitude of flood peaks above a
suitable truncation level. This approach has two
important advantages over the empirical distribution
approach in using the annual flood series. First, the
partial flood series would contain more floods than the
annual flood series. Hence, in general, the estimate
of parameters of annual flood distribution from the
partial flood series would be subject to lesser un-
certainty. Second, the theoretical expressions on
annual flood distributions obtained through charac-
teristics of partial floods have physical relevance
and often are exact distributions rather than
asymptotic.

Further studies are necessary in order to answer
many questions arising in the use of partial flood
series and achieve the dual goal of consistency and
accuracy in estimating flood values for given flood
return periods. For example, the range of suitable
truncation levels to be used for defining partial flood
series should be well investigated, as well as the
probability distribution functions of the best fit for
the frequency distributions of the number of floods
exceeding the truncation level for a given time interval.
Investigations are needed for probability distributions
of the flood magnitudes of partial series, as well as
the probability distributions of the largest flood for



the same time interval. A question remains whether
the dependence is significant in partial flood series
for each truncation level.

1.3 Objectives of the Study
The major objectives of this study are:

(1) To estimate parameters of probability dis-
tributions of annual flood peaks by using the partial
flood series, instead of estimating parameters
directly from annual flood series.

(2) To compare efficiency in using annual and
partial flood series for estimating annual flood
peaks of given return periods by using the sampling
variance of such estimates of annual flood peaks,
estimated from each of the two series for various
sample sizes and assumed probability models.

(3) To develop mathematical models for generating
the long records of daily flow data for the use of
records in the comparison of efficiency of estimates
of annual flood peaks by using annual and partial
flood series.

1.4 Procedures Used

The theory of probability distributions of partial
series of flood peaks is outlined in Chapter III. It
includes the outline of selected discrete distribution
functions for the number of floods and the continuous
distribution functions for flood magnitudes used for
fitting the frequency distributions of the number and
the magnitude of flood peaks above a given truncation
level, respectively. The assumptions used in deriving
the probability distribution of the largest flood peak
in the year from the combination of distributions of
number and magnitude of flood peaks of partial flood

series are given. This chapter ends with a procedure
used in comparing the sampling variances of annual
flood peaks of given return periods obtained from
annual and partial flood series. ’

The application of the theory of probability
distribution of partial series of flood peaks to 17
stream flow gaging stations throughout the United
States is presented in Chapter V. Probability distri-
butions are selected from distribution functions out-
lined in Chapter III, by using the goodness-of-fit
parameters in fitting the 17 frequency distribution
functions for both the number and the magnitude of
floods for the year as the time interval. The results
of investigation on how the parameters of selected
distribution functions change with the truncation
level are then presented. The derivation of proba-
bility distribution of the largest flood peak in a
year is given with the necessary assumptions postu-
lated and tested on observed data. Chapter V further
includes the study of dependence of annual flood
series and partial flood series, as well as how the

.degree of dependence of partial flood series changes
with the change of the truncation level.

Procedures used in developing the mathematical
model of daily flow series are presented in Chapter IV.
Results of generation of long records of daily flows,
by using the parameters of the Boise River, Idaho and
the Powell River, Tennessee, are shown in Chapter VI.

The comparison of efficiency in using annual and
partial flood series for estimating annual flood peaks
of %1ven return periods, by using generated daily flow
series, is presented in Chapter VII. The long records
of generated daily flow series are used for verifying
properties and assumptions, as required in the develop-
ment of the partial flood series model.



Chapter Il
REVIEW OF LITERATURE

2.1 Definitions of Annual and Partial Flood Series

Flood data is usually listed either in the form
of an annual flood series or a partial flood series.
Annual flood series is a sequence of annual floods,
with annual flood defined as the largest instantane-
ous peak discharge of each year of record. Some-
times the maximum mean daily discharge of each year
is used as this flood. The partial flood series
are not as precisely defined as the annual flood
series. The definition of partial flood series
depends on the application of the flood fregquency
curves as well as the hydrologic river basin charac-
teristics. Water Resources Council (1976) defines
the partial flood series as a sequence of separate
flood events. These separate floods are arbitrarily
defined as events separated by at least as many days
as five plus the natural logarithm of square miles
of drainage area, with the requirement that the inter-
mediate flows must drop below 75 percent of the lower
of the two separate maximum daily flows. Zelenhasic
(1970) and Rousselle (1972) defined the partial flood
series as all flood peaks which are called exceedances
above a given truncation level. In the case of a
multiple peak flood hydrograph, only the largest
discharge is considered to be the flood peak. This
latter treatment of partial flood is an approximation,
with an expectation that the independence of flood
peaks would be closely preserved. It is feasible to
separate a complex hydrograph in such a way as to
obtain independent flood peaks; however, that approach
would complicate the estimate of partial flood series
with no significant advantage in modeling floods by
the partial series approach.

2.2 Theories of Probability Distributions of Annual
Flood Peaks

Large numbers of references are available on
flood studies by using the statistical approaches.
It would be beyond the scope of this study to cover
all the methods proposed to date. For purposes of
showing the versatility of approaches to the problem,
some analytical methods that have been used by indi-
viduals and agencies in recent years will be reviewed.

Flood probability distribution functions have
been tested empirically, and when found unsatisfactory
they have been replaced by the new functions. It was
found out relatively early that logarithms of annual
flood peaks are often well fitted by the Gaussian
normal function. Because of high skewness coefficient
in flood frequency distributions, functions with such
characteristics are looked for., If annual flood peaks
could be considered as products of effects of a large
number of random causal factors, it should be log-
normally distributed, since logarithms of the variable
could be considered as sums of effects of a large
number of random causal factors, therefore normally
distributed by the central 1imit theorem (Chow, 1954).

Based on the annual flood series of 1959 long-
record river gaging stations in the United States,
Beard (1954) concluded that with rare exceptions the
Togarithms of annual flood of mean daily flows are
normally distributed.

Foster (1924) preferred to work with untransformed
data and hence sought to fit the skewed distribution
functions. He introduced the use of the Pearson Type
III density function, with the empirical support for
it from data, although some hydrologists consider the
application to be somewhat difficult.

"those stated by Gumbel.

The Gumbel extreme value distribution is one of
the three limiting forms of distributions of the
largest member of a sample of N independent random
variables from a distribution which satisfies certain
conditions in the asymptotic behavior of its tails.

Extreme value theory indicates that if the random
variable XN is the maximum in a sample of size N from

some population of x values, provided N is sufficiently
large, the distribution of XN is one of the three

1imiting forms, the choice depending on the parent
distribution of x. Since the maximum daily flow in a
year is the maximum of N = 365 values, Gumbel (1941)
postulated that it should be distributed as the ex-
treme value variable. However, the N values of daily
flows are highly dependent and they are not identically
distributed, since it is well known that daily flows
are highly autocorrelated with periodic parameters.

If, therefore, the annual flood peaks follow an extreme
value distribution, it is for some other reason than

If daily flows are not in-
dependent in the annual collection of 365 values, one
may find a group of independent values to replace
dependent values. Unfortunately, this group if
determined would be so small that the assumption of

a large sample would be violated. Furthermore, the
critical assumption is the assumption that the parental
population is made up of identically distributed

random variables. It is not feasible to assume that
the daily flows of the first of May have the same dis-
tribution as those of the first of December, as shown
by Quimpo (1967) because the mean and the standard
deviation of daily flows are periodic. Hence, the
theoretical arguments that flood peaks follow an
extreme value distribution are weak, not supported by
time series properties. In addition, the problem is
the selection of the type of extreme value distri-
bution; according to extreme value theory, this distri-
bution depends on the type of parental distribution,
which is not known a priori.

At present, the latest word on frequency analysis
of annual flood series in the United States may be the
method adopted by Water Resources Council (1976). It
is condensed in Bulletin No. 17, prepared by the Hydro-
logy Committee of the Council. This bulletin is an
extension of Bulletin No. 15, "A Uniform Technique
for Determining Flood Flow Frequency" (U.S. Water
Resources Council, 1967, and also Benson, 1968). At
its inception the method raised controversies among
water resources agencies. The suggested and adopted
probability distribution function for flood peaks in
the bulletin is the Pearson Type III distribution
function applied to logarithms of the annual flood
peaks, briefly called the Log-Pearson Type III
function. Parameters of that function are expressed
in terms of the mean, the standard deviation, and
the skewness coefficient, computed for logarithms of
annual flood peaks.

The unadjusted frequency curve is obtained by
computing the logarithms of annual flood peaks which
correspond to selected points on the frequency scale.
Since the samples used in hydrologic studies are of
finite sizes, an adjustment of the exceedance frequency
is necessary. The magnitude of flows which correspond
to each of the selected points js computed by:

Tog Q = x + KS ,

in which log Q = the logarithm of flow which corres-
ponds to a specified value of the unadjusted



exceedance probability, x = the mean of logarithms
of sample values, S = the standard deviation of _
logarithms, K = the deviation from the mean (x-x)/S
(in the standard deviation units) of variable values
with the exceedance probability P (unadjusted).

The Guidelines by Water Resources Council suggest
a series of analytical and statistical refinements to
improve the accuracy of frequency curves obtained by
that procedure. Such a refinement is the elimination
of the bias in relation to the average future expecta-
tion, by adjusting the exceedance probability P to
an expected exceedance probability which accounts for
the actual sample size. Another refinement relates
to the skewness coefficient. Since hydrologic records
are usually shorter than 100 years, the sample esti-
mates of this coefficient are unreliable. Specifically,
if records available are of 100 years or more, the
station skewness coefficient should be used exclusively.
For records of 25 to 100 years, a weighted skewness
coefficient should be calculated in which the station
skewness is given the weight of (N-25)/75, where N =
the length of record, and the generalized skewness is
given a weight of [1.0 - (N-25?/75]. Guidelines also
provide adjustments for zero flow, incomplete records
and the treatment of outliers.

A problem of increasing interest in flood frequency
analysis is the reliable estimation of skewness coef-
ficients of historical flood records. The result of
experiments made by Matalas, Slack, and Wallis (1975),
further commented by Klemes (1976), has shown that in
applying the concept of regionalizing (and, even more,
contouring; Hardison, 1974) the skewness coefficient of
annual flood peaks has a serious fault. In their con-
cluding remarks, Matalas, Slack, and Wallis (1975)
caution that the regional estimates of the skewness
coefficients should be conditioned on the record length
N, because of the bias and boundness of the small sample
extimates. More cautions on hydrologic grounds were
advanced by Klemes (1976). First, that the regional
estimates of skewness coefficients should be conditioned
also on basin area and physiographic features. Second,
that the skewness coefficients of annual flood peaks
are likely to vary along the course of a river, with
reversals in the direction of change. Similarly, the
skewness coefficient of a tributary may be very differ-
ent from that of the main river. Third, it follows
that the regional estimates of skewness coefficient,
even though they depend on sample size, basin area and
main physiographic features, reflects only an overall
average tendency of the regional skewness coefficient,
so“they cannot be expected to be good estimates for
individual basins or gaging stations. They should not
be used as design standards for assessing flood
frequencies at individual sites.

Natural Environment Research Council (1975) of the
United Kingdom adopted the general extreme value dis-
tribution (of which the Gumbel distribution is a special
case) to achieve standardization of flood-frequency
procedures used in the United Kingdom. As reported by
the Council, seven distribution functions were tested
by calculating the goodness of fit indices for 28
stations with 30 years or more of records in Great
Britain and for seven stations of between 23 and 44
years in Ireland. The result of the test showed that
the Pearson Type III and the log-Pearson Type III
functions were sensitive to the formulation of tests,
and their goodness-of-fit changed places in the order of
merit when the type of test was changed. The general
extreme value distribution was more stable, and for
this and other reasons it was recommended as the first
choice among distributions of annual flood peaks by
the Council. However, when only a small sample is
available, say N less than 25, the Council recommended

that the Gumbel distribution be fitted if an estimate
based on the sample data alone is required. However,
it should not be used for gross extrapolations,

‘because on the average this leads to an underesti-

mation of peaks for high return periods.

Another distribution, which consists of a mixture
of two distributions, was suggested for annual flood
peaks by Singh and Sinclair (1972). If the annual
flood peaks could be classified in some objective
manner into two groups, between which there is a
noticeable difference in the distribution of variate
values, then the concept of a mixture of distributions
may be useful. For example, the annual flood peaks
might be classified according to whether they arise
from thunderstorm rainfall or from other types of pre-
cipitation, or from snownelt. This application by
Singh and Sinclair is a device for introducing a five
parameter distribution, while previously only two and
three parameter distributions have been used. A
mixture of two normal distributions, applied to
logarithms of annual flood peaks, was proposed. How-
ever, this did not require a classification of flood
records into two types, and the estimation of para-

.meters of each component distribution and of the

mixture parameter separately. The proposed method of
estimation of parameters was by using only means and
variances. They concluded that for the medium to
high floods (of greatest interest to engineers and
hydrologists) the prediction was satisfactory by this
method.

2.3 Theories of Probability Distributions of Partial
Series of Flood Peaks

The standard approach to the analysis of flood
peaks consists roughly either by applying the limit-
ing distributions of the maximum value in a sequence
of independent, identically distributed random vari-
ables, such as Gumbel's approach, or simply by testing
which theoretical distribution best fits the observed
frequency distributions of annual flood peaks. A
different approach to the problem of flood peak
analysis is to use a stochastic model for the des-
cription and analysis of excessive stream flows, or
the partial flood series.

Borgman (1963) discussed the meaning and impli-
cation of the return period. He proposed the risk
criteria such as the encounter probability, distri-
bution of the waiting time, distribution of the total
damage, probability of zero damage, and the mean total
damage. Each criterion was derived from three mathe-
matical simplifications of the actual physical and
engineering situation.

Shane and Lynn (1964) developed a probability
model based on the time independent Poisson process
and the theory of sums of a random number of random
variables for using in the analysis of base-flow
flood data. From the model, design equations were
derived relating several commonly used measures of
risk to the design discharge: recurrence interval
distribution, encounter probability and expected re-
currence interval. Furthermore, Shane and Lynn (1969)
developed confidence limits along with a Tower bound
for the corresponding level of confidence for evalu-
ating the effect of sampling errors on flood risk
evaluation from base-flow flood data.

Kirby (1969) defined flood peaks as successes
or exceedances in a sequence of randomly spaced
Bernoulli trials, each representing the occurrence of
a hydrograph peak. An arbitrary criterion for dis-
tinguishing between floods and ordinary hydrograph
peaks was used. His model showed that, at



sufficiently small exceedance probabilities, the
probability distributions of times between exceedances
and the number of exceedances approach those implied
by trials from a Poisson process.

Although the theory of extreme values has been
extended beyond Gumbel's distribution function, its
applications to flood frequency analysis have been
limited to that distribution, except for the appli-
cations made by Todorovic and his co-workers (Todoro-
vic, 1970; Todorovic and Zelenhasic, 1970; Todorovic
and Rousselle, 1971; Todorovic and Woolhiser, 1972),
and Gupta, Duckstein, and Peebles (1976). Gumbel's
distribution stems from applying the classical
extreme value theory to a complete series (such
as daily flows). As mentioned before, the mathe-
matical assumptions underlying the classical extreme
value theory are not applicable to most flood problems.
However, the theory developed by Todorovic and his co-
workers may be more meaningful for flood frequency
analysis than the classical extreme value theory.

The first attempt to develop a theory by Todorovic
(1970), Todorovic and Zelenhasic (1970), was based on
stream flow partial duration series. The series of
flows in a partial duration series within an arbitrary
but fixed time interval is represented by a random
number of random variables. The time dependent Poisson
process was used to describe the distribution of the
random number of exceedances. It is applied to stream
flow by further assuming that the individual exceed-
ances form a sequence of identically independent
random variables which are represented by an expon-
ential distribution. However, the theory is suffici-
ently general as to treat also the non-identically
distributed exceedances. In addition, it is applicable
over any arbitrary time interval of interest, such as
season or a year.

From a physical point of view, this method appears
more feasible for flood peaks than the classical ex-
treme value theory for two reasons. First, when the
truncation level which defines a partial flood peak
series is taken adequately high, the assumption of
stochastic independence among individual exceedances
becomes reasonable. Second, the assumption that the
number of exceedances in a fixed time interval is a
random variable allows this approach to be applied to
an arbitrary time interval, which is not true for the
classical extreme value theory.

The extension of the above approach to flood
frequency analysis by Todorovic and Rousselle (1971)
was by realizing that for a time interval equal to a
year the assumption for exceedances being identically
distributed is unrealistic, since different storm
types can produce different flood characteristics from
one season to another. Accordingly, they derived a
distribution function for the largest flood peak for
the case where two or more different exceedance dis-
tribution functions occur within a time interval.

By considering the application of this approach
for deriving the distribution function of the largest
exceedance in a time interval, the question requiring
attention is the independence of the event that exactly
k exceedances occur in a given time interval and the
event that all those k exceedances are less than or
equal to the specified value. In other words, the
question is whether the magnitude of those exceedances
are independent of the number of exceedances in a time
interval. The case pertaining to previous works by
many authors is that the magnitude of exceedances are
independent of the number of exceedances (Todorovic
and Zelenhasic, 1970).

Todorovic (1971) used the above method, together
with the mathematical assumptions of Todorovic and
Zelenhasic (1970), to derive another important
property of the extreme flood, namely, its time of
occurrence within a selected time interval. The ex-
pression for the time of occurrence of the extreme
flood obtained by Todorovic (1971) is exact. It was
tested on two rivers in the United States by Todorovic
and Woolhiser (1972). Gupta, Duckstein, and Peebles
(1976) extended the work by Todorovic and Woolhiser
(1972) and developed the expression for the joint dis-
tribution function of the largest flood peak and its
time of occurrence. They also modified this expres-
sion, valid for the case of identically independent
exceedances, to the case of independent but non-
identically distributed exceedances.

2.4 Relationship between Annual and
Partial Flood Series

The empirical relationship between the probability
of annual flood series and the expectancy of partial
flood series was investigated by Langbein (1949) and
the corresponding relationship was derived by Chow
(1950). Let P_ be the expectancy of a variate in the

partial flood series being equal to or greater than
X, and let m be the average number of events per year,
or mN be the total number of events in N years of
record. Then Pp/m is the probability of an event

being equal to x or greater, and 1 - Pp/m is the

probability of an event being less than x. Thus the
probability of an event of magnitude x becoming a

maximum of the m events in a year is (1 - prm}m.
The probability approaches exp(-Pp) when Pp is small
compared with m. Hence, the probability Pa of an

annual flood series of magnitude x being equal to or
exceeded is

Sk exp[-Pp)

or
Pp = -1n (1 - Pa)
in which Pp approaches Pa as both Pp and Pa become

small. The recurrence intervals in partial flood
series are smaller than in annual flood series, but
the differences become negligible for floods greater
than about a five-year recurrence interval
(Langbein, 1949).

In more mathematical terms, if partial flood
models and annual flood models are derived under
specified assumptions, and if these models are accepted,
the theoretical relationship between annual and partial
flood series may be derived. When the Poisson distri-
bution for the number of exceedances in a year and the
exponential distribution for the magnitude of these
exceedances are assumed, combined they give a double
exponential or Gumbel distribution of annual flood
peak series (Zelenhasic, 1970). The double exponential
distribution of annual flood series is an exact dis-
tribution, derived from the model of partial flood
series under commonly used assumptions.

Cunnane (1973) used the above relationship for
comparing the statistical efficiency of estimates,
Q(T), of the T-year flood by using the annual and
partial flood series. On the basis of commonly used
assumptions, he concluded that the estimate of Q(T) of
annual exceedance series (i.e., the exceedance series



that has the average number of exceedances per year
equal to one) has a larger sampling variance than the
annual flood series estimate for the return periods
greater than 10 years. For the same range of return
periods the estimates of Q(T) of partial flood series
have a smaller sampling variance than the estimates
from annual flood series only if the partial flood
series contained at least 1.65 N items, with N = the
number of years of record. These results are based on
a theoretical approach as well as on general assumption
that the distribution of annual flood series is exactly
a Gumbel distribution and the partial flood series is
represented by the combination of the Poisson distri-
bution for the number of exceedances and the exponen-
tial distribution for the magnitude of those
exceedances.

2.5 Modeling Daily Flow Series

In the analysis of time series, their structure
can be considered to be a combination of three com-
ponents: trend component, periodic or cyclic com-
ponent, and stochastic component. The trend component
may occur as a result of either man-made changes
within the watershed or by natural causes. The
presence of a periodic component is attributed to
astronomical cycles. The dependence among the suc-
cessive values of the stochastic component are usually
described by a deterministic model plus the independ-
end stochastic component. If the trend does not
exist or is not significant, the general structural
model reduces to a combination of periodic parameters
and a stochastic component. The description and
separation of these deterministic and stochastic com-
ponents of hydrologic time series are described by
Yevjevich (1972c). If the time series can be separated
into components, the generation of their new samples
can be carried out by the reversed procedures.

Roesner and Yevjevich (1966) used a seasonal
model for generation of monthly flows. The annual
periodicities were in the mean and standard deviation
of the series, while the dependence of stochastic com-
ponents was fitted by the Markov models. Harmonics
of periodic parameters were inferred by spectral ana-
1ysis, and described by Fourier series. Quimpo (1967)
followed a similar representation for daily flows. He
applied this approach to daily runoff records from 17
gaging stations in the United States, and found that
all the series of stochastic components satisfied ap-
proximately the second order autoregressive model.

Tao, Yevjevich and Kottegoda (1976), and also
Tao (1973), using the same data as Quimpo (1967), made
an extensive study of fitting the distribution func-
tions to independent stochastic components for differ-
ent time intervals of series. The important con-
clusions are: (1) In case of independent stochastic
components of daily flow series, none of the proba-
bility distribution functions currently used for
fitting the frequency distributions could pass the
chi-square and Smirnov-Kolmogorov tests; (2) The
double-branch gamma function gave the best goodness-
of-fit among the distribution functions tested;
(3) The logarithmic transformation provides some
improvements in the analysis by assigning different
weights to values of the original series and by re-
ducing flow fluctuations in comparison with the
original series; and (4) Errors in determining the
number of significant harmonics and errors in esti-
mating their Fourier coefficients greatly affect the
accuracy of inferred periodic functions.

The use of a similar model for generating daily
flows on British data was studied by Hall and 0'Connell
(1972). They transformed the original series by taking

natural logarithms of daily flows and performing an
analysis on the transformed series. Six harmonics
were required to describe the periodic daily means

and standard deviations. First-order Markov models,
with a lognormal random component, were found to fit
the stochastic component. They faced the same problems
as Quimpo (1967), and Tao, Yevjevich and Kottegoda
(1967), namely that it is difficult to find a good dis-
tribution function of independent stochastic component,
as tested by commonly used test statistics. By gene-
rating new sequences of daily flows, equal in length
to the historical record, they found that the daily
means and daily standard deviations, as well as the
flow duration curves of the generated flows, were
remarkably similar to those of the historical data.
However, during the summer half-year, a lesser fluctu-
ation was apparent in the daily standard deviation of
generated data.

So far, the classical hydrologic analysis by
using Markovian or other linear models, with periodic
parameters, has been successful in generating stream
flow series with a long time interval, such as for
weekly and monthly flows. Extensions of these models
-to daily flows have met a limited success. This is
mainly due to high variation of flows, unconventional
probability distributions of independent stochastic
components, and a failure to simulate processes to
transfer hydrograph characteristics into the historical
flows (Kottegoda, 1972). Investigations on the origin
of these failures in case of daily flow series were
undertaken by Vargas (1977). By using the data gene-
ration method, he systematically checked each of the
stages of modeling and estimation of model parameters,
with the purpose of assessing whether failures origi-
nated by biases in estimation procedures, or by in-
appropriate models. He concluded that the inference
on the number of significant harmonics in periodic
parameters affected all stages of estimation. The
underestimation of the number of harmonics in periodic
daily means and standard deviations Ted to a rejection
of the hypothesis of independence of stochastic com-
ponents in the dependence models, while the over-
estimation seemed to have no effect. The estimation
procedures are sensitive to the type of distribution
used for the stochastic component. Procedures
initially developed for the normal distribution are
not sufficiently robust to be applied to non-normal
dependent variables, especially those of highly
skewed distribution functions.

The more or less similar approaches to 'the above
described method have been proposed for generating
daily stream flows. Green (1973) proposed the method
based on the Tinear interpolation for the logarithms
of 5-day average flows. The 5-day average flows
were produced by using Kottegoda's model (1972).
(1967? used the procedure based on generation of
monthly stream flows and subsequent allocation of the
monthly total amount to each day. The daily flows
were generated for those months, when flow fluctuations
within a month were important. The daily flows gene-
rator consisted of a 2-pass generation by the use of a
second-order Markov chain applied to standardized
variates derived from a log-Pearson Type III distri-
bution. He used a linear regression of the standard
deviation of daily flow logarithms, within each month
of rﬁcord, and the logarithm of total flow for the
month.

Beard

Natural Environmental Research Council (1975) of
the United Kingdom studied the application of the shot
noise model for generating daily flows. The flow was
considered as the sum of a series of random impulses.
Each impulse consisted of a sudden random rise of
height Y which decayed exponentially. These impulses



occurred as a Poisson process. The impulse height Y
is a random variable which may be represented by an
exponential, gamma, or a special form of the Pareto
distribution.

Kelman (1977) developed a model which takes into
consideration the diversity of physical factors that
produce the stream flow. He divided the daily stream
flow record Qt into two sequences according to the

increments (Q, - Q_). The positive increments, which

assumed to be produced by bursts of surface and sub-
surface flow were characterized by a weak persistence.

The negative increments were the consequence of water-
shed emptying process, and hence had a strong persist-
ence. He represented the sequence of positive
increments by a power transformed, truncated normal

distribution with the first-order autoregressive model.

The sequence of negative increments was obtained by
assuming that recession discharges were a stochastic
output of two linear reservoirs.

The literature is full of other approaches to
generation of new samples of daily flow series. Only
those have been reviewed herein, which have an
influence on the content of this study.
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Chapter Il
THEORY OF PROBABILITY DISTRIBUTIONS
OF PARTIAL SERIES OF FLOOD PEAKS

The objective of this chapter is to develop
probability distributions of largest exceedances
above selected truncation levels for the time interval
of a year. These distributions estimated from partial
flood series can then be used to estimate flood
exceedances for given return periods. The approach
by Todorovic and Zelenhasic (1970) is used as the
basis in this study. Discrete and continuous distri-
bution functions to be used in fitting the frequency
distributions of the number and the magnitude of
exceedances, respectively, are described. In addition
a method used for comparing sampling variances of
annual flood peaks of given return periods obtained
from annual and partial flood series is presented.

The application of the theory of probability
distributions of partial series of flood peaks to
observed daily flows of 17 gaging stations in the
United States is presented in Chapter V.

3.1 Phenomenological Considerations

According to Kirby (1969), any stream flow hydro-
graph can be interpreted as a sequence of nearly
instantaneous hydrograph peaks separated by relatively
longer periods of Tow flows. Because of the nature of
the phenomenon, the number of these peaks in a given
interval of time (0,t) and their magnitudes are random
variables.

For a given truncation level Qb’ consider only
those separate flood peaks Qi in the time interval
(0,t) that exceed Qb (Fig. 3-1). It is necessary to

define the separate flood peaks for the partial flood
series. The definition normally depends on frequency
analysis and the stream characteristics. As suggested
by U.S. Water Resources Council (1976), the separate
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Fig. 3-1 Schematic Representation of a Stream
Flow Hydrograph

flood peaks are arbitrarily defined as flood peaks
separated by at lTeast as many days as five plus the
natural logarithm of the square miles of drainage
area, with the requirements that the intermediate
flows must drop below 75 percent of the lower of the
two separate flood peaks. This criteria is used as
the guideline in this study. However, in case of a
river with highly fluctuating daily flow hydrograph,
the time between the two successive flood peaks is
taken to be somewhat less than that suggested by the
Water Resources Council, since the intermediate flows

drop much below the 75 percent of the lower of the
two separate flood peaks. In any case, flood peaks
can and are assumed to be precisely defined. By such
definition, the separate flood peaks associated with

a given truncation level, Qb ,» are still separate flood
peaks for the truncation level QB < Qb. In other

words, the number of separate flood peaks above a given
truncation level Qb is a non-increasing function of Qb.

The number of separate flood peaks are the same for
the various truncation levels that are smaller than the
minimum flow of the considered time interval. For
example, the number of separate flood peaks for the
truncation level Qb shown in Fig. 3-2 is 4, while for

the truncation level QB is 10.

