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ABSTRACT 

The estimation of probability distributions of maximum annual flood peak by using a combination of proba­
bility distributions of the number and the magnitude of flood peaks that exceed a selected truncation level, is 
the subject matter of this paper. This method of estimation is tested on the 17 daily streamflow series of 
gaging stations in the United States. five discrete and six continuous probability distribution functions were 
used to fit their frequency distributions of the number and the magnitude of exceedances above the selected 
truncation level of partial flood series, respectively. From them the best fit functions are selected. For 
these funct ions inferred, the goodness-of-fit statistics are related to the truncation level of partial series. 
The probability distribution of the largest annual exceedance of the instantaneous flood peak (represented by 
highest daily discharge), with assumptions postulated and tested on these 17 time series. The sequential depen­
dence in partial and annual flood peak series is also inves~igated, with the dependence of partial flood peak 
series increasing with a decrease of the truncation level. For the range of truncation levels studied in this 
paper, the average number of exceedances per year varied from one to four, with the sequential dependence 
relatively small for the rivers used as examples. 

The mathematical model for generating samples of daily flow series is selected and refined. The daily 
flow series of two gaging stations , wi t h different runoff regimes were used in testing the model. With the 
models based on statistics of the samples of the daily flow series of these two river examples, as well as of 
their derived annual flood peak series, the generated samples of daily flows showed the parameters to be close 
to the inferred parameters of historic daily flow series. The generated samples reproduced well the flood 
extremes. These samples then were used to investigate the properties of f lood peaks. 

By using the generated samples of daily flows, the efficiency of estimated annual flood peaks of given 
return periods was investigated by using both the annual and the partial flood peak series. The sampling 
variances of annual flood peaks of given return periods, obtained from each of these two flood peak series, 
were compared both analytically and experimentally from generated samples. The estimates of annual flood peaks 
of given return periods from the partial flood peak series showed a smaller sampling variance than the corres­
ponding estimates from the annual flood peak series, when the average number of exceedances per year in partial 
flood series was at least 1.65 for an exact analytical comparison, and at least 1.50 for an approximate analyti­
cal comparison. The ratios of sampling variances of estimated annual flood peaks for these two approaches did 
not show a dependence on the sample size. 

In case of the use of the empirical approach, the sampling variance of estimated annual flood peaks from 
the partial flood series showed to be smaller than the corresponding sample variance of estimated annual flood 
peaks from the annual flood series, for the range of i nvestigated return periods and for the average number of 
exceedances in partial flood series of at least 1.g5 for the sample sizes 10-25, and somewhat larger than 1.95 
for the larger sample sizes. 

v 



Chapter I 
INTRODUCTION 

1.1 Introductory Remarks 

Floods and droughts as runoff extremes represent 
some of the most damaging natural disasters, with which 
humanity has to live and struggle through all there­
corded history. Floods represent a rapidly evolving 
disaster. Basic flood risks are functions of climatic 
factors , conditions of river basins, and the state and 
occupancy of river floodplains. These risks can be 
changed only by changing these factors, conditions, 
state, and occupancy. 

The analysis of flood frequency distributions, as 
the inference making about flood probability distri­
butions, plays a major role in hYdrologic and economic 
evaluations of water resources projects and in es­
tablishing project design criteria. The large highway 
programs that include bridges and drainage design 
belong to the major undertakings which depend on flood 
frequency analysis, because they require large expendi­
tures of pub 1 i c funds. In the construction of da.ms , 
the spi llways account for a sizable portion of the 
total cost. The capacity of a spillway is governed 
by flood characteristics of given frequency or re­
currence interval . Besides the usual needs for infor­
mation on floods for most water resources projects, 
this information has become of paramount importance 
for flood insurance. The most reliable determination 
of flood levels for given return periods is needed in 
floodplain delineation and for establishing the 
appropriate flood insurance rates. 

The definition of a flood often is not precise. 
In general, a flood is a relatively high flow that may 
or may not overtop the banks of a stream. and which 
may or may not cause damage. The .general public 
usually refers to floods as high flows that cause 
damage. The water resource specialists frequently 
define floods as flows of the magnitude close to or 
higher than the one-year return flood. Usually, the 
maximum instantaneous annual flood peak discharges of 
each year are used in flood analysis. Often the maximum 
instantaneous flood peak discharge. To avoid the 
division of the water year by the arbitrariness in 
selecting 365 daily values of the calendar year, many 
countries use the water year beginning with usually 
lowest flows (dry season) rather than using January 1 
as the year beginning. 

Two types of flood peak series, the annual flood 
series and the partial f lood series, are considered in 
this study. The annual series consists of the largest 
flood in each year, as defined above. The partial 
flood series consists of all well -defined flood peaks 
above a specified magnitude, often called the flood 
truncation level. Partial flood series is approxi­
mately derived from the mean daily flows , since instan­
taneous peak flows for events smaller than the annual 
maximum peak are not readily available. While the 
time series of mean dai ly peak flows are close to the 
instantaneous peak flows of large catchments, the 
partial series of mean daily flows is only an approxi­
mation to instantaneous peak partial series for small 
flashy catchments, since the instantaneous peaks are 
smoothed in daily averaging of flows. 