Let define
§; ¢ Q‘I - Qb (3-1)

in which &> 0 is a random variable for all i = 1,2,...
With each £; the time (i), when the corresponding

- separate flood peak has occurred (Fig. 3-1), is associ-

ated. The separate flood peak exceedance flows, s
from now on will be called the exceedances.
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Fig. 3-2 Example of Extracting Partial flood Series
from Daily Flow Hydrograph

Consider an interval of time (0,t) and denote by
x(t) the largest E in this time interval. Since
the number of £, in (0,t) is a random variable that
depends on time t, x(t) is defined as:

x(t) = max g,
(v) €t (3-2)

By virtue of definition it follows that for every
t>0and 4t > 0

x(t) £ x(t + At) (3-3)

This implies that x(t) is a stochastic process of non-
decreasing sample functions.

In the following an attempt is made to determine
a distribution function Ft(x) of the stochastic

process x(t),

F (x) = P(x(t) < x) (3-4)

However, before going into the derivation of this dis-
tribution, distributions of the number and the magni-
tude of exceedances must be developed.
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It is important to note that a year is considered
in this study as the time interval. The purpose of
using the partial flood series is to include more data
into analysis, especially in case of small sample
sizes. If the year is divided into different time
intervals such as seasons, it may not be feasible to
analyze the distribution of the magnitude of exceed-
ances which occur during a season such as summer,
because of the small number of exceedances that may
occur during that season. Since the number of exceed-
ances is small, the estimated distribution parameters
for the magnitude of exceedances may be unreliable.
Therefore, the time interval of a year is considered
and g, are assumed to be identically distributed

random variables throughout the year.

3.2 Distributions of the Number of Exceedances

Let n be denoted as the number of exceedances
in the time interval of a year. By definition n is
a non-increasing function of the truncation level Qb.

Denote E = (n=v) then it follows that

=Q’

E.JVE; = ¢ for all i#j and |J E
1 ] G v

where ¢ stands for the impossible event and o stands
for the certain event. Hence Eu, forvo®= 0,0 :2s000s

is a discrete event representing a countable partition
of 2, and

P(E)) = P(n=v) (3-5)

is the probability that exactly v exceedances occur
in a year.

Following the previous works by several authors,
the Poisson distribution has been widely used to fit
frequency distributions of n. The mean is equal to
variance in the Poisson distribution. Inspection of
partial flood series obtained from the mean daily flow
data for 17 gaging stations used in this study indi-
cated that many series have the ratios of mean to
variance far from unity. The reason is that the
Poisson distribution has only one parameter and may
not be sufficiently flexible to fit frequency distri-
butions of n for all cases of the study. Furthermore,
since the partial flood series is obtained from the
daily flow series instead of from series of instant-
aneous discharges, the distribution of n may depart
more or less from the Poisson distribution. Hence,
the selection of the best discrete probability dis-
tribution to be used in fitting frequency distribution
of n is needed and is studied by using the records of
17 daily flow series in the United States. The
selected distributions for study, which are more or
less similar to the Poisson distribution, their
important properties and the method of estimating
their parameters, are:

Poisson Distribution. The probability density
function is
A, X

A
= . x=0,12,,.., (3-6)

£0x;A) =

with A>0 as a parameter. The mean and variance are
equal, or E(x) = var x = A\. The maximum 1ikelihood
estimate of A is x, or the mean of all the numbers of
exceedances.

Mixed Poisson Distribution. Let 1]>0 and xz>0

be parameters of two Poisson distributions, that are
mixed in proportions p and 1-p, respectively. The
probability density function of the mixed distribution
is

E(PaA ) = p 57—+

-A
7 e
e 12

(1-p) —— Rm 02y

(3-7)
where, without any loss of generality, AMApe The
k-th factorial moment of x is

Vi) * P*? J [I‘P)lé (3-8)

The mean and the variance are E(x) = PAy *+ (1-p)12.
and var x = PAy * (1—p}A2 + p{1~p)(11-12)2. Hence,
the mean is always smaller than the variance.

For this particular distribution, the maximum

likelihood estimation is complicated. Two methods of
estimation of parameters Pshy and Ay are considered

(Cohen, 1963). One is based on the first three sample
moments, and the other on the first two sample moments
and the sample frequency of zero.

For the first method, the estimates of p, Mo 2y
are obtained by using the equations

(8 + v8~ - 4y)
(o - /o% - 4y) (3-9)
A

A =

- S — )

_12

ST S

and

>3
o

with X the mean, and 6 and y defined as

. Vezy - i“(z
-2
)
(3-10)
and
Y = x9 - v(Z}

The k-th factorial moment of x can be determined
from the data by

m
Yy Tw L XED G L (3

"
=l

in which m = the largest observed value of x, =

the sample frequency of x, and n = the total sample

size, i.e., n is the sum of m+l values of Ny
Estimates of p, 11, and Az based on the first

two sample moments and the sample frequency of zero
are obtained by solving first the following equation

for iz by an iterative procedure,
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n, .

. exp(-1,)

o = = » (3'12)
exp[-G(3,)] - exp(-},)

=X

G(J\z] - 12

in which ng = the number of zero observations in the

sample, G(iz) = a function of iz, expressed by

. v - X »
G(xy) = @ 2. A

(3-13)
X-Az

With iz determined from Eq. 3-12, i1 follows from
Eq. 3-13 as

- B

-~ - “ 2 2

& S g (3-18)
2

(3-15)

Hyper-Po.isson Distribution.
density function is

The probability

re) e*

£(x;1,8) = F (152:8)T ()

X = 0:1:2:-"1 {3"16}

where

2 3
L + 9 +
A1) T (AL (AF2) Ottt

8 ;
Fi(152;0) =1 + = (3-17)

is. the confluent hypergeometric function with first
argument equal to 1, and A and s parameters.

The distribution of Eq. 3-16 may be classified
according to A=1, a>1, or O<x<l. If =1, it reduces
to the Poisson distribution. If A>1, the variance
exceeds the mean, and the distribution has been called
“Super Poisson." If 0<i<l, the variance is exceeded
by the mean, and the distribution has been called
"Sub Poisson."

The mean of Eq. 3-16 is given by

w=ap =0+ (1-0) (1-fp) , (3-18)

in which fu = I[F1(1;A;e). The higher moments about
the origin are given recursively by

8j4p = (8-041) a; + 0lja, ) {;) Ryn € ome

» Cﬂ) Gk * e 4 dag + 11, 3 = L2, (3-19)
The variance is given by
My = B(1+u) + u(l-u-A) (3-20)

The methods of estimation of parameters 1 and 8
are summarized as follows (Crow and Bardwell, 1963;
Bardwell and Crow, 1964). The maximum 1ikelihood
estimates can be obtained by solving the equations

~ 3F
B
1 28
(3-21)
aF n
W EETT W | :
=——-¥A) += ] ¥(Aex) =0 ,
Fi oo n e i

where ¥(}) = j!:-lnr(ij - EL%lL is the digamma
EDY T(A)

function.

The two-moment estimates can be obtained by

solving the following equation for 0 by an iterative
‘procedure,

(14008 = 0, + (6-a,4) Fl[l;ii(hi)e‘d—az};il (3-22)

and then A is found by using the equation
A= laen)e ¢ % -a,)
s %2 - (3-23)

The explicit and simple modified moment estimates
of A and e may be obtained in using the first three
moments about the origin, oy j=1,2,3, by

(3-24)
and

in which 8' = a three-moment estimate of a convenient
parameter

2 +a, -a
a__;.i._Z_é . (3-25)
2(:1 +a; -a,

Modified moment estimates using the frequency for
x=0 are obtained immediately by

2
- (-£) a, - af
l - fﬂ (I:I.1+1]
a, - f, a
8 1 0 "2
g' = —"——1 = fo (ﬂl"‘l) » (3'25}

and




Negative Binomial Distribution.
density function is

The probability

£0:Gr,p) = () pgK =

x & F4
T X
T'(x+r
‘L_LH fmy X T Olaeees (3-27)
in which r>0, 0< p<1, and g=1-p.
The mean and variance are
E -m
(x) D
and (3-28)
=9
var x =
pZ
Hence, 1its mean is smaller than its variance.

The maximum 1ikelihood estimates of parameters r
and p can be obtained by solving the equations

p = —L—
1+ x/r
and
. n L B 4 0
Inp =¥(x) -5 § ¥o+™) = - 1 S, (3-29)
i=1 i=l i
in which
?? ;
S - —,x.sl,Z,S,...,
Xy j=1 r+j-1 i

with n = the sample size, x = the mean of data values.
The parameter r can be estimated by using an iterative
procedure of the equation

In [

=

1
=4 - s -
1+ x/r i=1 X4 (3-30)

il ~13

Mixture of Two Geometric Disinibutions. A mixture
distribution of two geometric distributions has the
left side with a truncated geometric distribution and
the right side with a standard geometric distribution.
Guerrero-Salazar and Yevjevich ?1975) used this
distribution to fit frequency distributions of the
longest run-length in case of samples of given sizes.
The probability density function of this mixed
distribution is

Y-x
u{l»ﬂl}al

T+l
131

f;’:n .
(x:0,7,8,,8,) 0,525 00

X
(1-a)6,(1-6,)

% v+l
(1-92)

[{T+1,--- .} (3-31)

1

with BI and 32 = the parameters of each part,

respectively, y = a location parameter and a = a
partition parameter. The location y is estimated

either by the mode ? =mor by ¥ = m-1, a by

5= '{I Pys 8y by [iz -GJ'] with iz the mean of
'|=

sample values greater than or equal to ;*1, and 8y

by an iterative solution of the equation

. Ao
1 Y - X . (y+1)8,

2 3 —arHl . (3-32)
1-8, 8, 1-8;

with i1 = the mean of sample values which are smaller
than or equal to ¥.

3.3 Distributions of the Magnitude of Exceedances

The other distributions that require investi-
gations are the common distribution functions, H(x),
i.e., H(x) = P[gvgy), of all exceedances £,

v=1,2,..., in a year. Presently, few theoretical
grounds indicate the forms of distributions of all
exceedances. Two probability functions have played

an important role for the magnitude of flood peaks:
gamma and exponential (Zelenhasic, 1970). In previous
works of several authors the exponential distribution
has been widely used in fitting frequency distributions
of £ . Sufficient evidence does not exist to indicate

the exponential distribution to be universally
applicable. For that reason, and similar reasons in
the case of the use of Poisson distribution for the
number of exceedances, several distribution functions
are selected to study their fits to frequency distri-
butions of £, The results are then compared with

the goodness-of-fit statistics with that of the
exponential distribution, in order to find out the
best probability distribution functions for £,

The selected continuous probability distribution
functions for the study, their properties and the
parameter estimation are:

Exponential Distrnibution. The Pearson Type III
distribution function has three parameters, denoted
by Xgs B and y. The special case occurs when the
lower bound Xg = 0, giving the two-parameter gamma
distribution. Another case arises when y = 1 and
Xq = 0, giving the one-parameter exponential distri-

bution. The probability density function of
exponentially distributed random variables is

£(x:8) = § e, x50 (3-33)
The mean and variance are
u =8
0% = gl (3-34)

The moment and maximum 1ikelihood estimates take
the same form as

R ST T TR P i e
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(3-35)

with n = the sample size.

Gamma Distrnibution.

The probability density
function is

y-1 e-xfs

£(x;8,y) = X , x>0 ,
8Y 1(v)

(3-36)

in which r(y) = the complete gamma function, 8 and ¥y
are scale and shape parameters, respectively. The

2

mean and variance are u = By and 02 = g%y.

The moment estimates of g and y are obtained by

=2
it B
7 izl
o
and (3-37)
. 2
O s
x

in which X and & = the sample mean and sample standard
deviation, respectively.

The maximum 1ikelihood estimates of g and y are
obtained by solving the two equations

and (3-38)

1ni-1n~}+qr[~})-:—lzlnx.1 o .

The method of solving the second expression of
Eg. 3-38 for Y is approximated by

oL+ aunnt/?
¥ A

aY

(3-39)

in which A is defined by A = 1nX - 1 zlnx;, and &%
is approximated by 4§ = 0.04475(0.26)".

Pearson Type 111 Distrnibution.
density function is

The probability

-(x-x,)/8
(x-xo)Y'l e 3

f(x;x.,8,7) =
g 8Y r(y)
(3-40)

X. <X €=,

0

the shape parameter, 8 = the scale parameter,
the location parameter.

with y
and Xq

The mean, variance and skewness are

l\-l:x[]"'BY »

2 2

o =By ’

g=_2_ (3-41)
/..?

If X, 6 and g are the sample estimates of mean,

staqdard deviation and skewness coefficient, the moment
estimates of vy, B8, and Xq are obtained by
.3_4._..,
Sl
g
a=,,’l_h‘
7 89 (3-42)
Xg=%-fy=x.2
4

The approximate maximum 1ikelihood estimate of the
Tower bound Xy is obtained by solving the following

equation by an iterative procedure (Tao, Yevjevich,
and Kottegoda, 1976)

1/2 "
1 + (1+4A/3) 5 %y 1 1
S Gexg) &= ] ——— =0 ,(3-
1+ (+4a73)1% - 4 0’ n izl x - io (3-43)
in which

; B . .

A= In(x-%g) -5 1 Inlxyxp) (3-44)
i=

Once 20 is determined, the parameter y is estimated by

(3-45)

»

3 e 1 + 51+4A/311/2 -
aA. ~ &y

with A given by Eq. 3-44 and Ay approximated by
¥ = 0.04475(0.26)".

The parameter g is then estimated by

=lx-x
Y

B 0 (3-46)

Weibull Distrnibution. The two-parameter ¥e1bu]l
distribution has the probability density function

b-

f(x;a,b) = abx 1 exp(—axb}, x>0 (3-47)

with a > 0 and b > 0 parameters. If b =1, this
distribution becomes exponential, with the parameter a.

The mean and variance are
- 0" VP praply
(3-48)

o2 = a 2P rasaply - rPase ™)

The maximum 1ikelihood estimate of b is obtained
by solving the following equation by an iterative
procedure

(3-49)
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Once b is determined, the parameter a is estimated by

(3-50)

Three-Parameter Lognonmal Distnibution.
probability density function is

The

»0.) =

flx;x,,
(x3x HysOy,

1n (x—xG} -1
exp [- 5 {

1 }2]
(x-xo]cy/iF Ty

(3-51)

y and ay

If a variate x follows the lognormal distribution,
y = 1n(x—x0) has a normal distribution with mean My
and variance uz. The probability density function

of the transformed variate y is then

where Xgs ¥ are parameters.

Y-u
f‘ , = _L_iz -
3uys0.) e exp [- 7 {521 (3-52)
Y
The mean and variance of x are
M, = X5+ exp [u + 1 02]
X 0 y 2 Tt A
(3-53)
2 (2u +ui} 02
o, =€ 4 + (e Y. 1)

Equation 3-51 is the three- parameter lognormal
distribution function. It becomes the two-parameter
lognormal distribution function for Xg * 0. The

maximum 1ikelihood estimate ;0 is obtained by solving

the following equation by an iterative procedure (Tao,
Yevjevich and Kottegoda, 1976)

n N n .
[ E ]I%-.Z lnz(xi-xo) - {% _g ln[xi-xo)}
i=1 xl-xo i=1 i=1
1 B n In(x. on) B
iy, AR L = S (3-54)
i’0

with §0 determined from Eq. 3-54, and the maximum

1ikelihood estimates of My and o, are obtained by

¥

1 .
s = In(x.-x,)
Yy ©n »Zl ARy g (3-55)
2.1 % gy - nd? (3-56)
G)f = H lzl [ n(xi"' 0 IJY

Mixed Exponential Distribution. A mixture of two
exponential distributions is composed of two popu-
lations of type of Eq. 3-33, with parameters 61 and 32'

respectively, and mixed in unknown proportions p and

1-p. The resulting probability density function is
.1 X/By
f(x;p,8,8,) = p B e +
1 _X/B,
(1-p) By e , x>0 (3-57)

in which 0 < p <1, By > 0, and By > 0 as parameters.
The r-th moment about the origin is expressed by

g Ao r = I
ul = E(X") = pI(z+1)8] + (1-P)T(r+1)8, (3-58)
Hence, the mean and variance are
*® psl » {1'PJBZ ]
2
g = pBl(281 - PBy) + (1-9382[82 + szl =
B-pIPy (3-59)

The estimation of parameters p, 81> By by using
the maximum 1ikelihood method is complicated. A
simple method of estimation is by using the first
three sample moments.

Let mi, mé and mé denote the first three sample
moments about the origin for a sample of Eq. 3-57.
Estimates él and 52 are obtained by solving the
following equation (Rider, 1961)

‘2'1\2 L LI a !2 ZII-O 360
6(2m1~m2)Bj + 2(m3-3m1m2]8j + 3m2 - mpmg = (3-60)
with j=1 or 2.

The estimate of p is then obtained from

A et 2
B - B (3-61)
1 2

The two roots of Eq. 3-60 are s] and 52, being
immaterial of which root is designated B] or 52
The estimate p of the proportion p, obtained by
substituting §1 and éz, respectively, in Eq. 3-61,
refers to the component having 8, as parameter, and
1-p refers to the other component.

3.4 Distribution of the Largest Exceedance in a Year

The important probability distribution function
in flood analysis, obtained by the use of partial flood
series, is the distribution of the largest exceedance



in a year. It enables the computation of flood peak
values for given return periods. Denote by y the
largest exceedance of £, in a year. The distribution

x 1s denoted by

i(x) = P(xsx), for x >0 (3-62)

The distribution of the largest exceedance can
be derived by using the combination of distributions
of the number and the magnitude of exceedances
(Zelenhasic, 1970)

F(x) = P(E ) + P(max & <xME) , (3-
o kgl S o <xNE) . (3-63)

with x = max § o E, = (n=k
Teudk kJ’ k (n )

being the event that exactly k exceedances occur in
a year.

5" max(al,ez....

Under the assumptions:
(1)
(ii) €1»8ps--- are mutually independent random

variables with the common distribution function
H(x), i.e.,

51,52 ... are independent of n, and

H(x) = P[E, < x] , (3-64)
Eq. 3-63 is simplified to read
R = PE) + ) [HE I« PEY]  (3-65)
=1

The validity of the above two assumptions will
be investigated by using the observed data in
Chapter V.

3.5 Evaluation of the Return Period

The rarity of a flood peak may be conveyed in a
number of ways, each expressing the probability of
its exceedance or nonexceedance during a time interval,
or alternatively each flood value may be considered
as a function of its associated value of return
period. The flood value for a given return period
has played a major role in hydrologic and economic
evaluations of water resources projects. It is
important to derive the relationship between flood
magnitude and its return period by using the
probability distribution of the largest exceedance
in a year.

The time elapsing between successive peak flows
to exceed a specified value x is a random variable.
Its mean value is defined as the return period T of
X. Following Rousselle (1972), let X1» Xpe Xg» ee-

be a sequence of maximal annual values or of the
largest exceedance in a year and let

N, = min(v;x, > x) , for x>0 (3-66)
Hence
P(N,=n) = P(xy < X, X5 S Xsuvvs
Xp-3 %5 X, > X) (3-67)

for n = 1,2,35...

Because Xy is assumed to be a sequence of
independent random variables with the distribution

F(x) = P(x, <x) , (3-68)

then
PNm) = [FR0I™ [1-F(] (3-69)

with E(Nx} = the average number of years for the first
exceedance of x to occur obtained by

n-1 - -
ROi) = ,El REFEITT H-F = 1)

(3-70)

The x values of Eq. 3-70 represent the largest
annual flood peak exceedance flows for specified
return periods, E{Nx). and the distribution F(x) is

~given by Eq. 3-65.

The value of E(Nx} obtained by Eq. 3-70 is the

return period for annual flood series. This return
period is different from the return period for
partial flood series which can be alternately defined
as follows:

With each selected truncation level Qb’ the series
of exceedances £, are well defined (see Fig. 3-1).
For a given Qd > Qb. consider only those &, that
exceed Qd and denoted by sg. Let T* represent the
inter-event time between two successive sg‘s. The

expected value of T*, E(T*), is the return period
for partial flood series corresponding to the flood
peak Qd and truncation level Qb.

The purpose of this study is to use the partial
flood series to estimate the distribution of annual
flood series. Hence, the return period E(Nx)

obtained by Eq. 3-70 is used for this study.

3.6 Comparison of Efficiency of Estimates of Flood
Peaks of Given Return Periods by Using Annual
and Partial Flood Series

To answer whether partial flood series, obtained
from the mean daily flow hydrographs, is more
efficient in estimating flood peaks Q(T) of given
annual return periods than annual flood series, the
approach used is that of comparing the sampling
variances, var Q(T), of Q(T) obtained from both flood
series. Let Q(T]a (see Eq. 3-76) and Q{T)p (see Eq.

3-86) be the estimates of annual flood peaks of given
return periods obtained directly from annual flood
series and indirectly from partial flood series,

respectively. If var ﬁ(T)p of ﬁ{T} , estimated from
the partial flood series, is smaller than var Q(T)a
of Q(T)a estimated from the annual flood series,

then the partial flood series is said to be more
efficient or more useful in estimating annual flood
peaks than the annual flood series. For convenience,
the annual flood peaks will be called flood peaks
Q(T) in this study.



A statistical model is chosen which gives the
population partial flood series from which the model
of annual flood series can be derived. Each sample of
partial flood series gives an estimate of Q(T). The
corresponding estimate of Q(T) can be obtained directly
from the sample of annual flood series. Hence, each
sample series provides two estimates of Q(T), one from
partial and the other from annual flood series. From
many samples, the sampling variances of these esti-
mators can be obtained, and compared.

Use cof Generated Samples of Daily Flows. To
study the sampling variances of estimated flood vglues
for given return periods, long records of mean daily
flows are needed. Such long records would be con-
sidered to represent the known population, from which
various small samples are drawn. For each small
sample of mean daily flow, the partial and annual
flood series are derived. It follows that the flood

G[T) of a given return period T can be estimated from
each sample of both series. Sampling variances of

6(7) for each sample size of the two series are then
computed by

i m & 2
var Q(T) = E%T 'Zl QM - QM ] (3-71)
1=

where m = the total number of samples for given sample
size N, 6i(T) = the flood value from the i-th sample,
i=1,2,...,m, Q(T) = the mean of all 01{T) values.

A method for generation of long records of daily
flows is needed, since such long records of historical
daily flows are not available. A model for generation
of daily flows is developed and used in order to gene-
rate a long record (such as 1000 or 2000 years) of
daily flows. Procedures used in developing the daily
flow model are presented in Chapter IV, with the
application to the Boise River and the Powell River
given in Chapter VI.

Selection of Modets forn Anwal and Partial Flood
Series. It is necessary to emphasize that the main

purpose is to compare var Q(T) of Q(T), which results
from the estimation of Q(T) from the annual flood

series, with the corresponding var Q(T) from the

estimation of Q(T) from partial flood series. The
statistical model should be chosen in such a way as
to represent the population partial flood series, from
which the model of annual flood series can be derived.

The empirical relationship between expectancies
of partial flood series and probabilities of annual
flood series, which was suggested by Langbein (1949),
is first considered since it is not dependent on the
assumed flood model. Two main objections can be
raised in using this empirical relationship, that can

make the comparison of sampling variances of Q{T?
either inappropriate or unfeasible: (1) For a given
sample of N years, it is not feasible to estimate
Q{Tg for T greater than N years, by using the plotting
position, because the extrapolation is needed to

estimate Q(T), subject to errors; and (2) Though the
number of floods in a partial flood series is greater
than for an annual flood series, this greater number
tend to include the lower floods, or floods of the
low return period, with flood at the high return
periods being generally close to or identical with
those of the annual flood series. Hence, for a given
sample of size N, the flood values for the return

periods close to N years are generally of the same
magnitude for both series. It follows that in the
range of return periods close to N years the ratio

of sampling variance of 6{T) would be close to unity.

It was shown by Zelenhasic (1970) for the
flood series, when a Poisson distribution for t
number of exceedances in a year and an exponential
distribution for the magnitude of exceedances are
good fits, and under some commonly used assumptions,
that combined they give a double exponmential or
Gumbel distribution function for the annual floods.
This theoretical finding is used in the comparison of

sampling variances of ﬁ(T) obtained from the two flood
series. Only two parameters must be estimated from
the available sample. This is an advantage in using

this finding since the sampling variance of Q(T)
depends on the sampling variances of estimates of
distribution parameters as well as on the number of
parameters used.

Derivation of Flood Magnitudes and their Sampling
Variances, for Given Return Periods, from Annual Flood
Senies by Using Gumbel Distrnibution.

ﬁartial
e

(a) Gumbel Distribution and Estimation of its
Parameters. The probability density function is

£(x;u,a) = T exp[- (Y o~ (xW)/e (3-72)
and the distribution function is

F() = exp[-e” /0 (3-73)
in which u = the location parameter, and o« = the scale
parameter.

The mean, variance and skewness are

u=u+ 0.5772a

2 G 2
o =g a (3-74)

g = 1.14

The maximum 1ikelihood estimates of u and « are
obtained by solving the equations

_Y‘
-n + E: e o =0
a
el o (3-75)
i
n=-1I Y; r Lye "
a
in which n = the number of observations, Yy = (xi-u)/u

= the Gumbel standardized or reduced variate. The

solution of Eq. 3-75 for & and U are obtained by the
Fisher method which uses the information matrix as an
iterative procedure. A demonstration of the method is
given by Jenkinson (1969), and also Natural Environment
Research Council (1975) of the United Kingdom.

(b) Estimate Q(T) and its Sampling Variance.
Let Q(T), denote the flood magnitude for a given
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return period T obtained from the annual flood series
by using Gumbel distribution. Hence, the estimate of
Q(T)a can be obtained from

AM, =G+ ay(m) (3-76)

in which y(T) = =In[~1n(1 - %&], the Gumbel reduced
variate, and T = the return period.

The sampling variance of Q(T)a in Eq. 3-76 is
var [Q(T)s] = var u + 2 cov [4,ay(T)]

+ var [ay(T)] (3-77)

The vuriance—covariance matrix of the maximum
likelihood estimates of u and a (Kimball, 1946) is

var (@) cov (4,a)
cov (u,a) var (a)
2
2 1 + iz (1-v) % (1-v)
B_ w w
n =
6
S a-n -
n w
2 [ 54 0.26
o’
n
0.26 0.61

(3-78)

Therefore, var ﬁ =1.11 a2/n, var ; = (.61 uzfn;

and cov (U,a) = 0.26 a?/n. By substituting these
values into Eq. 3-77, then

2
var [Q(M),] = % [1.11 + 0.52 y(T) + 0.61 y*(1)] (3-79)

The var r}ma obtained from Eq. 3-79 is the

theoretical sampling variance, based on the assumption
that the distribution of annual floods is exactly the
Gumbel distribution. It will be used for comparison

with the sampling variance ﬁ(T)a obtained by the
empirical method of Eq. 3-71.

Derivation of Flood Magnitudes and thein Sampling
Variances, for Given Retwwn Perdiods, grom Partial
FLoods Series by Using Combination og Poisson and
Exponential Distributions.

(a) Estimate Q(T) p~ The distribution of the

number of exceedances in a year is assumed Poissonian,
and the distribution of the magnitude of exceedances
exponential. The distribution of the largest
exceedance in a year is then given by Eq. 3-63. In
addition, two more assumptions described in Section
3.4 are used in this approach.

Hence, Eq. 3-65 can be applied as

ORI (e ¥ - pee)] (3-80)
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For the case under discussion, the comman dis-
tribution function of all exceedances &, is

H(x) = 1 - exp (- ;—} s X2 0 (3-81)

and the distribution of the number of exceedances is

-2 Lk
P(Ek]=eki\

By substituting Eq. 3-81 and Eq. 3-82 into Eq. 3-80,
Ehe distribution of the largest exceedance in a year
ecomes

(3-82)

F(x) = ™ E l’;_ o~ X/Byk

which in the 1imit becomes

e X/B

F(x) = e (3-83)

The relationship of Eg. 3-70 between the dis-
tribution function of the largest exceedance and the
return period is

1

T* 19

(3-84)

By eliminating F(x) from Eq. 3-83 and Eq. 3-84,
the flood exceedance for a given return period is
expressed by

x=81Ini+ 8 y(m (3-85)

with y(T) = =In[-In(1-1/T)]. Because x = Q-Qb, in
which Qb = the truncation level which defines the

partial flood series and Q = the annual floods above
Qys the annual flood magnitude for a given return

period T, denoted by Q(TJ ,» obtained indirectly from
partial flood series, becumes

G(ij =Q +Bmi+iym , (3-86)

with g and A the parameters estimated from the partial
flood series.
Suppose that m peaks in excess of Qb, with m the

random variable, have occurred in n years. Let
o v e 1,2,...,m denote these exceedances above Qb'

The maximum 1ikelihood estimates of A and B are

A

ET)

and (3-87)

8- T,
with & == ] g , the mean of all exceedances.
v mw.l v

(b) Sampling Variance of étr}p. The derivation
of sampling variance of Q(T}p is mainly based on work

by Cunnane (1972). For more details the reader is
referred to this work.



Since » and B are the maximum 1ikelihood estimates

of A and B, their variances and covariance are
. 2
var f = —

> gl=

var A = —

(3-88)

=

and oo
cov (B,A) =0

The sampling variance of 6(T}p of Eq. 3-86 is,
for Qb a constant

var [QfT)p] = var (Blnk) + 2 cov [BlInk,By(T)]
+ var [ﬁy(T}]

= var (B1nk) + 2y(T) cov (R1nk,B)

+ y2 (1) var (8) (3-89)
\

By using
2
var [£0)] = G var () + 2 GOGD cov (x,y)

2
& (%50 var (y),

with derivatives with respect to x and y evaluated at
the expected values of x and y, respectively, then

var (81n\) becomes

n

var (§lni) [lnA]2 var (B) + 28 lI}%i-l:ov (é,i)

32
+ S5 var X
A
2 - Bz ~
= (InA)” var (B) + = var (A) (3-90)
A

since cov (§,i) = 0. By using

SovIECEY) )] * G GHvar() + 1G5 (28

+ (ggg(ggg] . cov(x,y)

. c§§a(§§a-var{yl

it follows
cov(lni,B) = lnA-var[é} + {(1nA) (D) + (%a[l]} cov(é,i)
+ G -var(i)

= lnl-var[é]
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Substituting var(glni) and cov(81nx,g) into Eq. 3-89

"

2 %
var[Q(T)p} (1nx)2-var(é) * %5 var(A)

+ 2y(T)*1nk+var () + y(T)+var(f)

2 2

2
28 B sinis B
—-m— + 7 g Zy{T} InA o

=N

(1nd)

Ee

2
2 B
y'm - =

+

2
E tann? + By 2ymean + y2(]

2
n

™

{1+ [ + y(M1% s (3-92)

bt

.since m = ni.

Comparison of Sampling Variances of Flood Value
gon a Given Retwwm Period Obtained from Annual and
Parntial Flood Series. Under the approaches used, the

the sampling variance of Q(T) for annual and partial
flood peak series can be obtained both theoretically
and empirically. The following are procedures used

in comparison of sampling variances 6{T}a and ﬁ(T)p
for a given return period T.

(a) Exact Theoretical Approach. Let RV 1 be
the ratio of the sampling variances Q(T)a and Q(T)

obtained theoretically from annual and partial flood
series, respectively. Hence, for a given T, Rw.1

is obtained from Eqs. 3-79 and 3-92 as

_ aa’[1.1140.52 y(1)+0.61 y2(D)]

R
g2 {1 + [1nn + y(D]%}

v,1

(3-93)

The relationships between parameters u, o« for
annual flood series and parameters A, g for partial
flood series can be derived analytically by comparing
Eq. 3-76 and Eq. 3-86, under the assumption

Q(T), = Q(T)p. Hence for

a=8

and (3-94)
u=Q + Blmd

it follows

R = ML11+0.52 y() + 0.61 y(1)]
Yl {1+ [1mx + y(m) %}

(3-95)

Equation 3-95 shows how the ratio of sampling
variances, obtained by the exact theoretical approach,
varies with the return period T. For a given value
of ), the relationship between the ratio R\r 1 and the

return period T expressed as the Gumbel reduced
variate, y(T), can be derived. The results of these

g e arn



relationships, for the range of A from 0.8 to 5.0,
are shown in Fig. 3-3. It can be concluded from

2.8 T T T T ; T
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L
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Fig. 3-3 Relationship between the Ratio Rv 1 of

Sampling Variances G(T)a and ﬁ{T};. Based

on Exact Theoretical Approach, and the
Return Period T, for Given Values of A.

Fig. 3-3 that, based on exact theoretical approach,

the partial flood series estimate of Q(T) always has

a smaller sampling variance than that of the annual.
flood series for the return period T less than 5

years. For the whole range of return periods, the
partial flood series estimate of Q(T) has a smaller
sampling variance than that of the annual flood series
if the partial flood series value of A is at least 1.65.
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The larger ), the smaller is the sampling variance of

the estimate of Q(T) by means of partial flood series.
This result is later used for the comparison with the

results obtained by using the approximate theoretical

and the empirical approach, respectively.

(b) Approximate Theoretical Approach. In this
particular approach, instead of using the relation-
ships of Eq. 3-94, parameters u and « are estimated
from the annual flood series of generated long record
of daily flow series, and parameters A and & from the
corresponding partial flood series. Let Rv denote

the ratio of sampling variances of ﬁ{T)a and ﬁ(T)p
by this approach, then

R o Mal[111 v 0.52 y(1) + 0.61 y2(1)]
vi2 82 (1 + (1 + ym1H

(3-96)

The difference between Rv 1 and Rv 5 is that the
difference between o and g is taken into consideration
in computing R_ ..

v,2
{e) Empinical Approach. In this approach, the

sampling variance of Q(T) for each flood series is
obtainéd empirically by using Eq. 3-71. Let Rv 3

genote the ratio of sampling variances of I‘j(T]a and
Q{T}p. then

n N 2
izl (4 (m, - aM,)

v,3 0 . = (3-97)
1§1 [Q;(m, - AN

with subscripts a and p indicating the estimates
obtained from annual flood series and partial flood
series, respectively.




Chapter IV
MATHEMATICAL MODEL OF DAILY FLOWS

4.1 Purpose of Generation of Daily Flows

The main purpose of generating the long record of
daily flows is to compare the efficiency of estimates
of flood peaks of given return periods by using annual
and partial flood series. This carried out by com-
paring the sampling variances of flood values for
given return periods obtained for each of the two
series, which in turn are derived from the generated
daily flows. In addition, properties of partial flood
series and approach are studied on this long record of
generated daily flows.

4.2 Selection of Length of Generation of Daily Flows

It takes considerable computer time to generate
daily flows for a long period of years. In this study,
the main purpose of generating a long record of daily
flows is to investigate properties of extreme large
values. When most major floods occur in the wet
seasons, it is feasible and sufficient to generate
daily flows only within that wet season. Important
reasons justify the generation of daily flows only
within the wet seasons, namely this approach requires
less computer time, less computer core storage, while
a sufficiently accurate approach in the estimation of
model parameters. The number of harmonics in descrip~
tion of periodic parameters in the model then is
smaller than if daily flows are generated for the
whole year, for the same accuracy, for the simple
reason that each periodic parameter has more variation
in the whole year than that in the selected wet season.
The main disadvantage of this approach is the problem
of some distortion of partial flood series, because
some small flood peaks, greater than the truncation
level Qb’ may occur in dry seasons. This distortion

can be minimized by expanding somewhat the period of
generation from wet season into the dry seasons. The
lowest required truncation level defines partial flood
series. The season of generation is then selected in
such a way as to have most of flood peaks greater than
this truncation level. The lowest truncation level is
selected in this study so that the average number of
flood exceedances per year is about 4 or 5.

4.3 Mathematical Model for Daily Flows

General Concepts. The mathematical model of
daily flows, studied by Tao, Yevjevich, and Kottegoda
(1976), was carefully reviewed. It is learned that
it is relatively difficult to fit a probability distri-
bution function to independent stochastic component of
daily flows, because of its high skewmess and kurtosis
coefficients. Furthermore, it is difficult to remove
completely the dependence from the dependent stochastic
component after periodicities in the mean and standard
deviation are removed. Vargas (1977) used the gene-
ration method to systematically check each stage of
estimation procedure, to assess whether failures

originate from estimation procedures or from inappropri-

ate models. The number of selected harmonics for

periodic parameters affect all the subsequent stages
of estimation. Estimation procedures are sensitive
to distribution of independent stochastic component.

By removing periodicities in the mean and
standard deviation only, the remaining series is
usually considered as stationary. In generating daily
flows for the study of extreme large values, it is
important to consider not only the eventual perio-
dicities in autocorrelation coefficients, but also to

preserve the skewness coefficient properties in gene-
rated data. The use of transformations may not only
remove periodicities in the mean and standard devi-
ation, but also periodicities in autocorrelation and
skewness coefficients.

The three-parameter lognormal probability distri-
bution has important advantages not to be overlooked.
It provides a relatively simple method for preserving
the first three moments of observed data, with its
logarithmic transforms normally distributed by de-
finition. It is attractive to transform the original
data into normally distributed values as the first
step of analysis, in order to use the two important
properties of normal variables, namely that dependence
structure does not affect the distribution, because
the distribution of the sum of normal variables is
normal, and that the second-order stationarity of
normal variables implies the stationarity of high
order also.

The flows of each individual day of the year are
assumed to follow the lognormal distribution with
three parameters: lower bound of original data and
the mean and standard deviation of transformed data.
They are estimated from historic data of each indi-
vidual day. Logarithmic transformations are applied
to historic data by using the lower bounds in order to
transform the original values to normal variables.
Periodicities in the mean and standard deviation of
transformed values are then removed. By using the
postulated dependence model, independent standard
normal variable is then obtained.

To minimize the effect of the selected number of
harmonics in periodic parameters on all subsequent
stages of estimation in this model, the numbers of
harmonics of all fitted periodic parameters are
estimated from the original data and not from trans-
formed data.

Refationship between Moments of Noamaf and
Lognonmal Varniables. If historic data follow a three-
parameter lognormal distribution, the generated data
should resemble historic data in terms of mean,
standard deviation and skewness coefficient, by using
the relations of moments of the two processes
(Matalas, 1967).

Let "a" be the lower bound of variable X, with
(X-a) lognormally distributed; then Y = In(X-a) is
normally distributed. The mean Hyo variance ui. and
skewness vy are related to the lower bound a, mean My
and variance 05 of Y by

2
5
Mg = @ ¢ exp(5+ p) (4-1)

2
o . exp[Z(ui + uy)] - exp[ai + 2uy] (4-2)

and

2 2
exp(30.) - 3 exp(c’) + 2
z < (4-3)

Y =
- {exp(aﬁ} L

Auwtocornelation between Noamal and Lognormal
Processes. For X lognormal, with Y = 1n(X-a) normal,



the first-order autocorrelation px(]) of X is expressed

in terms of the first-order autocorrelation py(1] of
Y by

explajpy(l)] -1

p (1) =
T exp (o)) -1 (4-4)
Yy
So that
1
Py = In {1 + 5, (1) [exp(@d) - 11} . (4-5)

%
It can be proved that Eqs. 4-4 and 4-5 are valid

for any time lag k (Mejia and Rodriguez-Iturbe, 1974).
Hence,

2
exp{aypyck)] =1

p, (k) = (4-6)

exp [U;] -1
and

1 2
py (k) = 5 3 (1 +p,(k) [exp(o)) - 11} . (4-7)
y
Cross Comrelation between Normal and Lognonmal
Processes. Let x1 and 12 be the original variables

(two different populations), with means My and My

2

and standard deviations o

x, and Ty s and the cross

2
correlation coefficient Pyr Variables x] and Xz are

three-parameter lognormal with
Yl = ln(Xl - al)

and (4-8)

Y, = In(X, - a,)

R Ry

means, standard deviations and cross correlation

coefficient for Y1 and Yz. The relation of Py and p

is (Mejia, Rodriguez-Iturbe, and Cordova, 1974)

normal.

» M, 2 T s and py represent

|
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In {1 +p, [[exp{oill

1/2}

. 2
l][exp(cyzl - 1] (4-9)

If o

=0, , Eq. 4-9 is reduced to Eq. 4-7.
Nn Y

Application of Modeling Concepts fo Daily Flows.

Consider the matrix of daily flows:

-
a1 %12 Xt X
Xz.l 12,2 . Xz,r e Xz’w
X =
Pyt x ; (4-10)
X e
p,l Ps2 Pt xp,m
xn,l xn,2 xn,r xn,w

20

with p = 1,2,...,n, representing the year number in
the record, v, * = 1,2,..., w, the day number within
the year, running cyclically from 1 to w, n = the
total number of years, and w = the total number of
days in the wet season.

By considering daily flows to be from different
populations for different days, the modeling concepts
outlined above can be applied, provided that the
marginal distribution of daily flows for each indivi-
dual day, or each column of matrix of Eq. 4-10, is

lognormal. For example, if xT.r' XZ’T,.... Xn'r. for

the day 1, is three-parameter lognormal, with mean
My, q? standard deviation G skewness coefficient

£ ]
Y, and lag-one serial correlation coefficient

°x.r{])’ the procedures explained above can be used

to generate daily flows for the day t for as many
years as required. Equation 4-9 is used to preserve
the serial correlation between the successive days,
valid for any lag k (k days apart). It is then
expressed by

1

py(klf] -
y,1-k'y,t

- In {1 + px(k,1]c

exp(oy _-11lexp(sl )-111Y%)  (a-11)

with px{k.t} and py(k.T) = the lag-zero cross cor-

relation coefficients between the day t-k and the day
T of Xp - and Yp <? respectively. For convenience

and undérstandin&. they are called the k-th order
serial correlation coefficients of daily flows.

Removal of Periodic Parameters. The nonpara-
metric methods may be used to remove periodic para-
meters from a time series (Tao, Yevjevich and Kottegoda,
1976). In case of daily flows, the total number of
statistics in the nonparametric method is very large
in comparison with the total number of statistics in
the parametric method. Since it is impossible to
estimate so many parameters accurately from a 1imited
size of sample series, these estimates must be subject
to large sampling errors in the nonparametric method.
The general objective of mathematical modeling of
deterministic-stochastic processes is to condense
information by developing models which use the number
of parameters parsimoniously. Since the nonparametric
method does not satisfy this objective, it is not used
in this study.

Let the periodic parameters be symbolized by
v_. The mathematical description of periodic vari-

T
ation of Ve is represented by the Fourier series
analysis as

Vo=V o+
g

I 18

2mjt
& Cj cos ( e + Bj} = (4-12)
in which ¥ = the average value of v.» €5 = the ampli-
tude, Bj = the angular phase, j = the index sequence
of harmonics, m = the total number of significant
harmonics, and w = the period in days.

The alternative form to Eq. 4-12 is



— 27j . 21]
Vv, = jzl (hj cos -1—:31 + Bj sin -?1) : (4-13)

with Aj and Bj the Fourier coefficients, estimated

from the w values of §_ (where GT are sample values),

by
A 2 ¢ - 2njt
j ‘;TZI v, cos -—‘3—
and (4-14)
g% s 2%
B, == Tt
i w 121 ¥y 8in ‘;}‘

c A? + Bz
: I
and (4-15)
4 Y
Bj = tan [-Ajj

Let {u ) be the variance of computed Vo For
a harmonic j, var h = (A + B )/2. The ratio

var h

AP, = .

. (4-16)
J s (VT)

represents the part of the variance of A explained by

the j- th harmonic. Hence, the explained variance of
k harmonics is

Py = [ AP,

L (4-17)

This explained variance is used as the criterion
for selecting the number of significant harmonics.

The first periodicity to be removed is in the
skewness coefficient. It is accomplished by using the
logarithmic transformation, with the lower bound a,

periodic. The symbol Kp stands for values of an
observed daily flow series with p and t previously

defined. Let Yp % denote the transformed variables,
then
Ypur = 100 - 2 (4-18)
Since Xp is assumed as lognormally distributed

with the Tower bound a o Yp = must be normally dis-
tributed with mean u

and standard deviation ¢
Therefore,

Yt Y1
the periodicity in the skewness coef-
ficient has been removed.

The removing of periodicities in the mean and
standard deviation of the transformed variable, Y__,

Pyt
is made by

; (4-19)

2]

in which ¢ o the standardized stochastic component
of Yp o 2 dependent, normally distributed variable
with mean zero and variance unity.

Dependence Models forn Stationary Stochastic
Components. The sp . variable, obtained by removing

the periodicities iﬁ the mean, standard deviation, and
skewness coefficient of Xp » is stationary time series

provided the autocorrelat1on coefficients are not
periodic. The models for dependence of €, may be

moving average, linear autoregressive, a combination
of the two, and other schemes. Since the autoregres-
sive linear models have been found in practice to be
v:riyuseful in hydrology, they are applied in this
study.

The dependence of a stochastic hydrologic series
can be approximated by various orders of linear auto-
regressive models. The first-, second-, and third-
arder autoregressive linear models are most commonly
used rather than the higher-order models.

The general m-th order autoregressive linear

model is
m

E =

P,T kzl %kt “p,r-k T %1 Gpe (4-20)
with O, = the autoregressive coefficients, which are
functions of serial correlation coefficients L
which are either periodic or nonperiodic, O, =
the standard deviation of ¢ & which is periodic if
L are periodic, and zp e standardized variable
independent of ¢ Since ¢
tributed, gp .

P, -k’ Pyt is normally dis-
should be independent, normally
distributed variable, with mean zero and variance

unity. The serial correlation coefficient Pr.r of
the lag k is
cov(e € )
p,t* p,r-k
Pk, " g o (4-21)
[ 4 E
T -k

Equations used for determining the coefficients
ay o and O ¢ with k = 1,2, and 3, are given below.

(a) Finst-Ondenr Model.
regressive linear model is

The first-order auto-

EP;T b cl1,1: E"p.'r-l * oE,t ep,r (4-22}
The parameters CI and L. are expressed as
%, % 1,1 (4-23)
and
2 _ 2 2
Upon ™ &S0 MRy (4-24)

[b) Second-Onder Modek.
regressive linear model is

The second-order auto-

oot " %Lt Sp,r-1 T %21 Spur-2 * %1 Bpir . (4-25)

i

~

Bt iy s B Lo DR b
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The parameters Gy o2 k = 1,2, can be obtained from the
following linear equations.

pl,r-l al,r QI.T
. (4-26)
Ple-1 1 %21 Pa,t
with the solution
Py " P2q PLca
a =
1,1 1 - 2
P1,7-1
(4-27)
o Pax ™ P1,e P1,e-1
251 2
L= 0121
The variance 32 is
EsT
o2 Losigh 2
R “Ge” B2 " Wy B Py (4-28)

(e) Third-Order Moded.
regressive linear model is

The third-order auto-

£ (4-29)

T sp.r-k & U{,r pP,T

The parameters Oy o for k = 1,2, and 3, can be
obtained from the following linear equations

Pl P2,e-1] [P1,0 1,1
'nl.:-l 1 P1,1-2 % . = Pyt (4_30)
#2511 P1,7-2 ! “3,1 P3,x
The variance cz is
E,T
2 2 2 _ 2
% .t L = %,t " %2, %31 2“1 r %2, P1,1-1
= Bz B2l ™ 2“2,1 O3 ¢ P1,1-2 [(4-31)

If order of the linear autoregressive model is
selected, parameters LI and O can be estimated

from the sample autocorrelation coefficients. Finally,
the independent standardized normal random variable

Ep.r is computed from the ED,T series.

4.4 Estimation of Parameters of Daily Flow Series

For parameters defined in terms of moments and
time lags, the standard errors of their estimates
increase with an increase of the moment order and
time lag. The larger the standard error, the greater
the bias is likely to be. As suggested by Matalas
(1967), bias may be minimized but not completely
eliminated. One technique for minimizing bias is
regionalization, which takes the form of relating the
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parameters, estimated from the historic sequences at
a number of sites in a basin, to certain meteorologic
and physiographic characteristics of the basin.
Another technique for minimizing bias is the use of
maximum 1ikelihood estimation of parameters, since
the standard errors of these estimates are smaller
than those for estimates based on moments. However,
maximum 1ikelihood estimators are not always sta-
tistically unbiased, and they cannot be determined
without makin? an assumption about the underlying
probability distributions.

The stages of parameter estimation are important
in the study of daily flow series. The numbers of
significant harmonics of periodic parameters are
decisive since the parametric method is used. The
approach in this study is to estimate parameters
directly from historic data, not from sequences from
which periodicities in other parameters have been
removed, i2 avoid the effect of the selected number
of significant harmonics for those parameters in the
further stages of estimation.

The parameters used in generation are those of
the three-parameter lognormal distribution:

and ¢

a,u
Yot
R the autoregressive coefficients, o, 1 with

k=1,2,...,m, and the standard deviation of re-
siduals, O o Fourier series were not applied

directly 1n’fitt1ng periodic functions to estimates
of these parameters. Fourier series are used for
fitting parameters which are estimated directly from

observed data because parameters a 2 Yy,e* Oy, %k,r
and o o can be derived from them

la) Estimation of Lower Bound, a. For each
o standard deviation

particular day t, the mean By
By and skewness coefficient Yy, of Xp’T are esti-
mated by the method of moments. Parameters A, w

Yat
and 9.t of the lognormal variable Y L are then

computed simultaneously by Egs. 4-1 through 4-3.
main problem in this estimation is to obtain a
reliable estimate of the skewness coefficient from the
historic record, especially in case of small sample
sizes. Since the skewness coefficient is a function
of the first three moments, the standard error of its
estimate is high and it is also biased.

The

Because the distribution of daily flow series
for each day is assumed to be a three-parameter log-
normal distribution, the maximum 1ikelihood method
can be applied in order to minimize biases 1n para-
meter estimation. The Tower bound a for each day t
is obtained by maximum 1ikelihood method in solving
Eq. 3-54 by an iterative procedure. Since it s a
nonlinear equation, it has more than one solution.
In applying iteration, the initial or starting value
is important, to guarantee solution convergence. The
starting value of a. is first assumed to be close to

the observed Xmin(r]. such as 0.975 Xmin(T), where
m1n{T) = min[xp‘t. P=1:25...,0n, for fixed t]. If
the iteration diverges to values greater than xm1n(r),
the new starting value less than the first one is
assumed and so on. The purpose is to obtain ;T
has the value nearest to, but less than Xmin(r}.

that

The fourier series is applied for fitting the
periodicity in a_. The explained variance of Eq. 4-17



is used as the criterion for determining the number of
significant harmonics. For days of the year for
which the skewness coefficients are high, the maximum

Tikelihood estimates 51 tend to be positive and close
to observed xmin(T}‘ By using the Fourier series,
some days have the fitted values of a_ greater than
the observed Xmin{t). Hence, some other consideration

in selecting the number of significant harmonics for
a_ is that the number of days that have the fitted

a_ greater than Xmin(r) should be very small.

Two alternative methods may be used to estimate
parameters Myt and o 4 after the periodic a has

been computed: (1) By using the estimated vaIues of
(not the fitted periodic function values) in Egs.
and 0, _, re-

3-55 and 3-56 for estimating Myt ¥t
spectively, with the Fourier series applied in fitting
the periodic ﬂy,r and &y’ti and (2) By using the
fitted periodic function values of a in Egs. 3-55
and 3-56 for estimating uy 2 and cy . respectively,
with the Fourier series then applied for fitting the
periodic uy’tand “y.r' The experience of this study
is that neither of these two approaches should be
used. In the first approach, the Fourier series
analysis is applied for fitting estimates of each
periodic parameter, a v Byoze and ¢ T independently.
The problem arises because the fittad a, My o and
y.t for any day t are not matched amang themselves,
giving rise to distortions in patterns of periodic

functions Myt and 9yt with a large number of

negative dai]y flows produced in generation procedure.
ty using the second approach the distortions are de-

crioased. By fitting a periodic function to a by
using a certain number of harmonics, some days have
the fitted a_ greater than Xmin(t). affecting then the
- and Uy,r
distortions in patterns of Uy,

estimations of u The consequence is in
versus t, and Oy 1
versus ©, in generated daily flow series in comparison
with those of historic data.

To overcome this difficulty, Fourier series are

used to fit the estimates of periodic parameters e g

and Oy which are estimated directly from observed

data. ’The periodic Byt and Iy 1? are then derived
from fitted periodic functions of at. ﬂx . and Gx ;
by using their r=lationships.

(b) Estimation of Mean by | s Sstamduid

Dev.iation L The mean Wy o and the standard de-
viation L for each day v are estimated from the
observed data by

1
%8 x

P—l p,t (4‘32)
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and

-ux,rlzlm > (4-33)

in which n = the number of years of observations.

The periodic i My and oy,r re then fitted by

Fourier series. First the exp]ained variance is used
as the criterion for selecting the number of signifi-

cant harmonics. Then, the final consideration in
selecting the number of significant harmonics for

-

a s ﬁx’T and o L Was for each day t to have distri-
butions of & ¥ by Eq. 4-19, close to a normal
distribution, on the average, and as much so as the
chi-square test permitted.

The mean ;y and the standard deviation uy . of
Yp.r are then obtained from the fitted periodic
functions to aT, ”x,r’ and Gx,r’
and 4-2, namely

by solving Egs. 4-1

- I i i 2
Myt © ln {ux,r -8) -3 O, t (4-34)
and ”
02 = 1n [1 + ( Ox,1 )2]
G e (4-35)
My, T

[c) Estimation of Senial Conrelation Coef-
fdcients, Py {k,t). The serial correlation coef-

ficients Py (k 1) of Xp . are estimated from sample
series by (see Tao, Yevjevich and Kottegoda, 1976)

n 1 n 1 n
(k,1) EE]“F-' ) Epgl XP»‘I U‘p,:—k “n E KP""‘J
r I} =
n { 2 R 1§ 2,172
[F§1 (IP.t I ;PE s f ( I [xp o H5:&11""'14‘] ] J

(4-36)
The Fourier series are used to fit the periodic
values rx(k,r), k=1,2,..., my with m = the order of
the autoregressive linear model.
Estimates of serial correlation coefficients,
r [k,r), of Yp . are obtained from the fitted periodic
functlons to Ty (kyt) by using Eq. 4-11 in the form

1
r (k,1) = In [1 + p_(k,T)
4 %,t-k %y,t *
2 2 1/2
(exp(oy ) -1lexp(q )12 (4-37)
Finally, the autoregressive coefficients L and

the standard deviation O o are derived from periodic
L
functions of ry(k.r} by replacing Pt by Fy(k,f) in

Egs. 4-23 and 4-24 for the first—oréer model, in Egs.
4-27 and 4-28 for the second-order model, and Eqs.
4-20 and 4-31 for the third-order model, respectively.



4.5 Problem of Generated Negative Flows

By definition, the parameter a 1is a lower bound
for observed values of xp By nature, xp = should be
This 1mp11es that a should always

be positive in hydrologic app]ications However, this
interpretation may not be necessary, because a_ can be

positive or negative, and in fact is usually negative
(Burges, Lettenmaier and Bates, 1975). According to
experience of this study, a.r depends on the skewness

The smaller the skewness coef-

positive or zero.

coefficient of X

Pt
ficient, the more opportunity for a_ to be negative.
Because

XP,T =a + exp{Yp’TJ (4-38)

the second term at the right side of Eq. 4-38 is always
positive. If a is positive, no problem arises with

negative values of xp s
occasion xp may be negative since the normal distri-

bution assigns non-zero probability to negative values.

If a 1is negative, on

In this study, the possible minimum value of X

is assumed zero, not allowing for negative values.
The following procedure is used to minimize the effect
of generated negative values. By considering a

p:T

negative, for XP.T = 0 then
Yo,x = 1n(-2) , (4-39)
following with
ln[-aT]-u x g
. --———?Er:—xl— . (4-40)

The value e: is used as the lower limit of ¢’
If a generated value of ¢ 15 smaller than s* it is
set equal to g: with the process of generation

continuing. The negative aspect may be in decreasing
slightly the variance of generated series.

4.6 Generation Procedure

The procedure, parameters, and equations used to
generate new daily flow samples are summarized as:
STEP 1 Obtain the Fourier parameters such as the
nunber of significant harmonics, mean and
Fourier coefficients, A and B of periodic

parameters a_, Myor® Ox,t and rx(k,:}, k =

24

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

1,2,..., m, with m = the order of the auto-
regressive linear model used.

Compute periodic parameters aT, B o Oy =
]

and Px(k,t) by using Eq. 4-13.

¥t nd OY-T

by using Eqs. 4-34 and

Derive periodic parameters u
from a, “x,r’ °x,r
4-35,

Compute ry(k,t), k=1,2,..., m, from r(ks7)

and Oy 1 by using Eq. 4-37.

Compute autoregressive coefficients L and
the standard deviation of residuals L -
ry(k,r) by using Eqs. 4-23 and 4-24 for the
first order model, Eqs. 4-27 and 4-28 for the
second-order model, Eqs. 4-30 and 4-31 for the
third order model, respectively.

Compute lower limits e} for days that have

negative values of a_ by using Eq. 4-40.

Generate standard normal random variables &

p,t’
for p= 1 slsvaipNy T & =10,-9,-85. 04,1 s1+2s
...,w, Where n = the total number of years of
generated samples, and w the within-the-year
period of generation (note that £ o for

v =-10,-9,...-1, are used as to avoid biases
at generated 1 = 1,2,...).
Introduce dependence to £
€p,t series, by Eq. 4-20; check for every

day t whether a_ is negative, and if ot is

smaller than the lower limit e:. set tp !

i series, as the

a:. and continue generation.

Discard the e T-va]ues for t = -10,-9,...-1,

with only €p,1° T =1,2,..., , used in the
next step.

Compute the transformed series Y ¢ by

Yoot = Spudyar F e

Produce generated daily flow series of xp .
from Yp " by the inversed transformation
)(p.T =a_+ exp(Yp'T}.



Chapter V
APPLICATION OF THEORY OF PROBABILITY DISTRIBUTIONS
OF PARTIAL SERIES OF FLOOD PEAKS

The theory of probability distributions of partial
series of flood peaks is applied to the observed data.
The partial flood series are obtained from 17 sets of
daily flow series for gaging stations located through-
out the United States. Discrete and continuous pro-
bability distribution functions, described in Chapter
I11, are applied to frequency distributions of the
number and the magnitude of exceedances above the
selected truncation level of partial flood peak series,
respectively, in order to find out the best fitting
functions. After the best distribution functions are
inferred, the change of the goodness of fit indices of
selected functions with the truncation level is in-
vestigated. Also changes of parameters of these
distributions with the truncation level are studied.

In addition, derivation of probability distribution
function of the largest exceedance in the year is
presented.

The statistical dependence of partial and annual
flood series is investigated at the end of this
chapter. Also, for partial flood series, the study of
the change in series dependence with the change in
truncation level is included.

5.1 Research Data Used

The data used in this study (Quimpo, 1967; Tao,
1973) contain 17 series of daily flows from which 17
sets of partial flood series are derived. These 17
daily flow series are from runoff records published
by the U.S. Geological Survey under the condition
that the flows are sufficiently virgin, or have not
been altered by significant man-made diversions or
flow regulations.

The names of gaging stations, their locations,
drainage areas, mean flow, and other pertinent in-
formation are given in Table 5-1, with the approximate
geographic location of these stations shown inFig. 5-1.

5.2 Chi-Square Goodness-of-Fit Test Statistic

Generally, a goodness-of-fit statistic is useful
to discriminate between fits of different probability
distribution functions to the same frequency distri-
bution. If a single sample is available, the goodness-
of-fit statistic of each fitted distribution function
is computed, and the distribution selected with the
smallest statistic. Several test statistics may be
used in testing goodness-of-fit of probability distri-
bution functions. The chi-square and the Smirnov-
Kolmogorov goodness-of-fit test statistics are well
known and frequently applied in statistics and hydro-
logy. Test by Smirnov-Kolmogorov statistic is non-

" parametric or distribution-free. However, in case
of goodness of fit, parameters of hypothetical distri-
bution functions, which are fitted to frequency
distribution, are estimated from the sample data, the
Smirnov-Kolmogorov test is not appropriate and not
used in this study.

For chi-square statistic, the range of variable
values is divided into k mutually exclusive and ex-
haustive class intervals, each with a class frequency
Dj and expected class probability Ej 51580k

The quantity (Oj - EJ}Z is used as a measure of de-
parture from Ej, but they cannot be compared from one
class to another without scaling each class interval

Table 5-1. Stations Selected for Investigation
USGS
Station | Station ) Location Area Records Mean Standard Remarks on
Number | Nusber River Latitude | Longitude | (Sq. Mi.)| Available | Daily Flow | Deviation Accuracy of Record*
Excellent. Fair during
1 1B.6265 | Tloga near Erwins, N, Y. 4207 77°08" 1370.0 1921-1960 | 1378.6 2777.8 periods of ice effect.
) Cood. Fair during
2 4.0710 | Oconto near Gillett, Wisconsin 44°52" 88°18* 678.0 1921-1960 543.5 441.0 | periods of ice effect.
5 Good. Poor during
3 7.0670 | Current at Van Buren, Mo. 37°00' 91"01" 1667.0 1022-1960 1821.0 2694.3 periods of ice effect.
4 14.1590 | Mckenzie at Mckenzie Br., Ore. 44°11' [ 122°08' 345.0 1924-1960 | 1638.2 744.4 Excellent
5 8.3335 | Neches near Rockland, Tex. 3102’ 94°24" 3539.0 1924-1960 | 2385.2 3813.0 Good
‘ g . . Iixcellent, Good during
6 15.1850 | Boise near Twin Springs, Idaho 4540 | 115%44" 830.0 1921-1960 | 1172.7 1458.6 periods of ice effect.
) Good. Falr durlng
7 11.2750 | Falls Creek near lletch-hetchy, Cal.| 37°58' |119%46' 45.2 1923-1960 141.2 234.2 periods of ice effect.
_ g Good. Poor during
8 3A. 1855 | Greenbrier near Alderson, W. Va. 37°44 BO"38" 1557.0 1921-1960 | 1885.5 3053 .4 eriods of ice effect.
Good, Fair during
9 68,3905 | Delaware at Valley Falls, Kansas 3921 95°27¢ 922.0 1923-1960 175.9 1617.7 periods of ice effect.
. . Excellent. Good during
10 6A.0375 | Madison near W. Yellowstone, Mont. 44°39°" 111°04" 419.0 1924-1960 458.6 190.7 periods of ice effect.
11 3B.5320 | Powell near Arthur, Tenn. 36°32' 83°38' GB3.0 1921-1960 1116.1 1739.0 Good
) Good. Poor during
12 12.1150 | St. Maries necar Lotus, ldaho 47*15' [116°38' 437.0 1923-1960 515.0 762.3 periods of ice effect.
13 2A.0160 | Cowpasture near Clifton Forge, Va. 37°48" 79"46" 456.0 19261960 515.6 762.3 Good
14 3A.2695 | Mad near Springficld, Ohio 39°55" 83°52" 1474.0 1921-1960 487,32 686.7 Good
Merced at lohono Br,,
15 11.2665 | Yosemite, Cal. 37°43¢ 119°40° 321.0 1921-1960 595.7 979.4 Good
) N % Good. Fair during
16 1B.3295 | Butten kill at Battenville, N. Y. 43°06' 7325 394.0 1923-1960 722.9 722.9 periods of ice effect.
. Good. Fair during
17 5.3620 | Jump near Sheldon, Wisconsin 45°18’ 90°57" 574.0 1921-1960 505.0 1162.0 periods of ice effect.

*According to USGS, the classification of the records are excellent, good, fair, or poor depending on
whether errors in them are less than 5, 10, or 15 percent or greater than 15 percent, respectively.
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Fig. 5-1

proportionally to Ej. The measure used 1is (Oj - EjléEj
and the test statistic of a fit is

, k (0, -E)?
X -jzl —-‘1—3—1

This statistic is asymptotically chi-square
distributed, with k-1 degree of freedom. When popu-
Jation parameters are estimated from sample data, the
number of degree of freedom is then decreased by the
number of estimated parameters. For m parameters,
the total number of degree of freedom is

(5-1)

fak=1-=m (5-2)

5.3 Distribution of the Number of Exceedances

The 17 sets of partial flood series are obtained
from the 17 sets of daily flow series as described
above. The series are exceedances above the selected
truncation level Q, and are functions of it. For each

station, 9-11 truncation levels were selected so that

the average number of exceedances per year, 7, would
vary from 1 to 4.5.

Comparison of Discrete Probabilily Distribution
Functions gorn the Number of Exceedances. Five dis-
crete probability distributions outlined in Chapter

III were fitted to frequency distributions of n for
the 17 stations. The chi-square test statistics were
calculated for all five distributions: Poisson, mixed
Poisson, Hyper-Poisson, negative binomial, and the
mixture of two geometrics, as well as for all stations.

The comparison of best fits of selected distri-
bution functions is made in two steps: (1) Compare
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Geographic Distribution of Selected Stations

the goodness-of-fit statistics for each station series
and various truncation levels; and (2) Compare the
goodness-of-fit statistics for the 17 stations. The
selected distribution is that one which has, on the
average, the smallest goodness-of-fit statistic for
all the selected truncation Tevels and for all the
stations.

The chi-square statistic is affected by the
degree of freedom, which in turn depends on the number
of parameters of distribution functions used. Instead
of comparing the computed chi-square statistics
directly, the exceedance probability of these chi-
square values is used, in order to remove in compari-
son the effect of degrees of freedom. The function
with the largest exceedance probability of the computed
chi-square is conceived as the best fit distribution.
If 95 percent significance level is used in testing
the goodness of fit, the fitted function that has the
exceedance probability of computed chi-square less

than 5 percent is rejected. Let x2 denote the computed
chi-square, and P(xz) its non-exceedance probability,
or the exceedance probability is 1 - P{xz). The

computed 1 - P(xz) for five distributions, for various
Qb' and for station 1, are given as an example in

Table 5-2.

For each Q four distributions (except Poisson)

are ranked by their statistic values, from the largest
to the smallest. The distribution that gives the

largest value of 1 - P(xZJ is ranked No. 1 for a given
qb. At the bottom of each column the sum of the ranks

attributed to each distribution, and the total number
of times (or Qb) that the distribution was rejected by

the chi-square test at the 95 percent significance
level are shown.



Table 5-2. Comparison of Goodness-of-Fit Statistic

Based on 1 - P(x%). for Distribution
Functions of the Number of Exceedances,
for Various Truncation Levels and Station

No. 1
Statistic 1 - P{xa'j
Mixed
Number Poisson Mixture
Truncation | of Class or Hyper- | Negative | of
Level Intervals Poisson | Poisson | Poisson | Binomial | Geometrics
10800 10 0.005 | 0.068%" | 0.054>" | 0.081)" | 0.028""
11500 10 0.426 | 0.426° |0.384° | 0.428 | 0.218
12000 10 0.207 | 0.423% |o0.402* | 0.5l | 0.405°
12500 10 0.730 | 0.730* |0.728* | 0.725° | o0.488¢
13500 10 0.591 | 0.626® |0.705% | 0.7251 | o0.601%
14000 9 0.648 | 0.648 |0.617% | 0.575% | 0.520%
14500 9 0.833 | 0.833 |o0.618% | 0.730% | o0.580%
15000 9 0.298 | 0.298" |0.105% | 0.1762 | o0.024%
16000 9 0.398 | 0.308) |o0.214° | 0.2677 | 0.0s6
17000 9 0.435 | 0.435 [0.098% | 0.208% | 0.000%
18000 8 0.955 | 0.955' | 0.807% | 0.863% | 0.s82"
Sum of Ranks -- 16 31 20 143
Number of Times
Distribution is
Rejected by Chi-
Square Test 1 o ] o 3

*Rank of 1 - P(x2) attributes to each distribution
function for a given truncation level Qb. Distri-

bution function which has the smallest number of
rank is considered as the best fit function for a
given Qb'

Distributions are further ranked on the basis of
sums of ranks for each station. Entries in Table 5-3
give sums of ranks, for different truncation levels of
all the stations. For each station four distributions
are ranked by sums of ranks for all the truncation
levels, from the smallest to the largest. Sums of the
new ranks attributed to each distribution are shown at
the bottom of each column.

The number of times (or Qh) that distribution

functions are rejected by the chi-square test at the
95 percent significance level for each station are
given in Table 5-4. The total number of times and the
percentage of times that a distribution function is
rejected, for all Qb and for all stations, are shown

at the bottom of each column.

These data show that:

(i) The one-parameter Poisson distribution
cannot pass the chi-square test at the 95 percent
significance level for all the stations studied;

(i) Based on the results of Tables 5-3 and 5-4,
the mixed Poisson or only the Poisson distribution, as
the case may be, give the best fit among all the con-
sidered discrete distribution functions;

(iii) The mixed Poisson or the Poisson distribution,
as the case may be, pass the chi-square test for all

stations and for the most interesting range of trun-
cation levels; and

(iv) The four-parameter distribution does not
give any improvement in the goodness-or-fit for the
test criterion selected.

In conclusion, the Poisson distribution with one
parameter is not always sufficient to fit frequency
distributions of n for all stations. It does not pass
the chi-square test at the 95 percent significance
level for all stations. However, for all stations and
all selected Qb’ the percentage of times that it is

rejected by chi-square test is 26.55 percent.

The other four distributions also were applied
with the goodness-of-fit tested by chi-square statis-
tic. On the average for 17 stations, the mixed
Poisson or the Poisson as the case may be, gives the
best fit among the considered distribution functions.
This distribution can pass chi-square tests with 95
percent significance level for the range of interesting
05 and for all stations. The percentage of times that

it is rejected by the chi-square test is 5.08 percent.

Table 5-3. Goodness-of-Fit for Distribution Function
of Number of Exceedances Based on Sums of

Ranks of A1l Truncation Levels, for
1 - P(x%) Statistic

Sums of Ranks of All Truncation Levels

Station Mixed Poisson Negative Mixture of

Number or Poisson Hyper-Poisson Binomial Geometrics
1 18" 313" 202" as"
2 15! 25° 15% 35
3 29° 15t 242 aat
4 16! 2? 28° 35
5 253 20t 252 304
6 263 154 22 2t
7 282 23t 29° 30
8 16! 53 22° at
s 26% 16} 26° 52*
10 17 st n® ar?
1 20 222 24% 44t
12 20 24? 28° 38t
13 19t n? 2773 a3t
14 27? 14t 29° a0*
15 264 18} 26° 20°
16 17 22? 24° 37t
17 at s8* 22% 29°

Sums of Ranks  29** 34 44 63

*ﬁank based on sums of ranks of all Qb' attributes

to each distribution function for a given station.
Distribution function which has the smallest number
of rank is considered as the best fit function for
a given station.

**The smallest number of sums of ranks indicates
that the mixed Poisson or Poisson distribution
gives the best fit.



Number of Times (or Truncation Levels)
that Distribution Functions are Rejected
by Chi-Square Test at the 95 percent
Significance Level, for Fitting the
Frequency Distributions of Number of

Table 5-4.

Exceedances
| Mumber of Times that Distribution is Rejected
Total Times | Mixed | |
or | Poisson | | Mixture

Statiom | Truncation | or Hyper- ' Negative  of |
Mumber | Levels | Poissong Poj'ssm. Poisson Binomial : Geometrics |

1 11 1 0 0 ! 0 ‘ 3

2 9 J i 0 0 I 0 ‘ 1

3 11 9 ! 11 ! 1 1

4 10 R B T B ; 1 J 1

5 10 3 0 0 ; 1 0

3 9 1 1 2 i 1 ? 1

7 1 2 1 2 1 ! 1

& 11 [1] 0 i} 0 ‘ o

9 10 7 2 1 2 i 2

10 11 ] 0 7 1 i 0

11 11 0 0 { 0 0 | 3

12 11 10 1 I 3 1] lI 0

13 11 Q 0 0 Q ! 0

14 11 4 1 0 1 2

15 | 9 2 2 3 4 1

16 | 10 0 0 0 0 0

17 | 11 6 0 7] 0 2
Total | 177 47 9 19 13 18
Percent | 100 26.55 5.08] 10.73 7.54 10,17

Change of Goodness-of-Fit Statistic of Selected
Disinibution with a Change of Truncation Level. The
chi-square statistic, expressed as the exceedance

probability 1 - P(xz), of the selected distribution,
is investigated to determine its change with the
change of truncation level. For each station, 9-11
truncation levels were selected in such a way that

n varies from 1 to 4.5. For convenience, the trunc-

ation level is expressed in terms of n. The relation-

ships between 1 - P(xz) and 1 for all stations are
plotted and studied. By using the method of inter-

polation, the average 1 - P(xz} at the particular q
in the range of 1 to 4.5 are obtained.

The change of the average 1 - P(xzj for all
stations with the truncation level for the Poisson
distribution and the mixed Poisson distribution are
shown by a dotted line and a full 1ine in Fig. 5-2,
respectively.

Figure 5-2 shows that:

(i) The goodness-of-fit by chi-square statistic
and for both distributions tend to be better as the .
truncation level increases;

(i1) The mixed Poisson distribution, when it can
be applied, is an improvement, especially for the
smaller truncation levels; and

(iii) There is a tendency for the Poisson distri-
bution to be rejected on the average for truncation

28

[Xs]
Average
os b 1-p(%) s
06 |- -
04 L -
0.2 |- A
5 % Exceedance Probability 4
Qo L I 1 1 T
Q I 2 3 4 s

Fig. 5-2 Relationship of Average 1 - P(x%) to the
Truncation Level, Expressed as the Average

Number of Exceedances per year, n for: (1)
Poisson Distribution, and (2) Mixed Poisson
Distribution, as Averages for A1l 17 Stations

levels that have n greater than 5.5, approximately.
For some stations the Poisson distribution is rejected
for most truncation levels of the practical range.

Changes in Panametens of Selected Distribution
with a change of Truncation Level. In order to study
how the Poisson or mixed Poisson distribution can be
applied, ratios Rrn 2 of mean to variance of frequency

distributions of n are plotted against the truncation
levels for all the stations. Results are shown in
Fig. 5-3 for stations nos. 1-9, and Fig. 5-4 for
stations nos. 10-17. Departure from the Poisson dis-

tribution depends on the departure of the ratio Rm g
k]

from unity. When the ratio is greater than unity the
Poisson distribution may be still applicable, such as
for cases of stations nos. 6, 10 and 15. For ratios
less than one, such as for stations nos. 3, 9, 12 and
17, the application of Poisson distribution is rejected
by the chi-square test. In these particular cases the
mixed Poisson with three parameters can be applied,
since one of its properties is for the variance to be
greater than the mean.

04
7

02 1 | ] 1 1
5

Fig. 5-3 Relationship between Ratio Rm " of Mean to

Variance and Truncation Level (Expressed as
the Average Number of Exceedances per Year,

n) for Distributions of the Number of
Exceedances, Station Nos. 1-9
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nition, Ay >x>Xi,, and 0 > p > 1, where A is a para-
1 2

meter if the Poisson distribution is applied. The
larger p in the mixed Poisson distribution, the closer
the values of parameters A and A. Table 5-5 shows

how p, A], and 12 for the frequency distributions of
n for station no. 17 change with the change of Qb'

For this case, p decreases with an increase of Qb and
of Rm,v' This table also shows when Rm,v is close to
unity, as Qb increases, the Poisson distribution
becomes a good fit. For example, for Qb = 5500 cfs,
R approaches to unity and kz = A, hence, p

m, Vv
approaches to zero.

5.4 Distribution of the Magnitude of Exceedance

oz | i ! | |
[+] I 2 3 4 5

Fig. 5-4 Relationship between Ratio Rm i of Mean to

Variance and Truncation Level'(Expressed as
the Average Number of Exceedances per Year,

n) for Distributions of the Number of
Exceedances, Station Nos. 10-17

For stations for which the daily flow series
fluctuates highly, the ratio Rm i of the number of

exceedances tends to be smaller than unity. In this
case the mixed Poisson distribution is applicable. In
the opposite case, the Poisson distribution is ac-
ceptable. For stations such as nos. 1, 2 and 13,

both distributions should be applied in Passing the
chi-square test for the whole range of Qb'

Since the Poisson distribution has only one
parameter, x, and the maximum likelihood estimate of
4 s the average number of exceedances, i decreases
with an increase of Q-

The mixed Poisson distribution has three para-
meters: Mo Ap and p, with SR PP and p the

proportion for Poisson with parameter A By defi-

The frequency distributions of the magnitude of
exceedance of partial flood series for 17 daily flow
series are used in the study for selecting the pro-
bability distribution function of best fit. The chi-
square statistic is used for testing the goodness-of-
fit. The procedure used for the number of exceedances
is also applied for this case.

Comparison of Continuous Probability Distnibution
Functions for Magnitude of Exceedances. The investi-
gation is divided into two steps. In the first,
preliminary step, the five continuous distribution
functions: exponential, gamma, Pearson Type III,
Weibull and lognormal are used to fit the frequency
distributions of the magnitude of exceedance &,

Detailed computations are not presented. Results

show that exponential, gamma, and Weibull distributions
have a more close fit than the other distributions. It
is difficult to distinguish which one of these three
distributions fits best. The percentage of times that
each distribution is rejected by the chi-square test

at the 95 percent significant level for all stations
did not come to be 5 percent or less. These investi-
gations passed to the second step.

A mixed exponential distribution with three para-
meters was applied, or an exponential distribution if
a mixed exponential cannot be applied. The goodness-

Table 5-5. The Change of Parameters ERT and p with the Change of Truncation Level for Distributions

of Number of Exceedances, for Station No.

17

Truncation Level, Qb

1670 1850 2000 2500

3000 3500 4000 4500 5000 5500 6000

Mean or X 5.154 4.667 4.462 3.769

|Ratio R 0.548 0.550 0.577 0.671
m,V

P 0.512 0.554 0.559 0.479

Ay 7.168 6.419 6.070 5.186

A 3.039 2.491 2.426 2.468

xz by Mixed Poisson 9.251 6.530 9.755 17.362

xz by Poisson 36.588 126.658 33.084 35.119

3.256 2.744 2.410 2,026 1.692 1.256 1.077
0.741 0.746 0.814 0.725 0.822 0.991 0.827
0.318 0.385 0.486 0.199 0.181 0.00002 0.179
4.821 3.966 3.174 3.787 2.980 26.509 2.092
2.528 1.979 1.690 1.589 1.407 1.256 0.855
14.560 14.444 7,197 3.076 2.461 5.102 3.709

27.798 18.980 B.455 8.842 4,468 5.098 6.747
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of-fit is compared for the three distributions. Sums
of ranks for all the truncation levels for the statistic

1- P(xz} for each station are given in Table 5-6. The
sums of new ranks for all stations and for the three
distributions are determined and given at the bottom
line of each column. The number of times (or Qb)

that a distribution is rejected by the chi-square test
at the 95 percent significance level for each-station
is given in Table 5-7, with the total number of times
of rejection shown at the bottom line of each column.

The results show that the mixed exponential or
the exponential distribution give the best goodness-
of-fit by chi-square test statistic. The percent of
times that this distribution is rejected by the test
is 13.57. The percent of times that it is rejected
by the test is greater than five. Only station no. 5
was rejected by the chi-square test at the 95 percent
significance level for all selected Qp- This number

affects the total percent of times. However, for this
station, only five out of eight truncation levels were
rejected by the chi-square test at the 97.5 percent
significance level, and four out of eight truncation
levels at the 99 percent significance level.

Table 5-6. Goodness-of-Fit for Distribution Function
of Magnitude of Exceedances Based on Sums
of Ranks of A1l Truncation Levels for
1- P(x?) Statistic

Sums of Ranks of All Truncation Levels
Station Mixed Exponential
Number ot Exponential Gamma Weibull
1 17k’ 18%° 19%"
2 14t 172 17
3 17t 182 19°
4 16 17° 15!
5 23 16 5t
6 228 17 ot
7 8! 248 16
8 10 243 142
9 15} 20® 19
10 17% 19° 12 |
1 14 18% 16° :
12 10t 183 197 |
13 173 15t 16
14 141 172 17
15 16° o} 178
16 10t 23% 15°
17 15t 7% 18?
Sums of Ranks 26%* 41 35

*Rank based on sums of ranks of all Qb’ attributes

to each distribution function for a given station.
Distribution function which has the smallest
number of rank is considered as the best fit
function for a given station.

**The smallest number of sums of ranks indicates
that the mixed Exponential or Exponential distri-
bution gives the best fit.
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Table 5-7. Wumber of Times (or Truncation Levels)
that Distribution Functions are Rejected
by Chi-Square Test at the 95 Percent
Significance Level, for Fitting the
Frequency Distributions of Magnitude of
Exceedances
Number of Times that Distribution is Rejected

Etatinn [ Mixed Exponential

rumber | Exponential or Exponential Gamma Weibull

: 4 3 6 (]
2 0 1] ] 0
I3 1 1 0 0
il 4 1 1 0 0
:l 5 8 8 8 &
i 6 1 1] 0 0
¥R g I 8 8
i 8 0 0 1] 0
| s 2 0 0 0
l 10 0 0 1 1
; 11 0 0 o 0
I 12 0 0 0 0
13 2 2 1 i
14 0 0 0 0
I 15 1 1 0 1
16 5 4] 6 5
1T 10 2 7 4
ETo:nI 43 o 19 37 34

'IP_ercent 30.71 13.57 26.43 24.29

Two reasons ‘may be responsible for the chi-square
test to reject this particular river: (1) The partial
flood series is approximately derived from the mean
daily flow series and not from the instantaneous flow
peak series; and (2) This effect may be reinforced by
the large outliers, since all the considered distri-
butions were rejected. For this particular river, the
catchment area of about 3539 square miles is the largest
among all the considered 17 rivers.

Change of Goodness-of- Fit Statistic of Selected
Distribution with a Change of Thuncation Level. The
same procedure outlined is used here as for the distri-
bution of the number of exceedances, for the rhange of
goodness- of-fit statistic with a change of the
truncation level.

The changes of the statistic of the average
1 - P(x?), for all stations with the change of the

truncation level (in this case expressed by n) for the
exponential and the mixed exponential distributions
are shown by the dotted 1ine and full line in Fig. 5-5.

Figure 5-5 shows, for the averages of all
stations, that:

(i) The goodness-of-fit of chi-square statistics
for both distributions tend to increase for high
truncation levels;

(ii) The mixed exponential distribution, when it
can be applied, gives a goodness-of-fit improvement,
especially for the low truncation levels; and
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Fig. 5-5 Relationship of Average 1 - P(x%) to the
Truncation Level, Expressed as the Average

Number of Exceedances per Year, 7 for:

(1) Exponential Distribution, and (2) Mixed
Exponential Distribution, as Averages for
A1l 17 Stations.

(ii1) The goodness-of-fit for the exponential
distribution decreases rapidly with a decrease of the
truncation level in the range of lower truncation

levels (or for n larger than 3).

Changes in Parametens of Selected Distnibution
with a Change o4 Thuncation Level. Exponential dis-
tribution parameter, g, estimated by the sample mean
by the maximum 1ikelihood implies that the change of
the mean with the truncation level is the change of
parameter g with truncation level. By studying the
17 frequency distributions of £y it is not conclusive

how g changes with Qb‘ For stations nos. 2,5,9 and 16,
8 clearly increases with an increase of Q,. For

stations nos. 6 and 10, B clearly decreases with an
increase of Qb. For other stations, the change in

B with Qb is not clear.

Three statistics, the coefficients of variation,
skewness and kurtosis of frequency distributions of
£, are investigated to find the ranges in which the

mixed exponential distribution should be applied. In
case of coefficients of variation, the results are not
quite conclusive, except that the mixed exponential
distribution can be applied only in the range of high
coefficients of variation, and not applied if it is
less than unity. The population coefficient of vari-
ation of exponential distribution is unity, so that

it is applicable in a range of values close to unity.

The mixed exponential distribution can be applied
if the skewness coefficient y is greater than two,
except for station no. 13. For it the distribution
is not applicable in the range of coefficients 2.4 to
3.1, but is applicable for values greater than 3.1,
Figure 5-6 shows how the skewness coefficients of
distributions of 8 for stations nos. 1-9 change with

Qy. The variation in skewness with Q, for stations

now. 10-17 are shown in Fig. 5-7. The higher the
skewness coefficient, the more opportunity is there
for the mixed exponential distribution to be appli-
cable, with a better goodness-of-fit than for the
exponential distribution.
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Fig. 5-6 Variation of Skewness Coefficients y of
Distributions of the Magnitude of Exceedance
with the Truncation Level (Expressed as the
Average Number of Exceedances per Year, 7)
for Station Nos. 1-9
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Fig. 5-7 Variation of Skewness Coefficients y of
Distributions of the Magnitude of Exceedance
with the Truncation Level (Expressed as the
Average Number of Exceedances per Year, 7)
for Station Nos. 10-17

The mixed exponential distribution can be applied
if the kurtosis coefficient is approximately greater
than 7.5, except for station no. 13. For it the
mixed exponential distribution is not applicable in
the range of coefficients 13.5 to 16.8, but is ap-
plicable for values above that range. The larger a
value of the kurtosis coefficient, the better the
application of the mixed exponential distribution.

For the mixed exponential distribution, with
three parameters B1s Bys and p, and without any loss
of generality, let By > Bys and let p indicate the
proportion for the exponential with the parameter 1°
By definition, By > B > By 0 < p <1, where g is

a parameter if the exponential distribution is applied.
For stations that the mixed exponential distribution
can be applied for the whole range of Qs such as

stations nos. 7, 8, 9, 15 and 17, the proportion
parameter p tends to increase with an increase of Qb.

Table 5-8 shows how parameters B1» By and p for
station no. 17 change with Qb. The change of moments

and chi-square statistic for both distributions, are
also included.




Table 5-8. The Change of Moments, Parameters p, 8 and Bys and Chi-Square Statistic with the Truncation

Level for the Distribution of the Magnitude of Exceedance, for Station No. 17

Truncation Level, Qb

1850 2000 2500 3000 3500 4000 4500 5000 5500 6000
Mean or 8 3060.4 3047.5 3054.7 2992.8 2998.7 2867.2 2864.6 2884.9 3296.5 3307.8
Coefficient
of
Variation 1.19 1.21 1.24 1.30 X:55 1.46 1.54 1.61 1.54 1.61
Skewness 5.558 5.606 5.739 5.813 5.828 5.764 5.632 5.449 5.109 4.940
|
 Kurtosis 52.02 52.06 51.50 50.61 48.26 45.87 42.33 38.45 32.26 29.38
|
ip 0.014 0.016 0.020 0.031 0.041 0.064 0.082 0.102 0.111 0.135
EBI 14969.2 14580.,2 14077.9 12837.7 12370.5 11149.6 10772.7 10509.8 11015.5 10746.8
|
]
562 2892.6 2862.8 2825.9 2674.3 2601.1 2301.1 2157.6 2017.2 2329.2 2143.2
|
§ @
X by
. Mixed
 Exponential 3.275 3.387 4.003 3.202 3.860 5.933 8.152 9.684 3.472 2.569
X2 by
Exponential 26.861 28.521 30.550 36.879 38.491 56.742 43.652 43.589 27.572 28.670
L.

5.5 Probability Distribution of the Largest Exceedance

The main purpose of the study of partial flood
series is to develop the probability distribution of
the largest exceedance in a year. This distribution
can be then used to estimate flood exceedances for
given annual return periods. It can be derived by
using the combination of distributions of the number
and the magnitude of exceedances above the selected
truncation level.

Let n represent the number of exceedances in a
year and {EV}T' represent a sequence of the magnitude
of those exceedances. It is shown in Section 3.4

that the distribution of the largest exceedance in a
year is expressed by

F(x) = P(n=0) + ] P[max ¢ < xMn=k],

k=1l  1<v<k W

with max &,

* mﬂx(ilsﬁzu-- 'IEk] = the random variable
1<u<k

which represents the largest exceedance in a year.

Two assumptions are used in order to simplify
the application of Eq. 5-3. The first assumption is

that {Eu}" are independent of n. The second assumption
is that {au}° are mutually independent random variables
with the common distribution function H(x).

The test whether {E“}: are independent of n, the

exceedances £, are divided into groups which have the

same number of exceedances per year, n. Because of

short sample data, the {sv}' are divided into only two
1
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groups. The exceedances {Ev}: with small n are

combined into one group, while other exceedances with
larger n are considered as the other group. For
example, the first group may consist of all exceedances
with n =1, 2, and 3. A1l other exceedances are then
considered as the second group. The idea is that the
total number of exceedances in each group should be
close together. The two-sample-Smirnov-Kolmogorov

test is then used to test the hypothesis that the
distributions of the Eu‘s corresponding to the two

groups are identical. Under the null hypothesis of
equality of the two distributions, the statistic

A = max|H, (x) - H (5-4)
xl 1) = Hy() |

has some distribution whose 95 percent quantile is
approximated by

bc = 1.358 ’ (5-5)

where H](x) is the sample distribution function of

gv's corresponding to the first group with sample size
" and Hz(x) is the sample distribution function of

the ;U's of the second group with sample size ny-

The results of the test for 24 exceedance series
of 12 stations, each with two selected truncation
levels, are shown in Table 5-9. This table includes
station number, truncation level, average number of
exceedances per year, sample size of each group, the
computed 4, and the critical value ac. A1l of the

computed A are less than B+ This implies that the

null hypothesis cannot be rejected at the 95 percent
significance level. That is, the hypothesis that



Table 5-9. Two-Sample-Smirnov-Kolmogorov Test for the
Hypothesis that the Distributions of the
£,'s Corresponding to the Two Selected
Groups are Identical

Smirnov-Kelmogorov
Average | Sample Sizes Statistics
) Truncation Number of LN Computed | Critical
Station Level £, per Year, Values Values
Number q, LA ! A A
1 11500 2.69 56 |49 0.102 0.266
1 12500 2.28 &2 137 0.096 0.292
2 1000 3.54 64 | T4 0.150 0.232
2 1250 2.59 53 |48 0.130 0.271
3 6000 4.00 58 |94 0.150 0.227
3 8000 2.55 53 (44 0.090 0.277
4 2500 4.58 a9 |78 0.0%0 0.212
4 3250 2.50 44 |46 0.200 0.286
5 5000 3.56 51 177 0.210 0.245
5 T000 2.42 43 144 0.185 0.291
6 4000 3.00 68 |49 0.220 0.255
6 4250 2.67 45 59 0.209 0.269
7 600 4.14 92 |61 0.157 0.224
. 700 327 70 |51 0.235 0.250
9 4000 4.03 66 |83 0.170 0.224
9 6000 2.67 44 |55 0.100 ,0.275
1 7000 3.28 62 |66 0.070 0.240
11 8000 2.51 55 |43 0.105 0.276
12 2500 2.76 58 (44 0.200 0.272
12 3250 1.97 34 (39 0.290 0.519
16 2500 4.27 90 |68 0.095 0,218
16 3000 2.65 47 |51 0.130 0.275
7 Jooo 3.26 57 70 0.150 0.242
17 3500 2.74 51 56 0,050 0,263

the distribution of the magnitude of exceedances does
not depend on the value of n cannot be rejected and

hence it will be assumed that the {E“}T and n are
independent.

The study of dependence of successive exceedances
for a selected Qb is presented later in this chapter.

Under the conditions that {Ev]T are independent

of n, and {au}” are mutually independent random
1

variables with the common distribution function H(x),
the distribution of the largest exceedance, Eq. 5-3, is

F(x) = P(n=0) + I [(H)Y* + P(r=)]  (5-6)
k=1

The distribution of n, P(n=k), used is either
the Poisson distribution,

oAk —_—

P(n=k) = —4—

or the three parameter mixed Poisson distribution,

=X -A
pe lz\k e Zlk

P(n=k) = "'*ET__l +(1-p) (5-8)

with » = parameter of Poisson, and p, Ao and Ay 7
parameters of mixed Poisson distribution, respectively.

The common distribution function of a 's is either
the exponential distribution,

H(x) = 1 - exp(- %ﬂ (5-9)

or the three-parameter mixed exponential distribution,

H(x) = p'[l - exp(- g‘?] +

(1 - p")[1 - exp(- %J] (5-10)

with g =
B, = parameters of mixed exponential distribution,
respectively.

the parameter of exponential, and p', Bys and

5.6 Statistical Dependence in Partial Flood Peak Series

One of the often-stated drawbacks of the partial
flood series is that successive series values are not
independent. To test whether the series of the magni-
tude of exceedances is independent stochastic process,

“the correlogram of each series of 17 sets of £, is
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investigated for independence with 95 percent tolerance
limits. Lags from one to one-third of total number of
exceedances are checked, for various Qb. The 95 per-

cent tolerance limits, ¥ and r e » for an independent
series are given by

N )

u,L N-k-1 (5-11)

with k = the lag, t = 1.96 = the value of standard
normal distribution for a two-tail test that P = 0

for k > 0 at the 95 percent level, and N = the sample
size. The range of Qb‘ the number of Qb within the

range, total number of computed s the number of times
and the percent of times that "k is outside the 95

percent tolerance 1imits for each series are shown in
Table 5-10. If Qb is selected in such a way that

n varies approximately from 1 to 4, the percent of the
total number of "k of all series outside the 95 percent

tolerance limits is 4.37, or less than the expected
value of 5.00. Only two out of 17 series have the

percent of i outside the 95 percent tolerance limits,

7.04 and 8.66, which are more than the expected value
of 5.00.

Since the first-order serial correlation coef-
ficient, ry» 1s most important in non-periodic series,

some further information is provided in Table 5-11.
Values ™ in the range of 7 from 1 to 4, are approxi-
mately within the 95 percent tolerance limits. The
change of F} for all the 17 series, with Qb are shown

in Fig. 5-8 and the upper and Tower tolerance limits
included. This figure shows the average " of all

stations within the 95 percent tolerance limits for the
range of n from 1 to 4.5. When Q, decreases so that n
is greater than 4.5, " tends to fall outside the 95
percent tolerance limit. For more details, the
relat1onsh1p between " and Qb, in such a range of Qb

that n varies from 1 to 4 or 5, and for each station,
is given in the appendix. The relationship between
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Fig. 5-8 Relationship between the Average First-Order
Serial Correlation Coefficient, Fﬁ and the
Truncation Level, Expressed as the Average

Table 5-10.

Number of Exceedances per Year, n

Summary of Study of Dependence of
Successive Exceedances above the
Truncation Levels

Table 5-11.

Range of Truncation Levels with First

Serial Correlation Coefficients either
within or outside the 95 Percent
Tolerance Limits

\Station Number

15
16
17

Range of n with T N with | Outside
Within 95 Percent T.L. 95 Percent T.L.

1.153-4,10

0.97-4.03

0.89-5.61

0.97-4.30 4.58, 5.47

0.89-4,20 4.64, 5.36, 6.14

1.00-3.50 4.31

1.24-5.89

0.82-4.82

0.97-4.80 5.16, 6,86
0.50-2.5633.30-4.10 2.61, 3.06, 4.31,

4,594

0.85-3.82

0.65-4.49 5.89

1.17-5.97

0.77-3.80 4.41, 6.05, 9.26,

10.28

0.41-4.588 5.10

0.86-4.27

0.92-5.15

Table 5-12.

Number and Percent of Times that the

First 15 Values of e of A1l Series with

R’"“: i "“'“E:’ W ey | Mk f,: ;E;ﬁ:“{f such Truncation Levels for n to Vary Ap-
Station | Expressed in the Computed | ;. putside | is outside proximately from 1 to 4.5, that are out-
Number by Range " 95% T.L. | 95% T.L. side 95 Percent Tolerance Limits
1| s | ow wo | s s | VRS SN
2 0.97-4.03 | 9 255 3 1.18 Humber are Outside 95 Percent T.L. Percentage,
3 0.97-5.61 11 373 17 4.56 1 | 9 5.36
4 0.97-4,58 g 222 11 4,85 2 t 1 0.60
5 0.589-4.64 10 258 T 2,71 3 5 2.98
6 1.00-4.31 11 336 14 4,17 4 4 2.38
7 1.24-5.49 11 402 11 2.74 5 5 2.98
[ ] 1.00-4.82 11 355 25 7.04 [} 7 a4.17
. 9 0.97-6.86 10 358 31 B.66 2 9 5.36
; 10 0.83-4.94 il 382 17 4,83 8 3 1.79
i X 0.92-3.82 11 303 13 4,29 ] 5 2.98
12 0.78-5.89 10 71 12 4.43 10 11 6,55
13 0.97-5.97 11 348 16 4.60 11 10 5.95
14 0.87-6.05 10 326 16 4,81 12 15 8.93
15 0.64-5.10 10 323 8 2.48 13 4 2.38
16 0.86-4.27 9 237 12 5.06 14 10 5.95
17 1.08-5.15 11 420 K] 2,10 15 3 1.79
176 5402 236 4.37 Total 101 4.01

" and Qb' for the whole range of Qb. and for station

no. 9 is also given as an example in the appendix.
Table 5-12 shows the number and the percent of times
that the first 15 values of 'k of all series, with

such a range of Q, that n varies from 1 to 4.5, are

outside the 95 percent tolerance limits.

average percent is 4.01.

The

overall

It can be concluded from the study of correlo-
grams, in such a range of Qb that 7, varies from 1 to

4, that the dependence in the partial series of
exceedances is not significant from the point of view
of practical applications. If Qh is lower than this

range, the dependence may not be neglected. and it

tends to increase with a decrease of Qb.



5.7 Statistical Dependence of Annual Flood Peak
Series

Annual flood peaks are commonly assumed to be a
series of independent events. If these flood peaks
are not independent, an effect would be the underesti-
mation of the sampling variance of the T-year flood.

The dependence of annual flood peak series is
also studied by using their correlograms. Each annual
flood series of the 17 stations is tested for signifi-
cant departure from independence. The number of years
of available records varies from 36 to 40 years. The
first 15 " values of each series are checked for the

number and percent of T values that are outside the

Table 5-13. Number and Percent of Times that rk of

Annual Flood Series of Each Station are :
outside 95 Percent Tolerance Limits

Station | Number of Lags that Lag Numbers for

Number . T Outside 95 Percent T.L. T Outside 95 Percent T.L. | Percent

1 0 0.00
2 | 1 7 6.67 |

3 ! 1 12 6.67

4 o 0.00

5 2 3,9 13.33

6 2 ! 5,12 13.33
T i 5, 13 13.33 |
8 0 0.00 |
9 1 11 6.67 |
10 o 0.00
11 0 0.00
1z 0 0.00 :
13 i} 0.00
14 0 0.00 :

15 1 5 6.67 |
16 1 ! 11 6.67 ¢

17 ! 0 | :
TR RED
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Table 5-14. Number and Percent of Stations for Any
Specified Lag k, that r, are outside 95
Percent Tolerance Limits
[ Number of Stations that ]
Lag Number r) are Outside 95 Percent T.L. Percent
1 0 0.00
2 0 0.00
3 1 5. 88
4 0 0.00
5 3 17.65
L] 1] 0.00
7 1 5.88
8 0 0.00
9 1 5.88
10 0 0.00
11 2 11.76
12 2 11.76
13 1 5.68
14 ] 0.00
15 4] 0.00
Total 11 4.31_-

95 percent tolerance 1imits for each station, and
results are shown in Table 5-13. The number and
percent of stations with " outside the tolerance

1imits for each lag k are shown in Table 5-14. The
percent of times that an v is outside the 95 percent

tolerance 1imits is 4.31, which is less than the
expected value of 5.00. The first and second serial
correlation coefficients of all stations are within
the 95 percent tolerance 1imits. The lag with the
maximum number of stations outside the tolerance
limits (3 out of 17) is k = 5. If the first ten 1ags,
instead of the first 15 lags, were considered, the
percent of times that ry are outside the 95 percent

tolerance 1imits is 3.53, which is also less than the
expected value of 5.00. It can be concluded, from the
data used that the annual flood peak series are ap-
proximately independent series.




Chapter VI
GENERATION OF DAILY FLOWS OF TWO CASES FOR TESTING
APPLICABILITY OF THE DEVELOPED MODELS

Two series of daily flows, one for the Boise
River near Twin Springs, Idaho, and the other for the
Powell River near Arthur, Tennessee, are used herein
to test the methods developed, and to estimate para-
meters of daily flow model, as outlined in Chapter IV.
Rivers with different characteristics of daily flow
series are selected. Fatterns of daily flow series
vary, depending upon the geographic location and
climatic conditions of their river basins. The Boise
River has a smooth ~aily flow series, as well as smooth
estimated daily me.ns and daily standard deviations
over 365 days, since most runoff comes from snowmelt.
The Powell River has rather a highly fluctuating daily
flow series, also resulting in highly fluctuating of
estimated daily means and daily standard deviations,
since most runoff comes from rainfall.

6.1 Generation of Lang Daily Flow Samples in Case of
Boise River

Setecticn of Seascn fon Generalicn. The Boise
River daily flow hydrograph indicates significant floods
only within the wet season of 5 months, or 150 days,
February 28 through July 27, as the season for gene-
rating of daily flews. For the truncation level of
partial flood series, selected in such a way that the
average number of exceedances per year is about 4, only
two out of 163, or 1.19 percent of flood exceedances
occur outside this season. These two floods are not
significant in their magnitude. Hence, the distortion
in partial flood series by generating daily flows
only within the se’icted season is not significant.

Teat cf Legnormal Distributlon fon Dadlly Flows.
For each day of the selected season, the daily flow
sample is of size equal to the number of years of
available records, or 40 years in this case. The

maximum 1ikelihoed estimates of A By o and Oy ot of

each day v, are obtained by Egs. 3 54, 3-55, and 3-56,
respectively. By using the lower bound and logarithmic
transformation, the transfurmed variable Yp . is

computed by Y = 1n(X pyx = 8 ). which is then
and ¢ . If

standardized by using est1mates Jy " yat
xp p for each day = is a three-parameter Tognormally

distributed variable, the standardized transformed
variable will be normally distributed with mean zero
and variance unity.

Fits of normal distributions to frequency distri-

butions of standardized transformed variables for

each day are testea by chi-square test. Eight class
intervals which equal probability are used for this
test. Results for days 3,6,9,..., 150, are shown in
Table 6-1. Tne maximum and average chi-square values
are 13,608 and 4.974, respectively. For four degrees
of freedom, the 95 percent critical value of chi-square
s 9.49; only five sut of 50, or 10 percent of the
computed chi-square values are outside the tolerance
limit. Although this percent outside the tolerance
1imit is greater than the expected value of 5 percent,
the chi-square values outside the 1imit are mostly
close to it. Hence, distribution of daily flows of
the Boise River are approximately three-parameter
lognormal.

Teat of Independence of Daily Flow Serndes. For
each day the serial correlation coefficients of daily
flow series are computed and checked for departures
from independence. The time interval between two

Table 6-1. Results of Tests for Fits of Lognormal
Distribution to Daily Flows of
Individual Days

Bay Lopay | I oay If '
Number | Chi«Souare ! Numbezr | Ghi-Sguare ii Rusper { Chi-Squiire
F 3 1,008 |' 54 62535 :[ 105 l ass |
| 5 2,408 ([N 6,100 " 108 i 5,10y
: 8 ] 5008 % o 6.u60 E 1 4.uc0 E
12 | 1s.608* [ ¢3 sass f | 5008
L5 | aneosse . 4,408 t 117 1 3.300

18 4,508 |f 6l 3.700 REC H.B75 |
1 i 4,008 h 72 I 0100 | 15 ‘ 1790
i 24 L A - 9135 b 12 4608
{ a2 | s.c0s M 78 : 3.208 120 t .09 |
| 30 P TR LR S O R T 32 | Buas
] 53 ¥.133 2 94 6 I 2508 |

36 604 ﬂ 87 ‘ 2,008 | 158 Z.008

39 4,555 H 90 ‘ P ‘ 141 2008 |
! 4L ! 3.933 i 9% | 0,408 i T4 q., 0us t
[ 45 5.133 ﬁ 9 ‘ 5,308 | 147 6,275 t
E aE 2.500 ? o I 2.808 + 150 135
‘ | 1.608 |: 19 4,333 F

*Chi-square outside the 95! tolerance 1imit.
Maximum chi-square value = 13.608
Average chi-square value = 4.974

successive values of daily flow series in this case is
a year. The first ten lags of correlograms are
checked for dependence. Results of this test for
series of days 3, 6, 9, ..., 150, are given in Table
6-2. The percent of times that "k is outside the 35

percent tolerance Timits is only 3, which is smaller
than the expected value of 5 percent. All e shown

in Table 6-2, are within the 95 percent tolerance
limits. Considering each individual day, the daily
flow series is independent lognormal variable. However,
the successive days of an entire series are highly
serially correlated, as well known for the entire

daily flow series.

Estimaidicn of Panametors. The parametric method
was used to highly reduce the total number of para-
meters to be estimated. The maximum Tikelihood
estimates of the lower bound a_ for r = 1,2,...,150,

curve (1) in Fig._ﬁ—l. The daily means
daily standard deviations Iy ¢ of X
curves (1) in Figs. 6-2 and 6- 3 res-

Periodicities exist in all of these curves,
These

are shown as

By, and the

are shown as
pectively.
even though only the wet season is considered.
periodic parameters are fitted by Fourier series
harmonics. The number of significant harmonics for
each periodic parameter is estimated by using pro-
cedure outlined in Section 4.4. Results of the
selected number of significant harmonics as well as
the Fourier coefficients of &0y oy and oy, ¢ re

XsT
given in Table 6-3. The f1tted functions for these

numbers of significant harmonics of a_ Ut and ay

Xs1 X,T
are shown as curves (2) in Figs. 6-1, 8- 2 and 6-3,



respectively. The lower bounds in Fig. 6-1 have the
minimum and negative values during days from 100 to
120. The value of a_ depends on the skewness coef-

ficient Ty ¢ of Xp = In days for which Yy .o 2re

small, shown as curve (1) in Fig. 6-4, a_ tends to

be negative, and positive for days which have higher
values of T

Table 6-2. Results of Tests of Independence of
Daily Flow Serjes of Individual Days
Number |Number | ﬁNumber
of Times' of Times| {of Times
| r, is i T, is | T, is
| Obtside | otitside | oiftside
Day | Tk Day P Tiks . Day T.L.
Number : 1 Limits | Number 1 Limits | Number r1 Limits
3 —O.II?Si 1 54 0.0018 1] 105 =0.0801 1
] =0.1760 | 0 57 -0.1245 a 108 =0.0076 1
9 -0‘20(:5.; V] G I 0.1313 Q 111 -0.1036 1
| 1
12 |-0.0095 1 63 |-0.0736 0 114 [-0.0707 1
15 -0.0064 i 1] 66 -(].09-1'73i (1] 117 -0.0093 0
]
18 =-0.0258 ¢ 4] 69 0.1062 | a 120 -0.0505 ]
|
21 |-0,0450 0 72 |-0.1193 0 125 |-0.0411 0
24 -0.0252 1] 75 |-0.1735 1 126 0.0127 ]
27 -0.0593 0 78 0.0515 0 129 0.1483 0
1
30 -0,2225‘; Q 28 0.1784 0 132 0.0628 Q
33 -0.1437 ! 1] 84 0.1971 0 135 0.1386 0
36 1-0.0423 0 87  |-0.0183 0 138 | 0.1559 0
38 0.0543 1 90 =0.0342 | 2 141 0.1365 a
42 0.0154 1 53 { O,D366|} 1 144 0.0873 a
45 -0.0793 | 4] 96 0.1274 ‘ 1 147 0.0837 a
| 48 -0.1051 [} 99 0.1885 1 150 0.0783 0
j 51 |-0.1964 0 102 |o0.0126 1
95% significant upper limit for i i 0.2874;
95% significant Tower limit for ry = -0.3401
Percent of times "k is outside the T.L. limits =
15
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(1) Estimates from Historic Data, and (2)
Estimates from Generated Sample



Table 6-3. HNumber of Significant Harmonics, Explained Variances, and Fourier Coefficients of Periodic
Parameters p, _, o and a_ of X Series :
Kot NG T Pyt
Fourier Coefficients
Number
of A
Periodic |Harmonics | Explained
Parameter| Used Variance Mean 1 2 5 4 5 6 7 3
e e 4 0.588 2243.90 | -1617.85 -14.27 12,92 10.42
Oy = 5 0.968 1776.71 -756.40 -109.99 42,99 -33.30 -10.48
a 38 0.830 -671.86 6l.66 1276.71 -209.24 -540.97 47.90 205.21 128.99 -52.21
B
1 2 3 4 5 &} 7 8
By o } 0.983 2243.90 -707.72 118.10 17.30 49.48
Gx % 5 0.968 1776.71 -299.27 -12.99 -24.32 69.71 -56.11
a 8 0.830 -671.86 1629.77 -208.60 -738.59 86.58 401.10 116.56 -156.79 -48.72

For the estimation of parameters of dependent
stochastic component is usually selecting of the order
of the autoregressive model, and when necessary the

number of significant harmonics of rx(k,r), and

k=1,2,...,m, with m = the order of the model. The
procedure is not used herein in the study of dependent

component of transformed variable Yp o in order to

avoid errors resulting from removal of periodicities

in s My and Iy, ¢t In this study the Fourier series
analysis is used tc fit periodicities in Px(k,t). Then
values of Py(k,T} are obtained from rx(k,r]. by Eq.

4-11. The order of the autoregressive model and the
number of significant harmonics of rx(k,r) are selected

by comparing the average values of rx(k,r}, the shapes
of the rx{k,r) curves, and the patterns of the daily

flow hydrographs of generated samples with those of
the corresponding historic data.

Table 6-4.

Parameters rx(l,r), Py

The first-order autoregressive model was not used
since it produced generated daily flow samples with
more fluctuation of daily flow hydrograph than the
historic flows. The shape of the rx?k,r} curves of

the generated samples did not sufficiently coincide
with those of histcric data. Improvements were signi-
ficant by using the third-order autoregressive model,
and it was selected for this study.

The computed Px(],T), rx(Z,r), and rX(B,r} are

shown as curves (1) in Figs. 6-5, 6-6 and 6-7, res-
pectively. The Fourier coefficients and the number
of significant harmonics for each series of rx(k,r)

are given in Table 6-4. The fitted rx{k,:) curves,

k =1, 2, and 3, with the number of significant
harmonics of Table 6-4, are shown as curves (2) in
Figs. 6-5, 6-6 and 6-7, respectively. However, by
using these Fourier coefficients, the average values
of rxil,r}, rx(z,r} and rx(3,r) of the generated

Number of Significant Harmonics, Explained Variances, and Fourier Coefficients of Periodic’
(2,7) and rx(B,r) of Xp . Series

! Number ; I I
| of ; | A } B |
Periodic |Harmonics Explained| :
Paramecer Uscd Variance | Mean 1 2 3 4 1 2 3 }
| i ; ! i
! rx[l.r}' 4 | 0252 ! 0.9331 ! -0.0058 -0.0084 0.0052 0.0039 | -0.0180 -0.0190 -0.0170 -0.0087
| ‘(O‘QS?SJi
| '* | i
| w25 4 b0.441 0.8755 ; 0.0058 -0.0140 0.0127 0.0043 | -0.0465 -0.0405 -0.0380 =-0.0113
X ] o ;
i (0. 8951) 4
!
r‘{S,T} 4 , 0.542 0.5163 0.0226 -0.0236 0.0188 0.0026 | -0.0704 -0.05%4 -0.0565 -0.0141
£ (0.8320)
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rx(1,r), with: (1) Estimates from Historic
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Fig. 6-6 Second Serial Correlation Coefficients,
rx(Z,r), with: (1) Estimates from Historic

Data, (2) Fitted Periodic Function, and (3)
Estimates from Generated Sample
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7 Third Serial Correlation Coefficients,

Px(3,r}, with: (1) Estimates from Historic

Data, (2) Fitted Periodic Function, and
(3) Estimates from Generated Sample
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sample tended to be smaller than the average values of
rx(l,r), FK(Z,T) and rx{3,1) of the historic data,

fespective1y. These effects 1ikely result from biases
in estimates of rx(k,r), since the sample size is only

40 years, Estimates are adjusted for biases by
increasing the average values of r (T4z)s rx(2,r]

and rx(3,r) from 0.9331, 0.8755 and 0.8168 to 0.9575,
0.8951 and 0.8320, respectively.

In conclusion, the total number of parameters used
in the generation of daily flow samples by the mathe-
matical model of this study depends on the number of
significant harmonics used for fitting the series of
s By oo Oy o and rx(k,r}, k =1,2,...,m, by Fourier

analysis. In case of the Boise River, and using the
wet season of 150 days, 9 parameters are used for

By gt 11 parameters for . N 17 parameters for a_s

9 éarameters for each of r;(k,:), k=1, 2, and 3.

The total number is 64. In case of the non-parametric
method, the total number of parameters would be 900,

Genenation o4 Long Daily Flow Samples., Fifty
samples of daily flows, each 40 years long, were
generated for wet season of 150 days. The total
number of generated years was 2000. The set of 40
year samples is selected for comparison of characteri-
stics of generated daily flows with the corresponding
characteristics of historic series of the same sample
size. The model for generation should preserve the
mean, standard deviation, skewness coefficient, and
the first three serial correlation coefficients, or
distributions of historic daily flows of each day.

The degree of preservation of these properties depends
on how well daily flows of each day are fitted by the
three-parameter lognormal distribution, and the third-
order autoregressive model of dependent stochastic
component, as well as how well the model parameters
are estimated.

6.2 Comparison of Characteristics of Generated Daily
Flows with Corresponding Characteristics of
Historic Daily Flows in Case of Boise River

The practical use of a model ultimately depends
on its capacity to generate new samples that preserve
characteristics of historic series. The main objective
of generating new daily flow samples is to study
properties of annual and partial flood peak series,
but not to check how correctly the model preserves
characteristics of historic series. Therefore, the
purpose of comparison of characteristics of generated
series with corresponding historic series is to
ascertain whether generated series preserve in practi-
cal terms some characteristics of historic series, at
least for purposes of this study.

Comparison Based on Dailly Flow Series. The
comparison of characteristics of generated series
with those of historic series is made in four steps:

(1) Two typical daily flow hydrographs of
historic data, considering only the selected wet
season, as shown in Figs. 6-8 and 6-9, are visually
compared with two typical daily flow hydrographs of
generated sample, as shown in Figs. 6-10 and 6-11.
Though the generated daily flow hydrographs have some-
what more fluctuating and sharper peaks than those of
historic data, general patterns are similar.
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(2) Sequences of x,1? Ox,1 and Vitia? for sample

no. 5 of generated daily flows are shown as curves

(3) in Figs. 6-2 and 6-3, and curve (2) of Fig. 6-4,
respectively. Figure 6-12 shows the visual comparison
of maximum flow Xmax(rl for each day of historic data

with the corresponding maximum flow of generated sample
(from sample no. 5), for the same sample size of 40
years. In case of minimum flow Kmin(r) for each day,

the visual comparison is shown in Fig. 6-13. These
figures display how the model preserves the general
patterns of daily flows via y . o xmax(T

? %, Yx,1°
and Xmin{r).

(3) Sequences of rx(1,r), rx(Z’T] and rx(3,r],

estimated from generated sample (sample no. 5), shown
as curves (3) in Figs. 6-5, 6-6 and 6-7, respectively,
are compared visually with the corresponding estimates
of historic data, shown as curves (1) of those figures.
By adjusting for biases of estimates for average values
of rx{l,r), rx(Z,rj and rx(3,1), the model seems to

preserve well general characteristics of these periodic
parameters of historic data.

(4) The general mean, standard deviation, skewness
coefficient, kurtosis coefficient, and the first three
serial correlation coefficients of all data for each
sample of generated daily flows of sample size of 40 .
years are given in Table 6-5. Also, the number of
adjustments for negative flows, as well as the maximum
flow of each sample are included in this table. The
average values for the set (of 50 samples), the
standard deviation, the maximum value and the minimum
value of each statistic are given at the bottom of each
column. Estimates of historic data of corresponding



Table 6-5. Statistics of Generated Daily Flows for Each Sample of 40 Years of Records of the Set

Number of Awerage Serial
Adjustments Moments of Daily Flow Series Correlation Coefficient Maximum
Sample for Flow of
Number Neg. Flows Mean Std.Dev. Skewness Kurtosis rxtl.'r) rxt2,r) rxti,rj Sample
1 § 2178,52 1727.08 1.480 5.572 0.9339 0.8706 0.8043 11247
2 3 2287.31 1649.66 1.037#%+ 3,781 0.9237 0.8514 0.7762 11516
3 4 2178.79 1727.58 1.366 5.463 0.9341 0.8756 0.8156 13581
4 1] 2367.37  1905.51 1.539 6.552 0.,9348 0.8751 0.8131 16636
5 2 2251.80 1793.26 1.292 4.744 0.9342 0.8772 0.8168 11754
& 10 2115,60  1629.04 1.342 5.101 0.9539 0.8764 0.8151 11716
7 5 2307.31 1919.85 1.480 5.729 0.9347 0.8777 0.8214 13479
8 3 2362.96  1884.12 1.5892 6.647 0.9333 0.8731 0.8127 15387
9 2 2138.79 1622.67 1.230 4.710 0.9336 0.8733 0.8130 12566
10 4 2258.60 1783.81 1.337 5.257 0.9323 0.8683 0.8022 14562
11 4 2224,57  1881.01 1971 9.883% 0.9312 0.8666 0.7995 18143
12 4 2336.44 1840.73 1.348 5.258 0.9356 0.8801 0.8260 14101
13 2 2257.66 1742.40 1.149 4.104 0.9298 0.8636 0.7975 10688
14 2 2279.79  1745.47 1,268 - S.DTTI 0.9281 0.8637 0.8000 12461
15 5 2338.21 1916.98 1.458 5.684 0.9387* 0.8874%  0.8347 12236
16 F 4 2137.89 1624.64 1.334 5.008 0.9312 0.8691 0.8065 10813
17 0 2269.52 1671.07 1.103 4.173 0.9314 0.8690 0.8032 11318
18 0 2193.49  1637.20 1.197 4.591 0.9257 0.8529 0.7786 11364
19 4 2207.11 1828.87 1.795 8.695 0.9301 0.8684 0.8025 19691%
20 1 2442.61 1894.68 1.338 5.215 0.9334 0.8756 0.8176 13333
21 2 2230.74 1662.27 1.133 4.332 0.9324 0.8689 0.8048 11507
22 0 2297.40 1722.52 1.126 4.010 0.9365 0.8806 0.8224 11586
23 2 2178.30  1759.41 1.489 5.987 0.9308 0.8672 0.8055 12792
24 2 2274.16  1825.92 1.307 4.726 0.9307 0.8673 0.8014 11676
25 2 2336.67 1826.29 1.246 4.879 0.9360 0.8804 0.8261 15272
26 2 2251.94  1816.49 1.533 6.733 0.9376 0.8874%  0.8374* 16072
27 0 2375.05  1910.94 1.438 5.905 0.9376 0.8820 0.8261 14675
28 4 2279.57 1842.84 1.326 4.889 0,9338 0.8748 0.8137 12572
29 5 2266.16 1898 .62 1.863 8.610 0.9316 0.8647 0.7%81 16592
30 6 2367.16  1934,81 1.464 6.499 0.9303 0.8655 0.8020 18477
31 6 2186.04 1753.79 1.414 5.353 0.9323 0.8711 0.8102 12352
32 0 2319.53 1821.18 1.35%6 5.453 0.9313 0.8694 0.8080 13777
33 0 2128,38  1548,12**  1.187 4,685 0.9255 0.8535 0.7833 10967
34 3 2222.85 1737.83 1.327 5.303 0.9357 0.8786 0.8239 13731
35 1] 2247.05 1724.81 1.211 4.268 0.9314 0.8673 0.8002 10837
36 5 2308.03  1952.03* 1.702 7.453 0.9376 0.8851 0.8327 15474
37 1 2267.32 1787.38 1.381 5.158 0.9385 0.8862 0.8332 11160
38 10 2387.74  1817.61 1.196 4,697 0.9336 0.8720 0.8102 13549
39 1] 2315.03 1793.03 1.243 4.549 0.5282 0.5e47 0.7993 11857
40 4 2198.08 1838.89 1.479 5.458 0.9339 0.8754 0.8198 12072
41 3 2203.57  1823.04 1.764 B.873 0.9335 0.8751 0.8134 18307
42 4 2226.80 1689.09 1.1585 4.414 0.9271 0.8572 0.7872 11792
43 5 2185.28 1713.33 1.464 6.017 0.9272 0.8592 0.7936 13098
44 2 2263.62 1702.60 1,147 3.088 0.9279 0.8591 0.7912 10027
45 k3 2251.12 1715.06 1.258 4,854 0.9233** 0.8470** 0.7741** 12620
46 8 2111.53** 1618.45 1.154 4,088 0.9304 0.8700 0.8104 9368*
47 1 2245.22 1719.48 1.314 5.198 0.9378 0.8850 0.8296 12055
48 1 2162.97  1653.65 1.240 4.582 0.9343 0.8714 0.8082 10914
49 Q 2233.23  1663.94 1.441 6.026 0.9306 0.8680 0.8021 13134
50 Q 2462 84* 1896.03 1.317 5.538 0.9289 0.8625 0.7958 15534
Average 2.92 2258.38 1771.90 1.369 5.475 0.9321 0.8706 0.8084 13209
5t.Dev. 2.53 81.08 100,08 0.214 1.316 0.135 0.125 0.011 2351.03
Max Lmum 10 2462.84 195203 1.971 9,883 0.9387 0.8874 0.8374 19691
Minimum 1] 2111.53  1548.12 1.037 3.781 0.9233 0.8470 0.7741 9368
Historic
Data 2243.90  1776.71 1.21% 4.156 0.9331 0.8755 0.8168 10800

*maximum, **minimum
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statistics are given at the last line of each column Table 6-6. Statistics of Annual Flood Peak Series of
for comparison purposes. Generated Samples, Each Sample of 40 Years

of Daily Flows
The average values of all samples for the mean,

the standard deviation and the first three serial cor-

relation coefficients of generated data agree well with  sampie TACLTI b B TiEe e

the corresponding estimates from historic data. The Number  Mean  Std.Dev, Skewness Kurtosis Minimum  Maximum

average values of all samples for skewness and kurtosis

coefficients are somewhat greater than for historic 1 6848.18  2174.40  0.488 2.339 3595 11247
data. This may result from large extreme values since 2 6556.85 1581.24"*  0.906 5.184 3445 11516
samples of very high values of skewness and kurtosis 5 6926.13  2229.61 1.315 5.524 3583 13581
coefficients are also samples with large extreme 4 7239.49  2665.48 1.709 6.926 4000 16636
values generated. These large extreme values may also 5 6999.31  2153.42  0.326 3.041 3146 11754
be responsible for the average value of maximum flows & AEGI  jME0LGD  GiEAd 5 2861 e
SZt:D year samples to be greater than those of historic m BaEenk Buler-d o oo S sSais
" a 7380.16  2912.26 1.013 3.824 3802 15387
The effects of negative flows on the above statis- ¥ MRdRT IASEe 204 4,957 3567 12566
tics of generated daily flows depend on the number of 10 6971.75  2253.47 1.328 5.673 3616 14562
adjustments for negative flows. On the average for all 11 7436.62  3288.75*  1.717 6.360 2807 18143
samples of the set, only 2.92 values out of 6000 12 7038.59 2281.45  1.186 5.072 3529 14101
values, or 0.049 percent per sample of 40 years of 13 6769.10 1798.28 0.512 2.534 4049 10688
daily flows, were adjusted for negative values, so 14 6781.57  2164.44 0.823 5.452 3518 12461
effects of adjustment can be considered as small and 15 6746.82 252685 BT P i YA
nEg]ECted as SUCh' 16 6547.02 1705.98 0.852 3.108 4161 10813
Com E5on Bﬁ-&)ed on A ¢ Feood Series. The b b 6498 .82 1744.90 0.462 3.746 3057 11518
most important test of applicability of the model o M L 4216 5160 11364
for this study is to find out whether it preserves 19 7525.66  3020.49 1.852 9.051 3449 19691*
the extreme values, expecially the annual flood series. 20 7417.66 2334.94 0.630 2.852 4273 13553
For each 40-year sample of generated set of daily 21 6750.09  1804.08 0.590 3.375 3877 11507
flows, the annual flood series is computed. Moments 22 6683.13  1792.18 0.083 5.567 2784 11586
and statistics for each annual flood series are esti- 23 6418.05  2170.21 0.973 5.068 2874 12792
mated and results given in Table 6-6. For all samples 24 7003.62 2111.88 0,431 2.561 4198 11676
the values of the mean, standard deviation and maximum 5 i : 3 7‘ . : ) i
and minimum value of each statistic are given at the il i o paRe i L32TE
bottom of each column. Corresponding statistics for A4 BYIRide RSNz R.08 5130 3585 16072
historic data are also given at the last line of each 2 3G 2idmal 3Ale #E Ao 14875
column. The model seems to preserve some statistics 28 7081.05  2071.19  0.664 3.725 3664 12572
of historic annual flood series. The average values 29 7061.46  2863.17 1.235 5.474 2631 16592
of all samples for skewness and kurtosis coefficients 30 7573.07* 2557.22 1.902 10.927* 3841 18477
are somewhat greater than those of historic series, 51 6872.05  1993.84 0.894 3.998 3429 12352
likely as effects of large extremes generated in some 32 7072.93  2191.16 1.077 4.958 3727 13777
samples. Some samples, however, have skewness and 33 6308.03  1759.14 0.848 3.953 3765 10967
kurtosis coefficients smaller than those of historic 34 6559.45  2373.36 0.736 4.162 2490%* 13731
annual flood series. By comparison, the differences s 7022.75  1894.02 0.158 2.618 3750 10837
between the average values of all generated samples 16 7547.20  2882.07 1.175 4.305 3970 18474
and the historic values of both skewness and kurtosis 3T 6966.60 2218.50  0.308 2.574 1385 11160
in case of the daily flow series are smaller than those = e A LN G 563t R
for the annual flood series, the effect may be due to ; o y s bk 5
the small sample sizes (40 years) of the annual flood a ot Raey R 3-235 S4B/ LE657
series since the reliability of estimating skewness and A peeZl caslzE et 045 ksen ledhe
kurtosis depends on the available sample sizes. 41 6799.03 2818,13 2,097  9.992 3085 18507
42 6815.37 1967 .64 0.520 3.245 3359 11792
Comparisor] based on statistics of daily flow 43 6720.46  2455.28 0.950 4.122 2531 13008
series and their annual flood pgak series of generated 44 6554.35  1783.30 0.140 2.254 3703 10027
samples of daily flows show similar characteristics to 45 677447 1877.58  0.855 i %6 558
those of historic data. Therefore, generated samples 4 SRR 75 GDEE BT -
produce extreme values which can be used for the study : i ’ i i
of flood pEﬂkS- 47 6758.39 1927 .83 0.792 3.876 3728 12055
48 6556.07 2035.04 0.283 2.587 3019 10914
. 49 6632.15 2170.71 1.198 4,357 4018 13134
6.3 ging;::}amR?:etong Daily Flow Samples in Case 50 7570.54  2468.23 1.400 5.672 4113 15534
. Seklection of Season fon Generation. The Powell Average 888.58 2203.26  0.886 4.433 3474 13200
River daily flow hydrograph indicates significant Std.Dev. 349.15  390.32  0.498 1.918 446.59  2351.03

floods only within the wet season of 9 months, or
270 days, October 31 through July 27, as the season Maximum 7573.07 3288.75 2.097 10.927 4273 19691
for generating daily flows. For the truncation level

2 4 Mini 6213.67 1581.24 0,015 2.179 4 936
of partial flood series, selected in such a way that siiion et 5
the average number of exceedances per year is about Historic
4, only 0.67 percent of flood exceedances occur Sample 6430.00 1989.01  0.0531  2.184 2870 10800

outside this season. *maximum, **minimum
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Test of Lognommal Distribution for Daily Flows.
Fits of normal distributions to frequency distri-
butions of standardized transformed variables for
each day are tested by chi-square test with 8 class
intervals of equal probability. Results for days
1, 6, 11, ..., 261, are shown in Table 6-7. The
maximum and average chi-square values are 13.808 and
5.456, respectively. For 4 degrees of freedom, the
95 percent critical value of chi-square is 9.49; only
6 out of 53, or 11.32 percent of the computed chi-
square values are outside the tolerance limit.

Estimation of Parametens. The maximum 1ikelihood
estimates of aT for t = 1,2,...,270, are shown as

curve (1) in Fig. 6-14. and

The daily means My

daily standard deviations By o are shown as
curves (1) in Figs. 6-15 and 6-16, respectively.
Periodicities exist in all of these curves with more
fluctuating around the periodicities than for the
Boise River. Results of the selected number of
significant harmonics and the Fourier coefficients of
a5 Hyo and L are given in Table 6-8. The fitted

g b 4
-xo b 4
=300 = r -
= P P T S T
Fig. 6-14. Lower Bound a with: (1) Maximum Likeli-
hood Estimates, (2) Fitted Periodic Function,
and (3) Observed Minimum Values xmin[T} of
Xz
e r

Fig. 6-15 Daily Means, o 0 with: (1) Estimates

from Historic Data, (2) Fitted Periodic
Function, and (3) Estimates from Gene-
rated Sample
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Table 6-7. Results of Tests for Fits of Lognormal
Distributions to Daily Flows of Individual
Days
Day [ Day Day
Number Chi-Square | Number Chi-Square Number, | Chi-Square
1 7.208 86 13.808* 176 7.208
6 2.733 91 6.808 181 4,100
11 6.275 9 11.408* 186 6.008
16 3.533 101 3,933 191 11.608*
21 5.875 i 106 4.100 196 6.500
i 26 5.933 111 2.275 201 4.208
f 31 2.900 ! 116 11.408* 206 3.300
36 3.300 o 7.300 211 1.533
{41 1.608 126 8.900 216 3.300
46 4.500 131 6.900 221 4.008
51 5.208 136 3.300 226 2.333
‘56 2.333 141 0.808 231 7.700
61 3.208 146 10.100* 236 3.133
66 5.533 151 3.408 241 5.300
71 7.075 156 2.333 246 4.333
76 8.275 161 6.100 : 251 B.733
B1 4.808 166 1.608 i 256 13,533
171 5,133 261 2.408

functions for those numbers of selected harmonics of
s Uy o and gy . are shown as curves (2) in Figs.

6-14, 6-15 and 6-16, respectively. Number of days
having negative a; in Fig. 6-14 is less than that of
the Boise River since, on the average, the values of
skewness coefficients of daily flows of the Powell
River, shown as curve (1) in Fig. 6-17, are greater,
The fitted function of a_ using the selected harmonics
results in some days, the fitted a_ are greater than
the observed minimum values of Xp % for the same days.
Improvements were not significant by increasing the
number of significant harmonics.

The third-order autoregressive model was selected
to represent the dependence of stochastic component of
daily flow series. The estimates of rx{1,1), rx(2,r)

and rx(s,r} are shown as curves (1) in Figs. 6-18,

6-19 and 6-20, respectively. The Fourier coefficients
and the selected number of significant harmonics for
each series of rx(k,r) are given in Table 6-9. The

fitted functions of rx(k,r), for k =1, 2 and 3 are

shown as curves (2) in Figs. 6-18, 6-19 and 6-20,
respectively. By using these Fourier coefficients,
the average value of rx(1,1) of the generated sample

was smaller than the corresponding average value of
rx(i,r} of the historic data, while the average values

of rx(Z,r) and rx(3,r) of the generated sample were

larger. Estimates are adjusted for biases by in-
creasing the average value of rx(l,r) from 0.8305 to

0.8480, and by decreasing the average values of rx(z,r)
and rx(s,r) from 0.6133 and 0.4723 to 0.6100 and
0.4700, respectively.
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Table 6-8. Number of Significant Harmonics, Explained Variances, and Fourier Coefficients of Periodic
Parameters Hy o O, ¢ and a of )(p,T
Fourier Coefficients
Number
of A
Periodic |Harmonics|Explained
|Parameter| Used Variance | Mean 1 2 3 4 5 6 7 8 9
nx T 6 0.908 1400.14| -875.05 0.834 3.184 0.851 -27.36 15.003
»
Ux i 6 0.568 1569.03]|-694.28 -145.14 42.044 -1.867 -52.128 -16.619
» i
a? 9 0.792 113.16; -35.013 30.646 -9.268 -1.072 -12.652 11.199 1.929 -8.531 -6.325
B
1 2 3 B 5 6 7 8 9
oy o 6 0.908 1400.14| 373.52 -114.81 -38.262 -34.287 -113.38 58.944
Ux " 6 0.568 1569.03| 588,37 -135.26 -17.165 -32.354 -172.204 141.935
a_r 9 0.792 113.16(-111.228 90.905 -51.926 20.883 -20.098 10.309 13.744 -38.561 11.724
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Table 6-9.

Number of Significant Harmonics, Explained Variances, and Fourjer Coefficients of Periodic
Parameters rxtl,r), rx(Z,r) and rx(3,r) of X

Pat Series

Number

Fourier Coefficients

of

Periodic |Harmonics' Explained

Parameter Used Variance Mean

r (1,7) 0.1107 | 0.8305

(0.8480)

0.0184

0.1927 0.6133

(0.6100)

r (2,1) 0.0633

Ix{S’T] 0.2374 0.4723

(0.4700)

0.0794

-0.0218

-0.0444

-0.0462

0.0105 0.0113 | -0.0181 0.0097 0.0128 0.0143

0.0274 0.0172 | -0.0571 0.0163 0.0214° 0.0272

0.0342 0.0149 | -0.0783 0.0238 0.0210 0.0321

In conclusion, the total number of parameters for
the daily flow model in case of the Powell River is 72,
with 13 parameters used for By 3 13 parameters for

o 19 parameters for as and 9 parameters for each
of rx(ksT)s k = 1, 2, and 3.

Generation of Long Daily Flow Samples. Similar to
the case of the Boise River, 50 samples of daily flows,
each 40 years long, were generated for wet season of
gggodays. The total number of generated years was

6.4 Comparison of Characteristics of Generated Daily
Flows with Corresponding Characteristics of
Historic Daily Flows in Case of Powell River

Compariscn Based on Daify Flow Series.

(1) A typical daily flow hydrograph of historic
data, considering only the selected wet season as
shown in Fig. 6-21, is visually compared with a
typical daily flow hydrograph of generated sample, as
shown in Fig. 6-22.

(2) Sequences of My e® Ox o and g 8 for sample

no. 1 of generated daily flows are shown as curves (3)
in Figs. 6-15 and 6-16, and as curve (2) in Fig. 6-17,
respectively. Figures 6-23 and 6-24 show the visual

comparison of maximum flow, xmax(T)' and minimum flow,

xmin(T)’ for each day of historic data with the corres-

ponding maximum flow and minimum flow of generated
sample (sample no. 1), for the same sample size of 40
years, respectively.

(3) Sequences of Fx(],T), rx(z,r) and rx(3,r)

estimated from generated sample (sample no. 1), shown
as curves (3) in Figs. 6-18, 6-19 and 6-20, res-
pectively, are visually compared with the corres
estimates from historic data, shown as curves (1§
those figures.

(4) The general mean, standard deviation,
skewness, kurtosis, the first three serial correlation

onding
of
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coefficients, the number of adjustments for negative
flows, and the maximum flow, of all data for each
sample of generated daily flows, 40 years long, are
jven in Table 6-10. The average values for the set
?of 50 samples), the standard deviation, the maximum
and minimum value as well as the historic value for
each statistic are given at the bottom of each column.



Table 6-10. Statistics of Generated Daily Flows for Each Sample of 40 Years of Records of the Set

Number of Average Serial
Adjustments Moments of Daily Flow Series Correlation Coefficient Maximum
Sample for Flow of
Number Neg. Flows Mean Std,Dev., Skewness Xurtosis r“(T.t) :x(z.x) rx(S.r} Sample
1 o 1402.95 1703.35 3.773 29,159 0.8430 0.6324 0.5000 30213
2 0 1368.35 1705.23 5.?_81 98.436 0.8283 0.6009 0.4602 52902
3 2 1339.10 1597.78 3.707 25.067 0.8331 0.6089 0.4723 20813
4 0 1467.59 1960.17 4.964 49.147 0.8414 0.6296 0.4964 35041
5 1 1409.91 1692.12 3.066 32.248 0.8381 0.6244 0.4984 28414
6 0 1334.59  1599.77 5.095 60.767 0.8389 0.6286 0.5043 36237
7 0 1411.76  1800.29 5.289 56.255 0.8339 0.6142 0.4849 36352
8 0 1470.14 2042.24 5.078 50.306 0.8429 0.6346 0.5078 42139
g a 1333.29 1621.36 3.849 27.456 0.8365 0.6182 0.4848 23199
10 1 1438,59 1731.86 3.676 24.776 0.8332 0.6111 0.4755 23736
11 0 1383.19 1921.81 6.706 88.806 0.8431 0.6291 0.4883 46005
12 ] 14%0,37 1882.01 4.056 32.565 0.8364 0.6169 0.4861 35075
13 0 1368,06 1741.50 5.507 61.308 0.8252 0.5903 0.4502 33254
14 0 1362.99 1748.98 4.128 30.776 0.8397 0.6293 0.5016 27186
15 1 1468.80 1910.88 5.139 54.974 0.8455 0.6414 0.5168 41596
16 0 1323.79  1650.28 4.260 36.908 0.8372 0.6248 0.4597 31551
17 0 1467.32 1774 .66 3.891 30.849 0.8324 0.6050 0.4678 30300
18 0 1339.02 1B08.08 7.3712 122,990 0.8261** 0.5970%% 0.4629** 49998
19 0 1535.36" 1969,89 4,387 37.156 0.8392 0.6236 0.4928 32127
0 1 1467.55  2000,51 4.830 45,733 0.8355 0.6226 0.4954 40418
11 0 1428.87 1853.75 4.491 35.198 0.8437 0.6395 0.5126 25273
2 1 1418.27 1725.86 3.466 22.442 0.8362 0.6154 0.4814 24412
23 0 1444 .39 2003.10 5.557 57.345 0.8333 0.6163 0.4899 38498
24 a 1412.48 1678.14 3.8 19.161 0.8316 0.6054 0.4707 23397
25 0 1414,09 1983.64 6.999 117.991 0.8310 0.6245 0.4942 61041
26 0 1458,40  1846.95 4.192 31.041 0.84R8* 0.6495;' 0.5514% 27598
27 0 1343.19  1630.04 4.013 31.127 0.8355 0.6192 0.4915 27315
28 2 1397.54 1788.07 4.679 48,809 0.8451  0.6363 0.5060 40768
29 0 1443.79 1885.05 4.513 40.7717 0.8299 0.6060 0.4781 32640
30 1] 1401.62 ~1733.18 3.602 22.761 0.8398 0.6275 0.4967 21590
3l 1 1418.95 1831.66 4,210 32.928 0.8349 0.6149 0.4814 30847
32 0 1352.76 1695.75 5.472 61.127 0.8264 0.5976 0.4638 54586
33 1 1403.86  1768.50 3.739 24.062 0.8568 0.6172 0.4813 20396
34 2 1407.98 1750.91 4,362 39.170 0.8320 0.6079 | 0.4736 29143
35 0 1431.31 1907.13 4.574 35.616 0.8357 0.6147 0.4777 27244
36 1] 1412.87  1884.84 4.681 41.634 0.8368 0.6239 0.5061 35227
37 2 1517.4 2045 .33* 6.589 110.18 0.8382 0.6276 0.4976 61091
38 1 1382.90 1659.51 4.026 32.026 0.8311 0.6032 0.4663 28657
39 0 1381.68  1853.63 4.529 33.083 0.8414 0.6298 0.5021 24398
40 0 1394.23  1829.48 4.799 46.179 0.8422 0.6353 0.5072 33176
41 1 1354 .83 1644.73 3.411 20,538 0.8360 0.6206 0.4957 19906
42 1 1349.73  1676.83 5.912 29,640 0.8343 0.6111 0.4718 28829
43 1 1412.75 1705.97 3.200%~ 18.136"* 0.8334 0.612'3 0.4806 19355™"
44 1 1427.42 1857 .82 6.886 129.480 0.8274 0.5875 0.4631 59205
45 1] 1267.31** 1522.04** 3.804 27.662 0.8327 0.6112 0.4826 23075
46 0 1409.25 1851.80 4.464 34,931 0.8464 0.6474 0.5281 25713
47 1] 1267.18 1630.28 4,466 39,244 0.8404 0.6291 0.4969 52285
48 0 1402.83 1675.34 3.635 24.501 0.8325 0.6083 0.4734 24243
a9 o 1447.75  1904.92 7.446 147.020 0.8326 0.6084 0.4693 57716
50 0 1385.06  2041.88 10.075* 215.940* 0.8433 0.6340 0.5019 66092%
Average 0.400 1404.07 1795.30 4.770 51.334 0.8345 0.6195 D.4884 34002.54
Std.Dev. 0.656 54.10 122.94 1.31% 39.007 0.061 0.046 0.017 11857.74
Max imum 2 1535.36  2045,33 10,075 215.940 0.8488 0.6495 0.5314 66092
Minimum o 1267.31 1522.04 3.209 18.136 0.8261 0.5970 0.4629 19355
Historic
Data - 1400,14 1569.03 4,235 30.297 0,8305 0.6133 00,4723 28300

*maximum, **minimum
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The average value of all samples for the mean and
the first three serial correlation coefficients of
generated samples agree well with the corresponding
estimates from historic data. The average values of
all samples for the standard deviation, skewness and
kurtosis as well as the maximum flow of each sample
are somewhat greater than for the historic data.

The effects of adjustment for negative flows on
the above statistics of generated daily flows are not
significant since, on the average for all samples of
the set, only 0.400 values out of 10,800 values or
0.0037 percent for sample of 40 years of daily flows,
are adjusted for the negative values.

Companison Based on Annuaf Flood Series. For
each 40 year sample of generated set of daily flows,
the annual flood series is computed. Moments and
statistics for each annual flood series are estimated
and results given in Table 6-11. For all samples, the
values of the mean, standard deviation, maximum value
and minimum value, as well as the historic value of
each statistic are given at the bottom of each column
for comparison purpose.

Similar to the case of the Boise River, compari-
sons based on statistics of daily flow series and
their annual flood peak series of generated samples
of daily flows show similar characteristics to those
of historic data, therefore, generated samples produce
extreme values which can be used for the study of
flood peaks.
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Table 6-11.

Statistics of Annual Flood Peak Series of
Generated Samples, Each Sample of 40 Years
of Daily Flows

Statistics of Annual Flood Series

Sample
Number Mean Std.Dev. Skewness Kurtosis Minimum Maximum
1 10927.95 5272.95 1.716 7.291 3869 30213
2 11392.78 3031.13 3.862 22.179 4546 52902
3 10854.23  4206.34 0.6712 2.916 4257 20813
4 12311.90 7120.14 2.077 7.557 4047 35041
3 11606.19  5360.20 1.453 5.908 3414 28414
] 10436.22  £989.33 2.099 7.821 4048 36237
7 12416.98 7705.30 1.519 4,960 4266 36352
8 13222.07 7390.74 1.835 8.373 3636 42139
9 10950.29 4733.73 0.787 3.466 3781 23199
10 10983.98  4753.60 0.862 3,988 4329 23736
11 12686.24 9161.01 2.091 7.831 3641 46005
12 12214.13 6340.93 1.614 6.691 3884 35075
13 12830.39 T7793.28 1.303 4,484 4235 33254
14 12151.52 5223.63 0.867 4.142 4270 27186
15 11612.45 T7635.04 2.207 9.193 2844%* 41596
16 10787.36 5272.58 1.846 B8.521 3654 31551
17 11649.36 5291.69 1.642 6.642 4518 30300
18 11558.75 B321.41 3.205 15.301 3868 49998
19 13177.97  6362.54 1.528 5.056 5808% 32127
20 15507.99 TOBZ.30 1.717 7.705 3951 40418
21 11539.02 5657.89 1.032 3.504 4006 25273
22 11321.69  4046.33 1.110 4.998 5340 24412
23 12647 .83 TB6H.62 1.685 6.019 4686 38498
24 10168.24  3969.32 1.340 5.918 4420 23397
25 13075.18  9915.20 3.525 18.061 4665 61041
26 10883.96  5886.33 1.329 4.427 3305 27598
27 10663.42 4683.75 1.449 6.141 4070 27315
28 11853.03 628B.06 2.672 14.206 3551 40768
29 12560.80 6928.61 1.564 5.165 4539 32640
30 11199.29 4410.31 0.268** 2.767 3196 21590
31 11728.24 5775.20 1.366 5.469 3889 30847
32 11333.71 7194.48 1.7 6.024 3649 34386
33 10838.98  4552.77 0.591 2.673 3780 20396
34 11538.36 6074 .04 1.473 4,932 3941 29143
35 11774.56  6304.09 1.012 3.161 4511 27244
36 11674.17 6648.23 1.578 6,231 3546 35227
37 14603.34%  9459.35 3.362 18.261 5441 61091
38 11108.03 5012.69 1.476 5.966 4883 28657
39 11597.87 5873.67 0.861 2.666%* 4408 24398
40 11836.02 6793.56 1.778 6.585 3668 33176
41 10944 .54 5852.09 0.346 2.781 4110 15906
42 10832.05 5226.96 1.498 6,022 4583 28829
43 10776.18  3484.65**  0.610 3.610 4085 19355%*
44 12554.12 8874.73 4,038* 25.665* 3883 59205
45 9836.30%* 4308.80 1.143 4,575 3595 23075
46 11887.24 5723.28 0.917 3.424 4127 25713
47 10982,84  5596.46 1.872 7.816 4431 32285
48 10989.43  4499.21 1.147 4,886 4542 24243
49 12500.23 B971.60 3.745 20,528 3672 57776
50 13079.42 11261.23% 3.534 16.838 4258 66092*
Average 11712.14 6308.25 1.699 7.553 4121 34002
Std.Dev. 1337.90 1742.33 0.924 5.306 553.63 11857.74
Maximum 14603.34 11261.23 4.038 23.665 5808 66092
Minimum 9836.30 3484 .65 0.268 2.666 2844 19355
Historic
Data 13828.50 5144.76 0.938 3.908 6070 28300

*maximum, **minimum



Chapter VII
TWO STUDY CASES OF EFFICIENCY
OF ANNUAL AND PARTIAL FLOOD SERIES

The long records of generated daily flow series
for two study cases are used for comparing efficiency
of using annual and partial flood series for estimating
flood peaks of given return periods in this chapter.
It includes the comrarison of sampling variances of
flood values for given return periods obtained from
annual and partial flood series. Comparison of
sampling mean square errors of estimates of flood
values for given return periods in case of use of
annual and partial flood series is also investigated.
The Tong records of generated daily flow series are
used for verifying properties and assumptions, as
required in the development of the partial flood
series model.

7.1 Annual and Partial Flood Series of Generated
Daily Flows

The annual flood series of generated samples are
largest flood peaks of daily flow for generated wet
season flows. For each of two study cases, the Boise
River and the Powell River, a total sample of gene-
rated 2000 years gives flood series of 2000 values
of daily flows.

Similarly, partial flood series for given
truncation levels are obtained from generated daily
flows. In case of the Boise River, the lowest trunc-
ation level Qb was selected in such a way that the

average number of exceedances per year, estimate of
A, is 5.166. Table 7-1 gives the change of A with
the change of Qb for all generated data of 2000 years.

This table includes also the average value of the mag-
nitude of all exceedances, estimate of g, and Qb + glna

for each Qb. In case of the Powell River, the changes
of A, g, and Qb + glna with the change of_Ub for all
generated data are given in Table 7-2.

To ascertain whether annual and partial flood
series, obtained from long sample of generated daily
flows could be used for the study, relationships
between frequencies of annual and expectancies of
partial flood series are empirically determined from
generated data and compared with the expected relation-
ship resulting from the Langbein method (Langbein,
1949), independent of any assumption underlying
probability distribution functions. The magnitude of
floods corresponding to specified exceedance probabi-
lities are computed by linear interpolation at the
expected probability plotting positions, m/(n+1),
with m = rank in descending order, and n = number of
years of records, for annual flood series. Corres-
ponding expectancies of partial flood series are
established by counting the total number of flood
peak exceedances above each magnitude and dividing
it by the total number of years of records. The
computed expectancies of partial flood series are
then compared with corresponding expectancies obtained
from the Langbein method. The relationships between
annual flood frequency and partial flood expectancy,
as obtained by empirical method from generated data
and by Langbein's method, for Qb of 2870 cfs in case

of the Boise River, and for Qb of 4500 cfs in case of

the Powell River, are given in Tables 7-3 and 7-4,
respectively. For a given exceedance probability of
annual flood series, the partial flood expectancy,
obtained by the empirical method, agrees well with

Table 7-1. Variations of Values i, g, and Ub + glny with Truncation Level Qb’ for Partial Flood Series

Sample, 2000 Years Long, for the Boise River

Truncation Level, Qb

i 2870 3500 4000 4500 5000 5250 5500 5750 6000 6250

X 5.166 4.156 3.427 2.645 2.091 1.819 1.559 1.352 1.182 1.009
iB . 2136.0 1947.0 1807.3 1770.7 1679.5 1660.7 1668.3 1655.6 1630.0 1635.9
hb + Bln) | 6377.5 6273.6 6226.0 6222.3 6238.9 6243.6 6239.7 6249.3 6272.6 6264.7!

Table 7-2. Variations of Values i, g, and Qb + glnA with Truncation Level Qb’ for Partial Flood Series

Sample, 2000 Years Long, for the Powell River

Truncation Level, Qb
4500 5000 5500 6000 6500 7000 7500 8000 8500 9500
A 4.476 3.721 3.134 2.630 2,237 1.926 1.654 1.417 1.250 0.940
8 3335.5 3461.3 3568.1 3704.7 3813.1 3890.1 I 3992.7 4123.3 4139.9 4333,
Qb + Blnk | 9494.6 9544 .7 9565.9 9576.1 9567.0 9545.5 9500.9 9421.5 9165.2 9228.

Note: u = 9114.29; o = 4114.69
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Table 7-3. Relationships between Annual Flood
Frequency and Partial Flood Expectancy
for Truncation Level of 2870 cfs, for

the Boise River

Annual Flood Series Fartial Flood Series
Empirical Method | Langbein's Method
Flood Exceedance | Retumm | Return i Return
Magnitude « Probability| Period |Expectancies| Period -‘Expnctnncies Period
3525 0.980 1.02 3.406 0.2 9! 3.912 0.26
3664 0.970 1.03 3.233 0.3 1| 3.507 0.29
3808 0.960 1.04 3.077 0.3 2I 5.219 0.31
3922 | 0.950 1.05 2.927 0.34  2.996 0.33
4404 | 0.900 1.11 2.302 0,43  2.30% 0,43
5005 0.800 1.25 1.709 0.58 1.609 0.62
5539 0.700 1.43 1.248 o.so| 1.204 0.83
6010 0.600 1.67 0.957 1,040 0,916 1.08
6516 0.500 2.00{  0.690 1‘455 0.693 1.44
7093 0.400 2,50 0.496 2.02, 0.511 1.98
| 7782 0.300 3.330  0.320 3.120 0.357 | 2.80
! 8566 0.200 5.00 0,197 5.08 0.223 4,48
| 9650 0.100 10.00 0.090 11.11 0.105 9.49
i 10987 0.050 20.00 0.046 21.51 0.051 19.50
| 11364 0.040 25.00 0.037 27.03 0.041 24,50
| 12619 0.020 50.00 0.017 58.82 0.020 49.50
%13??0 0.010 100.00 0.008 117.65 0.010 99.50
{ 15450 0.005 200. 00 0.004 250.00 0.005 199,50
| 18140 0.002 500.00 0.002 500.00 0.002 499,50
f134?a 0.001 1000.00 0.001  |1000.00 0.001 999.50
Table 7-4. Relationships between Annual Flood
Frequency and Partial Flood Expectancy
for Truncation Level of 4500 cfs, for
the Powell River
Annual Flood Series Partial Flood Series
| Empirical Method Langbein's Method
Flood Exceedance , Return |Rer.urn .tReturni
Magnitude Probabilityl Period | Expectancies| Period Expcc:anciesi Period
4194 0.980 1.02 4.170 0.24! 3.912 0.26
4518 0.970 1.03 4,145 0.24; 3.507 0,29
4733 | 0.960 1.04 I 5.847 0.26 3.219 0.31
4919 0.950 1.05; 3.598 o.za: 2.996 0.33
5727 0.900 1.11{  2.700 0.37 2.303 0.43
6926 0.800 1.25 1.843 0.54 1.609 0.62
7985 0.700 1.43! 1.336 0.75 1.204 0.83
9047 0.600 1.67'  1.001 1.00, 0.916 1,09
10120 | 0.500 2.00  0.746 1.34! 0.693 1.44
11415 0.400  2.50  0.544 | 1.84i  0.51 1.96
' 13079 0.300 | 3.33: 0.362 2.76 0.357 2.80
| 15240 0.200 | 5.00 0.224 4.46 0.223 4.48
; 19183 0.100 | 10.00 0.100 9,95 0.105 9.49
{23736 0.050 20,000 0.048 20.83 0.051 19.50
[ 25152 0.040 25,00 0.038 26.32|  0.041 24.50
| 30213 0.020 50.00 0.018 55.56 0.020 49.50
| 35041 0.010 100.00  0.008 125.00 0,010 99.50
| 42139 0.005 200.00 0.004 250.00 0.005 199.50
59205 0.002 500.00 0.002 500.00 0.002 499.50)
!61090 0.001 1000.00¢ 0.001 1000.00 0.001 99950

that of the Langbein method, for both study cases.
The expectancy of partial flood, obtained by the
empirical method, may depend on Qb especially in the

range of low return periods. The effect of Q, on
expectancies of partial flood series for high return

o1

periods is not very high. Because of these agreements
of expectancies of partial flood, for a given frequency
of annual flood, the annual and partial flood series
derived from genmerated daily flows of both the Boise
River and the Powell River seem feasible for purposes
of this study.

7.2 Comparison of Efficiency of Annual and Partial
Flood Series by Using Ratios of Sampling
Variances
Approaches used for comparison of sampling

variances a(T), outlined in Section 3.6, are applied
here to generated data. The ratio of sampling vari-

ances of 5(T) based on the exact theoretical approach,
Rv 1’ given by Eq. 3-95 is shown in Fig. 3-3 as R

versus the return period T for a given Qb. or the
value of A. The derivation of Rv 1 depends on the
3

W,

relations between parameters: «, u (of annual flood
series model), and a, g (of partial flood series model),
as shown in Eq. 3-94. To take into consideration
differences between a and g8, and u and Qb + glna,

ratios R, [ or var Q(T) based on the approximate
theorettca] approach, as shown in Eq. 3-96 are
investigated.

In case of the empirical approach, the ratio of
var Q(T), denoted by R, 3» is obtained by Eq. 3-97.

For each flood series, the long sample of 2000 years
is divided into small samples, each of size N. For

each small sample, the estimates fJ(T)a and ﬁ{T)p are

obtained by Eqs. 3-76 and 3-86, respectively. Hence,
for n samples each size N the rat1o R 3 is obtained

for a given return period by Eq. 3- 97

Boise River. The a and u values estimated from
annual flood series of 2000 years, are 1751.65 and
5877.84, respectively. Theoretically a = 8, with

g estimated from partial flood series. Table 7-1
shows how g8 varies with Qb. For this case, « is in

the range of computed g. As shown by Eq. 3-94, u =
Q, + glna. Table 7-1 gives Qb + glnx, estimated

from partial flood series for various Qb. It is
seen that Qb + glnx for the range of Qb used is
somewhat greater than u.

By substituting the estimates &, i, and g for
each Qh into Eq. 3-96, relationships between Rv,z and
T are obtained for various Qh and are shown in Fig.
7-1. By comparing Fig. 3-3 with Fig. 7-1, relation-

ships between ratio of var §(T] and T, based on the
exact (Fig. 3-3) and approximate (Fig. 7-1) theoretical
approaches, are similar except for high values of

A. For 1.00 < A < 2.25, Ry 2 is greater than R, |

for the whole range of T con51dered For » > 3.4,
the relationship of R V.2 and T tends to be unc]ear

In general, the 1arger %, the greater the value 1is
R, 2" Figure 7-1 shows also that Rv o for % = 5,166

are smaller than Rv 2 for % = 3.427, for any T. This
may come from an error in estimating g, since g for

= 5.166 is much larger than § for § = 3.427. It
can also concluded “from Fig. 7-1 that for the studied
range of Qb’ the partial flood series estimates



Q(T) have a smaller sampling variance than the annual

flood series estimates, if i of partial flood series
is at least 1.40. It should be stressed that ratios
Rv.l and Rv.z do not depend on the sample size.

For empirical approach, results of relationships
between Rv 3 and T for various Qb. for N = 10,20,25,

40,50, and 100, are shown in Figs. 7-2 through 7-7,
respectively. In general, curves of these figures
are similar to those of Figs. 3-3 and 7-1, and this
is especially the case for curves of Fig. 7-1. The
conclusions from Figs. 7-2 through 7-7 are:

(i) The ratio Rv,3 seems to depend on the sample
size. For small N, R, 5 for a given T and for a given
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Fig. 7-1 Variation of R, , with the Return Period
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Fig. 7-4 Variation of R, 4 with the Return Period

T for the Range of A from 5.166 to 1.009
{Qb from 2870 to 6250 dfs), for N = 25,

and for the Boise River Generated Samples

Q, is larger than for large N, especially in the
range of high T and large i.

(i1) For N =10,20, and 25, R, 5 is greater than
unity for the studied range of return periods if X

approximately is at least 1.90; for larger N, & should
be somewhat greater than 1.90 for Rv 3 to be greater
than unity. ’

(iii) For large N, the number of generated samples
is small, with Rv 3-curve unreliable since some of

them for small i fall above the curves with larger
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i, which by theory should not be true for the derived
flood models.

Poweftf River. The a« and u values estimated from
annual flood series of 2000 years, are 4114.69 and
9114.29, respectively. Table 7-2 shows how & and
Q * ginx, cstimated from partial flood series, vary

with Q.

The variations of Rv 2 with T for the range of
Qb from 4500 to 9uU0 cfs are shown in Fig. 7-8. This
figure shows that for the studied range of Qb'. the

partial flood series estimates ﬁ(T) have a smaller
sampling variance than the annual flood series esti-
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Fig. 7-8 Variation of R‘.t 2 with the Return Period T
for the Range of A from 4.476 to 0.940 (Q,
from 4500 to 9500 cfs), for the Powell River

mates, if i of partial flood series is at least 1.60.
For » > 1.60, R, , is larger than R, for a given
T, especially for large .

In case of the empirical approach, relationships
between Rv 3 and T for various Qb' for N = 10,20,25,

40,50, and 100, are shown in Figs. 7-9 through 7-14,
respectively. The conclusions from Figs. 7-9 through
7-14 are:

(i) The ratio Rv,3 seems to depend on the sample
size. For small N, Rv,3 for a given T and for a given
qb is larger than for Iargg N, especially in the
range of high T and large A.



(ii) For N =10, Rv 3 1s greater than unity for
range of high T if A approximately is at least 1.70;
for larger N, i should be greater than 1.70 for R

v,3
to be greater than unity.

(iii) For a given N, R, 3 increases with decrease
of Q, or with an increase of i.

(iv) For a given N and for large i, R, 3 in case
of the Powell River are greater than Rv 3 'i;l case of

the Boise River, especially in the range of high
return periods.
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Fig. 7-9 Variation of Rv 3 with the Return Period T
’
for the Range of A from 4.476 to 1.417 (Qy

from 4500 to 8000 cfs), for N = 10, and for
the Powell River Generated Samples
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Fig. 7-12 Variation of Rv 3 with the Return Period

T for the Range of A from 4.476 to 0.940
(Qy from 4500 to 9500 cfs), for N = 40,

and for the Powell River Generated Samples
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{Qb from 4500 to 9500 cfs), for N = 100,
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In conclusion, based on the average of the two
study cases, the estimates of Q(T) from partial flood
series have a smaller sampling variance than the
estimates from annual flood series, if partial flood

series have , at least 1.65 based on the exact theore-
tical approach, and 1.50 based on the approximate
theoretical approach. The conclusion in case of the
exact theoretical approach is similar to tnat con-

cluded by Cunnane (1973). Ratios of var Q(T) in case
of exact and approximate theoretical approaches do not
depend on the sample size. For the empirical approach

» should be at least 1.95 for Rv 3 to be greater than

unity for the range of N from 10 to 25, and for the
range of high return periods.

The case of var Q(T) obtained from the partial
flood series to be less than the corresponding '

var Q(T) obtained from the annual flood series implies
than that the partial flood series is more efficient
or more useful for estimating annual flood peaks of
given return periods than the annual flood series.

Results obtained from the exact theoretical,
approximate theoretical, and empirical approaches are
somewhat different. Differences depend: (i) on how
well the assumed flood models represent the true
population models for both flood series, (ii) on the

validity of assumptions used in derivina var ﬁ(T) for
each flood series, (iii) for the empirical approach,

on the accuracy in estimating var Q(T) for each flood
series, which estimates depend on the number of
available samples, and (iv) eventually on the re-
producibility of properties of the daily flow process
by generating new samples.

In case of the exact theoretical approach, Rv ]

increases with an increase of 1, for a given T,

and it approaches infinity as » approaches infinity
which can be seen from Eq. 3-95. However, there is

a limit for » which has the value much smaller than
infinity. The value of  may be close to infinity if
the instantaneous flow hydrograph is used and every
point of instantaneous flow above Qb is considered

as the partial flood series. In case of the use of
mean daily flow hydrograph, the pcssible maximum
value of + is 365, if all of mean daily flows are
above Qb and they are considered as partial flood

series. However, by the definition of partial flood
series used in this study (Section 3.1), the value of

3
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4 must be much smaller than 365 since only separate
flood peaks above Qb are considered. By considering

the assumptions used for deriving the assumed partial
flood series model such as the indpendence of the
successive exceedances, their validities tend to be
supported by the observed data only within the range
of (. such that » is not greater than 4 or 5.
more, in case of the empirical approach, the partial
flood series is derived from the generated daily flow
data which are generated only within the wet season
of the year. Hence, for the range of Qb such that x

is greater than 4 or 5, the distortion of partial
flood series may not be neglected since some partial
flood peaks may occur outside the selected wet season.
For these reasons, the comparison of sampling vari-
ances of Q(T) of both flood peak series is studied
only for the range of i up to about 5.

7.3 Comparison of Theoretical and Empirical Sampling
Variances of Estimates of Flood Values for Given
Return Periods

Using Annual Flood Serdes. Let Ra denote the

ratio of var ﬁ(T) estimated from annual flood series
by using empirical and theoretical approaches. Then,
from Egs. 3-71 and 3-79,

A —_— .2
N I [(m, - Q]
izl y (7-1)

By = 2
2 4%(n-1)[1.11 + 0.52 y(T) + 0.61 y“(T)]

with N = the sample size in years, n = the number of
of generateu samples of size N in the empirical
approach, « = the wodel parameter estimated from 2000

values of annual flood series, f}_T(T]a = the Q(T)
estimate from the i-th sample.

Variations of Ra with the return period T,

expressed in terms of y(T), for N = 10,25,50 and 100,
in case of the Boise River and the Powell River, are
shown in Figs. 7-15 and 7-16, respectively. In case
of the Boise River, the average values of Ra for the

return periods are 1.05, 1.19, 1.15 and 1.39 for
N = 10,25,50 and 100, respectively. For the Powell
River, the average values of Ra for the return

periods are 1.57, 1.30, 1.35 and 1.45 for N = 10,25,
50 and 100, respectively. For both cases, Ra tends

to be constant in the range of high T, for a given N.
On the average, Ry tends to increase with N, and the

estimated values of Ra for all cases are greater than
one; indicating that var Q{T}a based on the theo-
retical approach is less than the corresponding

var l':l(T)a based on the empirical approach.

Us.ing Partial Flood Series. Let Rp denote the

ratio of var a(T) obtained from partial flood series
by using the empirical and theoretical approaches.
Then, from Eqs. 3-71 and 3-92.

i
Q(T)p]

P 8%(n-1) [1 + {lnk + y(1 1%

n
AN ]
isl

(@M, -
R

(7-2)

with N = the sample size, n = the number of generated
samples of size N in the empirical approach, . and
¢ : the model paraseters estimated from 2000 years of

Further-
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Fig. 7-15 Variation of Ra with the Return Period

T for N = 10, 25, 50 and 100, for the
Boise River

Fig. 7-16 Variation of Ra with the Return Period

T for N = 10, 25, 50, and 100, for the
Powell River

generated partial flood series, éi(T)p = Q(T) estimate
from the i-th sample.

For a given T, let R_ be the average of Rp for
all selected Qb, and for a given N. Variations of
K~ with T for N = 10,25,50 and 100, in case of the
Boise River and the Powell River, are shown in Figs.
7-17 and 7-18, respectively. ﬁ; tends to be constant
for a high return period, but to increase with its
decrease. Considering the whole range of T, E;
increases with an increase of N. For the Boise River,
the average values of R_ for all the return periods

studied are 1.39, 1.44, 1.59 and 1.90 for N = 10,25,
50 and 100, respectively. In case of the Powell
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Fig. 7-17 Variation of E; with the Return Period T

for N = 10, 25, 50 and 100, for the Boise
River
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Fig. 7-18 Variation of ﬁ;'with the Return Period T

for N = 10, 25, 50 and 100, for the
Powell River

River, the average values of R_ are 1.85, 1.95, 2.21
and 2.69 for N = 10,25,50 and 100, respectively.
Comparing for a given N and a given T, R_ is greater
than R,. In using both flood series, var Q(T) in case
of the theoretical approach is smaller than the

corresponding var ﬁ(T) in case of the empirical
approach.

7.4 Comparison of Sampling Mean Square Errors of
Flood Values for Given Return Periods

Nash and Amorocho (1966) concluded that the
flood magnitude of any given T can be estimated
subject to error resulting from two different causes:
(1) Failure of the model to conform to the universe
of flood peaks of a catchment; and (ii) sampling
errors resulting from non-representativeness of the
record from which the model parameters are estimated.
To test the accuracy of the assumed model to predict
the flood peak Q(T) for a given T from each flood
series, by considering the bias term, the comparison

of sampling mean square errors in ﬁ(T) is investigated
on the long sample of generated data, considering it
as an assumed population. For a given N, the sampling

mean square error M of Q(T) is computed by

n
M= 1 1 gm-ami?,

i=

(7-3)

with Q(T) = the expected value of flood peak for a
given T, Qi(Ti = the Q(T) estimate from the i-th

sample, i = 1,2,...,n, and n = the number of samples
of size N.

By expanding Eq. 7-3, then
1§ 4 2 . 2
M=z 121 [Q;(m) - AMI” + @M - AD1® , (7-4)

with Q(T) = the mean of all éi(T)'s.




The term [QUTY - Q(T)1% results from the failure
of the assumed model to conform with the population
of flood peak properties and the bias in estimating
model parameters.

For each flood series, the generated sample of
2000 years is split into two equal groups. The first
group is assumed to be the population of flood series.
The estimate of Q(T) for each T from the first group
of Tong sample of annual flood series is assumed to be
known population value. For the second group, the
long sample of 1000 years is divided into small
samples, each with size N. The value of M of each
flood series is then computed by Eq. 7-3.

Let Rm denote the ratio of M of annual flood

series sample to the corresponding M of partial flood
series sample. Then,

n

1 gm, - ami?

Rm=

(7-5)

[ =1

2 2
1, - am)

J=

with a and p standing for annual partial flood series,
respectively.

After computing R for various T by using Q(T)
estimated from the first group, another set of Rm is

obtained by interchanging groups in the same procedure.

The average value ﬁ;F for these two steps is then
obtained for each T.

Boise River. Variations of estimated R for
each T and various Qb are shown in Figs. 7-19 through

7-24 for N = 10,20,25,40,50 and 100, respectively.
Except for the range of high T, these figures show

that, on the average, ﬁ; increases with an increase
of Qb up to Qb such that x is about two. For A < 2,

ﬁ; decreases with an increase of Qb. By considering

Eq. 7-4 and the range of Tow Qb, the first right term

in this equation is favorable to the use of partial
flood series in estimating flood peaks, while the
second right term is unfavorable for this purpose.

In case of partial flood series, the first term
decreases with an increase of &, while the second
term may increase or decrease, 1ikely increasing with
an increase of A, especially in the range of large x.

It is interesting to note that ﬁ; for a given

T is very sensitive to the population value Q(T). The
values of Q(T) for various T and for the long samples
of the first group and the second group of annual
flood series are snown in Tables 7-5 and 7-6, res-
pectively. Estimates of Q(T) of Gumbel distribution,
denoted by Q(T)a, and of assumed partial flood series

model, denoted by Q(T}p, from both long samples of

the second and first groups are shown in Tables 7-5
and 7-6, respectively. For the range of T from 500
to 1000 years, the estimates of Q(T b for Qb = 3500,

4000, 4500 are closer to estimates of Q(T) obtained
by using the plotting position than are the estimates
of Q{T}a. Hence, for these ranges of T and Q,

ﬁ; are very high as shown in Figs. 7-19 through 7-24.
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Fig. 7-19 Variation of ﬁ;‘with the Return Period T

for the Range of A from 5.166 to 1.559
(Qh from 2870 to 5500 cfs) for N = 10, for

the Boise River Generated Samples

Fig. 7-20 Variation of ﬁ;‘with the Return Period T

for the Range of x from 5.166 to 1.009
(Qb from 2870 to 6250 cfs) for N = 20, for

the Boise River Generated Samples
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Fig. 7-21 Variation of ﬁ; with the Return Period T

for the Range of A from 5.166 to 1.009
(Qb from 2870 to 6250 cfs), for W = 25, for

the Boise River Generated Samples



Table 7-5. Assumed Population of Flood Peaks for Various Return Periods, Obtained by Using: (1) Plotting
Position Method, Q(T), for the First Generated Sample of 1000 Years, (2) Gumbel Distribution,
Q(T),» (3) Assumed Partial Flood Series Model, Q(T?p, for the Second Generated Sample of 1000

Years, for the Boise River

Return Period, T

2 5 10 20 25 50 75 100 200 500 1000
Q(T) by Plotting
Position (First
1000 Year Sample) 6482 8542 9665 11221 11430 12460 13428 14103 15386 18140 19690
Q{T)a 6520 8533 9867 11146 11551 12801 13527 14042 15277 16908 18140
Q{T}p for
Qb = 2870 7267 9704 11317 12864 13355 14868 15747 16369 17864 19838 21329
Q(T]p for
Qb = 3500 7066 9267 10724 12121 12565 13830 14724 15286 16637 18418 19765
;Q(T]p for
Qb = 4000 6968 9017 10375 11677 12090 13362 14102 14625 15883 17543 18798
Q(T)p for *
Qb = 4500 6942 8935 10255 11522 11923 13160 13880 14388 15612 17227 18447
:Q[T)p for
!Qb = 5000 ! 6914 8788 10028 11218 11596 12759 13434 13913 15063 16580 17727
;Q{T)P for |
in = 5500 | 6912 8785 10025 11214 11592 12755 13430 13908 15058 16575 17721
Q(T)p for
{?E = 6000 6930 8748 9951 11105 11472 12599 13255 13719 14835 16306 17419

Table 7-6. Assumed Population of Flood Peaks for Various Return Periods, Obtained by Using: (1) Plotting
Position Method, Q(T), for the Second Generated Sample of 1000 Years, (2) Gumbel Distribution,
Q(T)a, (3) Assumed Partial Flood Series Model, Q(T)p. for the First Generated Sample of 1000

Years, for the Boise River.

Return Period, T

2 5 10 20 25 50 75 100 200 500 1000
Q(T) by Plotting
Position (Second
1000 Year Sample) 6538 8638 9617 10755 11131 12851 13522 13752 15533 18304 18476
Q(T)a 6520 8477 9773 11015 11410 12624 13330 13830 15031 16616 17814
Q(T}P for .
Qb = 2870 7052 9457 11049 12577 13061 14554 15421 16035 17512 19459 20931 it
Q(T]p for
Qb = 3500 6903 9116 10581 11987 12433 13806 14604 15169 16527 18320 19674 | i
Q(m),, for | |
Qb = 4000 6806 8853 10208 11508 11920 13190 13928 14451 15707 17365 18618 { ; £
Q(TJIJ for | %
Qb = 4500 6794 8815 10152 11435 11842 13096 13825 14341 15581 17217 18452 ! E
Q(T]p for | .{
Qb = 5000 6786 8719 9998 11226 11615 12815 13512 14005 15192 16757 17940 ! .%
Q(T]P for 4
Qb = 5500 6785 8694 9958 11170 11554 12739 13427 13915 15086 16632 17799
Q(T]p for
Qb = 6000 6802 8679 9922 11115 11493 12659 13336 13815 14967 16488 17637
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Fig. 7-22 Variation of R with the Return Period T
for the Range of % from 5.166 to 1.009
(Qb from 2870 to 6250 cfs), for N = 40, for
the Boise River Generated Samples
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Fig. 7-23 Variation of ﬁ; with the Return Period T

for the Range of A from 5.166 to 1.009
{Qb from 2870 to 6250 cfs), for N = 50, for

the Boise River Generated Samples

Powell River. Variations of estimated R~ for
each T and various Qb are shown in Figs. 7-25 through
7-30 for N = 10,20,25,40,50 and 100, respectively.
These figures show that in the range of low T, E;
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Fig. 7-24 Variation of ﬁ; with the Return Period T

for the Range of % from 5.166 to 1.009
(Qb from 2870 to 6250 cfs), for N = 100, for

the Boise River Generated Sample

decreases with an increase of Qb, while in the range
of high T it increases with an increase of Qb' By
comparing with results of the study of the sampling
variance of ﬁ{T), the sampling mean square error of

Q(T) for the partial flood series is influenced by the
bias term in the range of low Qb'

The population values Q(T) for various T and for
the long samples of the first group and the second
group of annual flood series are shown in Tables 7-7
and 7-8, respectively. Estimates of Q{T)a and Q(T)p,

from both long samples of the second group and first
group are also shown in Tables 7-7 and 7-8, res-
pectively. By comparing Tables 7-7 and 7-8 with
Tables 7-5 and 7-6, the assumed flood models for
both flood series do not predict well the population
Q(T) in case of the Powell River, especially in the
range of high T. Consequently, the bias terms for
both flood series are larger for the Powell River
than for the Boise River.

To determine the effect of the assumed population
values Q(T) by using the plotting position method of
generated data series, Q(T), and Q(T}p are used as

population values Q(T) in Eq. 7-5 for both the annual
and partial flood series. The results indicate that

the relationship of ﬁ; to T is generally similar to
the relationship b«et'u\leen'R‘Ir 3 and T for each sample
size N.
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Fig. 7-25 Variation of ﬁ; with the Return Period T
for the Range of A from 4.476 to 1.417 (Qb

from 4500 to 8000 cfs), for N = 10, for the
Powell River Generated Samples

Fig. 7-26 Variation of ﬁ; with the Return Period T
for the Range of )\ from 4.476 to 0.940 (Qb

from 4500 to 9500 cfs), for N = 20, for the
Powell River Generated Samples
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Fig. 7-27 Variation of §; with the Return Period T
for the Range of A from 4.476 to 0.940 {Qb

from 4500 to 9500 cfs), for N = 25, for the
Powell River Generated Samples

The comparison of sampling mean square errors of

Q(T) for annual and partial flood series depends on
the assumed population value Q(T), which is not known

in practical cases. ﬁ;' is sensitive to the assumed

population value Q(T). However, if Q(T) is assumed
to be estimated from the long sample of annual flood
series by the method of plotting position, it can be
concluded from the use of partial flood series that
the first right term in Eq. 7-4 decreases with a

decrease of Q. while the second right term tends to
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Fig. 7-28 Vvariation of H; with the Return Period T
for the Range of A from 4.476 to 0.940 (Qb

from 4500 to 9500 cfs), for N = 40, for the
Powell River Generated Samples
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Fig. 7-29 Variation of ﬁ; with the Return Period T
for the Range of A from 4.476 to 0.940 {Qb

from 4500 to 9500 cfs), for N = 50, for the
Powell River Generated Samples

Fig. 7-30 Variation of ﬁ;'with the Return Period T
for the Range of A from 4.476 to 0.940 (Qb

from 4500 to 9500 cfs), for N = 100, for the
Powell River Generated Samples

increase with a decrease of Qb. especially in the
range of low Qb‘ If the partial flood series model
is developed in such a way that the assumptions
required for its derivation are still valid or sup-
ported by observed data in the range of low Qb, the

partial flood series will be more efficient in
estimating flood peaks of given return periods than
the annual flood series, especially in cases of small
sample sizes.



Table 7-7.

Assumed Population of Flood Peaks for Various Return Periods, Obtained by Using:
Position Method, Q(T), for the First Generated Sample of 1000 Years,

(1) Plotting

(2) Gumbel Distribution,

Q(T),» (3) Assumed Partial Flood Series Model, Q{T)p. for the Second Generated Sample of 1000

Years, for the Powell River

[ Return Period, T

2 5 10 20 25 50 75 100 200 500 1000
iQ(T) by Plotting
Position (First
51000 Year Sample) 10241 15284 19477 24482 26053 32119 35016 36351 42136 52896 61033
iQ{T}a 10525 15069 18077 20962 21877 24697 26336 27496 30284 33963 36744
F[T]p for
Qb = 4500 10347 14053 16506 18860 19606 21907 23243 24189 26464 29465 31733
‘Q[T)P for
‘Qb = 5000 10422 14254 16790 19224 19996 22374 23755 24734 27085 30188 32533
[Q{T}p for
EQb = 6000 10528 14634 17352 19960 20787 23335 24816 25864 28385 31709 34222
iQ(T]p for
ﬂb = 7000 10540 14816 17648 20364 21226 23880 25423 26514 29139 32602 35220
iQ{T)p for
hb = 7500 10524 14938 17860 20664 21553 24292 25884 27011 29720 33294 35995
EQ{T}p for
;Qb = 8000 10472 15081 18133 21061 21989 24850 26512 27689 30518 34251 37071
Q(T]p for
Qb = 9500 10404 15125 18252 21251 22202 25133 26837 28042 30940 34764 37654
Table 7-8. Assumed Population of Flood Peaks for Various Return Periods Obtained by Using: (1) Plotting

Position Method, Q(T), for the Second Generated Sample of 1000 Years, (2) Gumbel Distribution,
Q{T}a, (3) Assumed Partial Flood Series Model, Q(T}p, for the First Generated Sample of 1000

Years, for the Powell River

Return Period, T

2 5 10 20 25 50 75 100 200 500 1000
Q(T) by Plotting
Position (Second
1000 Year Sample) 9961 15222 18930 23070 24392 28653 31445 32893 42274 61087 66087
Q(T)a 10719 15503 18671 21709 22673 25642 27368 28589 31525 35399 38327
Q{T]p for
Qb = 4500 11087 14942 17495 19943 20720 23112 24503 25487 27853 30975 33334
Q(T)p for
Qb = 5000 11204 15219 17877 20427 21236 23728 25176 26201 28665 31916 34373
Q[T)P for
Qb = 6000 11341 15633 18474 21200 22065 24729 26277 27373 30006 33482 36109
Q(T)P for
-Qb = 7000 11403 15944 18951 21835 22750 25569 27207 28366 31154 34831 37610
Q[T]p for
Qb = 7500 11404 16041 19112 22056 22990 25868 27541 28725 31571 35326 38164
Q(T]p for
Qb = 8000 11393 16131 19267 22276 23231 26171 27880 29089 31997 35833 38732
'Q(T}p for
qu = 9500 11243 16382 19784 23048 24083 27272 29126 30438 33592 37753 40898
I




7:5 Oistribution of the Number of Exceedances

One of the assumptions in deriving the commonly
assumed partial flood model is the use of Poisson
distribution for the number of exceedances n. In
the developed model either the three-parameter mixed
Potsson distribution or the simple Poisson distri-
bution were found applicable. The following is the
test on how the mixed Poisson distribution improves
the goodness of fitting the frequency distributions
of n for given Qb and N, as derived from the long

generated sample.

The first group of N = 1000 for the case of
partial flood series of generated daily flows is used
for investigation. For a given N, this long sample
is divided into n small samples of equal size. For
each small sample, the chi-square test statistic is
used as criterion for fitting the frequency distri-
butions of n both by the Poisson and by the mixed
Poisson distributions, with the number of class inter-
vals varying from 8 for the highest Q, to 12 for

the lowest Qb' for N = 25, and from 10 to 13 for

N = 50 and 100, and from 12 to 15 for N = 1000,
respectively, for the Boise River. In case of the
Powell River, the number of class intervals varying
from 9 to 12 for N = 25, from 11 to 15 for N = 50

and 100, and from 12 to 20 for N = 1000, respectively.
Average values for all n small samples of chi-square
statistic are computed for both distributions, with
the results for N = 25, 50, 100 and 1000 shown in

Fig. 7-31 for the Boise River, and Fig. 7-32 for the
Powell River, respectively.
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24 |

Variation of Average Chi-Square ;2 with

Truncation Level (Expressed by A) for Fit-
ting Frequency Distributions of the Number

Fig. 7-31

of Exceedances by: (1) Poisson Distri-
bution, and (2) Mixed Poisson Distribution,

for N = 25, 50, 100 and 1000, for the Boise
River
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Fig. 7-32 Variation of Average Chi-Square x° with
Truncation Level (Expressed by 1? for Fit-
ting Frequency Distributions of the Number
of Exceedances by: (1) Poisson Distri-
bution, and (2) Mixed Poisson Distribution,
for N = 25, 50, 100 and 1000, for the Powell

River

For both study cases, the mixed Poisson distri-
bution gives significant improvements in goodness of
fit, especially if applied for large N. In case of
the Boise River, the ratio Rm v of mean to variance

of frequency distributions of’n decreases with an
increase of Qb. For example, for N = 1000 years, Rm.v

varies from 1.767 for the lowest Qb to 0.784 for the
highest Q. Hence, for the range of high Qb which
&“’v less than unity, the mixed Poisson distribution
is well applicable.

In case of the Powell River, Rm,v increases
with an increase of Qb: For N = 100 years, Rm,v
varies from 0.662 for the lowest Q, to 0.749 for the
highest Qb_ The mixed Poisson distribution is well
applied throughout the range of Qb considered.

7.6 Distribution of the Magnitude of Exceedances

Similar to the case of the distribution of n,
the following is the test on how the mixed exponential
distribution improves the goodness in fitting the
frequency distributions of the magnitude of exceedances
£, The procedure and data used are the same as for

the case of distribution of n. The numbers of class
intervals are 9,12,15 and 20, for N = 25,50,100 and
1000, respectively.

s s |

R




The average values of the chi-square statistic
for all small samples for exponential and mixed ex-
ponential distributions are shown in Fig. 7-33 for the
Boise River and Fig. 7-34 for the Powell River, res-
pectively. In case of the Boise River, skewness
coefficients of the frequency distributions of gvfor

various Q, are not very large. The mixed exponential

distribution could be applied only in a few cases.
For N = 1000, the skewness coefficient varies from
1.699 for the lowest Qb to 2.109 for the highest Qb

However, the results of the study daily flow of 17
stations show that the mixed exponential distribution
could be well applied for cases of skewness coef-
ficient greater than two. Therefore, for N = 1000,
the mixed exponential distribution can be applied for
the range of high Qb. For N = 25,50 and 100, improve-

ments of goodness of fit of this distribution are
relatively small, since it is applied only for a few
cases out of n small samples.

3. L -

32 -

28 -

20 -

Variation of Average Chi-Square ;2 with
Truncation Level (Expressed by 1) for Fit-
ting Frequency Distributions of the Magni-
tude of Exceedances by: (1) Exponential
Distribution, and (2) Mixed Exponential
Distribution, for ¥ = 25, 50, 100 and
1000, for the Boise River

In case of the Powell River, the mixed exponential
distribution can be applied throughout the range of
Qb with significant improvements in goodness of fit,

especially if applied for large N. The skewness coef-
ficients of the frequency distributions of £y for

various Qb are greater than two. For N = 1000, the

skewness coefficient varies from 3.504 for the lowest
Q to 2.966 for the highest Q.. Hence, the mixed

exponential distribution can be well applied through-
out the range of Qb'
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Variation of Average Chi-Square
Truncation Level (Expressed by »
ting Frequency Distributions of the Magni-

tude of Exceedances by: (1) Exponential
Distribution, and (2) Mixed Exponential
Distribution, for N = 25, 50, 100 and
1000, for the Powell River

7.7 Dependence between the Magnitude of the Largest
Exceedance and the Number of Exceedances

One of the assumptions used in deriving the
probability distribution of the largest exceedance in

a year is that {z;u}m are independent of n, as given
1

in Section 5.5. This does not mean that the magnitude
of the largest exceedance y is also independent of n.
Instead, the magnitude of the largest exceedance in

a year still depends on n of that year.

Assuming that {5v}m are independently identically
1

distributed with common distribution function H{x)
represented by the exponential distribution with
parameter &, and the distribution of n is represented
by the Poisson distribution with parameter . Hence,
the distribution of the largest exceedance, given
that n = k, is identical to the distribution of

Z-I * Zz 4 D3y H Zk’ where Z] is the minimum of the k

exponential distributions with parameter g, which is
also the exponential distribution with parameter g/k,
Z2 is the minimum of the k-1 exponential distributions

with parameter £, which is also the exponential dis-
tribution with parameter s/(k-1), and so on. There-
fore, the expectation of the largest exceedance, x,
given that n = k, is



k
Elx[n=k] = ]

j=1

1
=8l (7-6)

and the variance of x is

k

!

j=1

var[x|n=k] var[Zj]

g2l o 1

k2

i

e
(k-1)2 2

7+ 1]

(7-7)

since 21. Zz, ois Zk are independent random variables

according to the property of the lack-of-memory.

Equation 7-6 shows how the expected value of y
depends on n. The first group of N = 1000 for the
case of partial flood series of generated daily flows
is used for investigation the dependence between the
expected value of y and n. The estimate of g8 is
obtained from the Tong sample of 1000 years for each
Q,- Let m denote the number of years out of 1000

years that n = k, for a given k. For each of m years
that n = k, the largest exceedance is obtained. The
average value of the largest exceedances for all m
years divided by g is also obtained for a given n = k.
This result can be compared with the assumed theo-
retical values as shown by Eq. 7-6.

For the Boise River, the relationships between
the average value of the largest exceedance divided
by 8 and n, for Qb = 2870, 4000, 5000 and 6000 cfs,

are shown in Fig. 7-35. In case of the Powell River,
the results of Gh = 5000, 6000, 6500, and 7500 cfs,

are shown in Fig. 7-36. Both figures also include

50 T T T T T T

40

0.0

Relationships between the Average Value of
the Largest Exceedance Divided by g,
E[x|n]/8, and the Number of Exceedances in

a Year, n, for the Boise River, with: (1)
Assumed Theoretical Values, Eq. 7-6, (2) and
(3) Upper and Lower Limits, Eq. 7-8, and

(4) Computed Values, for Qh = 2870, 4000,

5000 and 6000 cfs

Fig. 7-35

Fig. 7-36
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Relationships between the Average Value

of the Largest Exceedance Divided by 8,
E[x|n)/8, and the Number of Exceedances in
a Year, n, for the Powell River, with: (1)
Assumed Theoretical Values, Eq. 7-6, (2)
and (3) Upper and Lower Limits, Eq. 7-8,
and (4) Computed Values, for Q, = 5000,

6000, 6500 and 7500 cfs

the theoretical relationships between E[x|n=k]/g and
n = k, as well as the upper and the lower limits

(one standard deviation from the mean) which are
expressed as

Efgsn=k| , Yvar X[n=K]
B

(7-8)

with E[x|n=k] and var[x|n=k] given by Eqs. 7-6
and 7-7, respectively.

Figures 7-35 and 7-36 show that the magnitude of
the largest exceedance tends to depend on the number

of exceedances in a year even though {gv}w are
1

independent of n, especially in the range of small n.
For large n, the results obtained by using the
generated data are not conclusive since the number of
years that n = k, or the value of m, is very small.

7.8 Comparison of Goodness-of-Fit Statistics in
Fitting Frequency Distributions of the Largest
Exceedance in Using Both the Developed and
Commonly Assumed Models

The developed probability distribution of the
largest exceedance in a year is obtained from Eq. 5-6,
with the distribution of the number of exceedance in a
year either the mixed Poisson distribution or the
Poisson distribution, the E, distribution either the

mixed exponential distribution or the exponential
distribution, as the case will be. For the commonly
assumed model, this probability distribution is
obtained from Eq. 3-83, with the distribution of n is
assumed only Poissonian, the £, distribution is assumed

exponential. In order to test how this developed
model improves the goodness of fit of frequency
distributions of the largest exceedance, the two
models were fitted to frequency distributions of the
largest exceedance obtained from the first group of




Table 7-9. Chi-Square Test Statistics for Frequency Distributions of the Largest Exceedance, for the
Commonly Assumed and Developed Models, and for the Boise River
r
ﬁgzﬂi“tﬁqfszfzgﬁ Developed Model (Eq. 5-6)
Chi-Square Statistic| Chi-Square Statistic
Truncation Computed | Critical | Computed | Critical | Type of Distribution | Type of Distribution
Level A Value Value Value Value of n of t‘;v
2870 | 4.973 87.96 27.6 87.96 27.6 P E
3500 3.959 46,16 27.6 46.16 27.6 P E
4000 5.279 50.87 27.6 30.87 27.6 p E
4500 2.514 33.70 27.6 24.58 25.0 MP E
5000 1.975 38.30 27.6 22.15 25.0 MP E
5250 1.725 29.83 27.6 20.37 25.0 MP E
5500 1.488 34.97 27.6 19.18 25.0 MP E
5750 1.299 31.36 27.6 17.77 22.4 MP ME
6000 1.120 32.14 27.6 14.95 22.4 MP ME
| 6250 0.976 36.21 27.6 18.74 22.4 MP ME
“Note: P = Poisson; MP = Mixed Poisson; E = Exponential; ME = Mixed Exponential.

Table 7-10. Chi-Square Test Statistics for Frequency Distributions of the Largest Exceedance, for the
Commonly Assumed and Developed Models, and for the Powell River
ﬁgﬁrgiuntéq}?s;ﬁ:? Developed Model (Eq. 5-6)
Chi-Square Statistic | Chi-Square Statistic
Truncation Computed | Critical Computed | Critical | Type of Distribution | Type of Distribution
Level by Value Value Value Value of n of gu
4500 4.808 774,681 27.6 22.171 22.4 MP ME
5000 3.995 | 604.238 27.6 18.595 22.4 MP ME
5500 3.403 511.105 27.6 17.317 22.4 MP ME
6000 2.840 | 360.062 27.6 20.465 22:4 MP ME
6500 2.406 260.850 27.6 15.843 22.4 MP ME
7000 2.080 224,111 27.6 10.005 22.4 MP ME
7500 1.300 188.086 27.6 11.814 22.4 MP ME
8000 1.561 170.503 27.6 11.965 22.4 MP ME
8500 1.363 152.042 27.6 11.642 22.4 MP ME
9500 1.018 96.373 27.6 8.999 22.4 MP ME
Note: P = Poisson; MP = Mixed Poisson; E = Exponential; ME = Mixed Exponential.




partial flood series of N = 1000 years of the long
generated sample of 2000 years.
tic is used to test the goodness of fit. Results of
the computed and the 95 percent critical value of
chi-square statistics with 20 class intervals for
various Qb and for the two models, are given in

Table 7-9 in case of the Boise River, and in Table
7-10 for the Powell River. Each table also gives, for
each Qb, the type of the best distributions for n,

and for £, used in the developed model.

The developed model represents an improvement in
the goodness of fit in comparison with the commonly
assumed model, especially in case of the Powell River.
The chi-square values for the commonly assumed model
are very large in the range of low Qb. However, the

developed mong seems to improve significantly the
goodness of fit in this range of Qb.
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Cumulative Distributions of the Largest
Exceedances in a Year with: (1) Observed
Frequency Distribution, (2) Fitted Distri-
bution by the Developed Model, and (3)
Fitted Distribution by the Commonly Assumed
Model, Qh = 5000 cfs, for the Boise River
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Fig. 7-38 Cumulative Distributions of the Largest
Exceedance in a Year with: (1) Observed
Frequency Distribution, (2) Fitted Distri-
bution by the Developed Model, and (3)
Fitted Distribution by the Commonly Assumed
Model, Qb = 5500 cfs, for the Boise River

The chi-square statis-
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Fig. 7-39 Cumulative Distributions of the Largest
Exceedance in a Year with: (1) Observed

. Frequency Distribution, (2) Fitted Distri-
bution by the Developed Model, and (3)
Fitted Distribution by the Commonly Assumed
Model, Qb = 5000 cfs, for the Powell River
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Fig. 7-40 Cumulative Distributions of the Largest
Exceedances in a Year with: (1) Observed
Frequency Distribution, (2) Fitted Distri-
bution by the Developed Model, and (3)
Fitted Distribution by the Commonly Assumed
Model, Q = 7000 cfs, for the Powell River

The fitted distribution functions of the largest
exceedance in a year, based on both models, as well
as the corresponding frequency distributions of the
largest exceedance are shown in Figs. 7-37 and 7-38
for Q, = 5000 and 5500 cfs, respectively, in case of

the Boise River. In case of the Powell River, the
results are shown in Figs. 7-39 and 7-40 for Qb = 5000

and 7000 cfs, respectively. These figures show that
the distribution function of the largest exceedance
obtained by means of the developed model has a better
agreement with the observed frequency distribution of
the largest exceedance than the corresponding distri-
bution function obtained by means of the commonly
assumed model. In the range of high return periods,
the developed model predicts well the flood value
Q(T) for a given T.




Chapter VIlI
CONCLUSIONS

The topics investigated in this study belong
basically into three areas: (i) development of the
partial flood series model; (ii) development of the
model for generation of daily flow series; and (iii)
comparison of efficiency of estimates of annual flood
peaks for given return periods by using annual and
partial flood peak series.

8.1 Development of Partial Flood Series Model

Conclusions drawn from the development of the
partial flood series model are:

(1) Either the mixed Poisson or Poisson distri-
bution have the best fit, among all the considered
discrete distributions, to frequency distributions of
the number of exceedances per year;

(2) Either the mixed exponential or exponential
distribution have the best fit, among all the con-
sidered continuous distributions, to frequency
distributions of the magnitude of exceedances;

(3) In the range of truncation levels studied
for partial flood series, with the average number of
exceedances per year varying from one to four, the
dependence of successive exceedances is not signifi-
cant. When the truncation level is relatively low,
the dependence may not be negligible, increasing with
a decrease of the truncation level; and

(4) The series of annual flood peaks can be
considered as approximately independent.

8.2 Development of Model for Generation of Daily
Flow Series

The mathematical model, developed for generation
of samples of daily flows, and based on statistics of
both the daily flow series and annual flood peak
series, Teads to these conclusions:

(1) The generated samples of daily flows have
properties close to corresponding properties of his-
toric daily flow series; and

(2) The generated samples reproduce well the
extremes, so that these samples can be used for the
study of properties of flood peaks.

8.3 Comparison of Efficiency of Using Annual and
Partial Flood Series

The study of generated long samples of daily
flows, used toinvestigate the efficiency of using
annual and partial flood series, leads to these
conclusions:

(1) Estimates of annual flood peaks of given
return periods from the partial flood series have
smaller sampling variances than the corresponding
estimates from the annual flood series, when the
average number of exceedances per year in partial

67

flood series is at least 1.65 for the exact theo-
retical approach, and at least 1.50 for the approxi-
mate theoretical approach. The conclusion in case
of the exact theoretical approach is similar to that
concluded by Cunnane (1973§

.
L]

(2) Ratios of sampling variances of estimated
annual flood peaks in case of exact theoretical and
agproximate theoretical approaches do not depend on
the sample size;

(3) In case of the empirical approach, the
sampling variance of annual flood peaks estimated
from the partial flood series is smaller than the cor-
responding sampling variance of annual flood series
for the range of investigated return periods, when
the average number of exceedances in partial flood
series is at least 1.95 for sample sizes 10-25,
and somewhat larger than 1.95 for larger sample sizes.

(4) For each flood series and for each sample
size, the sampling variance of estimated annual flood
peaks for given return periods by using the theo-
retical approach is smaller than the corresponding
sampling variance of estimates in the empirical
approach, with differences of these sampling variances
increasing with an increase of the sample size, and
being greater for partial flood series for a given
sample size than for annual flood series;

(5) Comparison of sampling mean square errors of
estimates of annual flood peaks for given return
periods in case of use of the annual and partial flood
series depends on the corresponding population flood
peaks, if assumed to be known;

(6) Assumed population flood peaks are sensitive
to the ratio of sampling mean square errors, and in
such a way that if flood peaks are assumed to be esti-
mated from the generated samples of annual flood
series, the sampling variances of estimates from
partial flood series decrease with a decrease of the
truncation level, while the bias in estimates tends
to increase with a decrease of the truncation level,
especially in the range of low values of truncation
levels;

(7) When the model of partial flood series is
developed with assumptions for its derivation sup-
ported by data for low truncation levels, the partial
flood series is more efficient or more useful in
estimating annual flood peaks than the annual flood
series, especially in case of small sample sizes;

(8) By using the observed and generated samples
of daily flows, the partial flood series model,
developed in this study (Eq. 5-6), gives a better
fit of frequency distributions of the largest exceed-
ance than the commonly assumed partial flood series
model (Eq. 3-83), especially for low truncation
levels and for rivers with highly fluctuating daily
flows.
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cation level is the subject matter of the paper. The
17 daily discharge series were used for testing of the
method. The relationship of the goodness-of-fit sta-
tistics for selected distribution functions and the
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were weak but showed the dependence of partial flood
peak series to increase as the truncation level
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The samples of daily flow series were generated
by a refined model. Two station series with different
water regimes are used to test the method developed.

The estimates of annual flood peaks of given
return periods from the partial flood peak series
showed a smaller sampling variance than the corres-
ponding estimates from the annual flood peak series
when the average number of exceedances per year in
partial flood series was at least 1.65 for an exact
analytical approach, and at least 1.50 for an approxi-
mate analytical approach.
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