1.2 Major Problems Needing Studies 

A classical dilemma in flood frequency analysis 
is whether to use either the annual flood peak series, 
or the partial flood series of all the peaks above a 
given truncation level. The most frequent objection 

encountered with respect to the use of annual flood 
series is that it uses only one flood for each year. 
In certain cases the second largest flood in a year, 
which the annual flood series neglects, may outrank 
many annual floods. of other years. The largest annual 
discharges in dry years of some rivers in arid or semi­
arid regions may be so smal l that calling them floods 
may be misleading. Another increasingly important 
shortcoming of annual flood series is that only a small 
number of floods is considered. On the other hand, the 
partial flood series appears to be more useful for 
theoretical analysis than the annual flood series, 
since the objections raised on annual flood series do 
not apply. The major drawback of partial flood series 
is that the sequence of flood events might not be 
independent time series since some flood peaks may 
occur on the recession limbs of preceding floods. 
However, the dependence of partial flood series is a 
function of the sel ected truncation level which defines 
a particular partial flood series. If the truncation 
level is selected in such a way that the average number 
of floods per year is greater than one, and the assump­
tion of independence of these floods stil l valid, the 
partial flood series may become more useful for theo­
ret ical analyses than the annual flood series. Con~ 
sequently, in order to ascertain whether the partial 
flood series is more effi cient for estimati ng the flood 
values of given ·return periods than the annual flood 
series , the comparison of sampling variances of flood 
peaks of given return periods obtained from each of 
the two f lood peak ser ies needs to be investigated. 

Another probl em of continuing interest in flood 
frequency analysis in case of annual flood series with 
small sample size i s the reliability of estimates of 
skewness coefficients of historical f lood series. 
Regional estimates of these coefficients may be the 
only solution in case of short historical records. 

To overcome the problems of short annual flood 
series, the consideration of all the f lood peaks above 
the given truncation level, as partial flood series 
should be used. This approach provides an alternative 
approach of estimating the probabilities of annual 
flood peaks by a combination of distributions of the 
number and the magnitude of flood peaks above a 
suitable truncation level. This approach has two 
important advantages over the empirical distribution 
approach in using the annual flood series. Fi rst. the 
part ial flood series would contain more floods than the 
annual flood series . Hence, in general, the estimate 
of parameters of annuaJ flood distribution from the 
partial flood series would be subject to lesser un­
certainty. Second, the theoretical expressions on 
annual flood distributions obtained through charac­
teristics of partial floods have physical relevance 
and often are exact distributions rather than 
asymptotic. 

Further studies are necessary in order to answer 
many questions arisi ng in the use of partial flood 
series and achieve the dual goal of consistency and 
accuracy in estimating flood values for given flood 
return periods . For example, the range of suitable 
truncation levels to be used for defining partial flood 
series should be well investigated, as well as the 
probability distribution functions of the best fit for 
the frequency distributions of the number of floods 
exceeding the truncation level for a given time interval. 
Investigations are needed for probability distributions 
of the flood magnitudes of partial .ser1es, as well as 
the probabi l ity distributions of the largest flood for 



the same time interval. A question remains whether 
the dependence is significant in partial flood series 
for each truncation level. 

1.3 Objectives of the Study 

The major objectives of this study are: 

(1) To estimate parameters of probability dis­
tributions of annual flood peaks by using the partial 
flood series, instead of estimating parameters 
directly from annual flood series. 

(2) To compare efficiency in using annual and 
partial flood series for estimating annual flood 
peaks of given return periods by using the sampling 
variance of such estimates of annual flood peaks, 
estimated from each of the two series for various 
sample sizes and assumed probability models. 

(3) To develop mathematical models for generating 
the long records of daily flow data for the use of 
records in the comparison of efficiency of estimates 
of annual flood peaks by using annual and partial 
flood series. 

1.4 Procedures Used 

The theory of probability distributions of partial 
series of flood peaks is outlined in Chapter III. It 
includes the outline of selected discrete distribution 
functions for the number of floods and the continuous 
distribution functions for flood magnitudes used for 
fitting the frequency distributions of the number and 
~he magnitude of flood peaks above a given truncation 
level, respectively. The assumptions used in deriving 
the probability distribution of the largest flood peak 
in the year from the combination of distributions of 
number and magnitude of flood peaks of partial flood 

series are given. This chapter ends with a procedure 
used in comparing the sampling variances of annual 
flood peaks of given return periods obtained from 
annual and partial flood series. · 

The application of the theory of probability 
distribution of partial series of flood peaks to 17 
stream flow gaging stations throughout the United 
States is presented in Chapter V. Probability distri­
butions are selected from distribution functions out­
lined in Chapter Ill, by using the goodness-of-fit 
parameters in fitting the 17 frequency distribution 
functions for both the number and the magnitude of 
floods for the year as the time interval. The results 
of investigation on how the parameters of selected 
distribution functions change with the truncation 
level are then presented. The derivation of proba­
bility distribution of the largest flood peak in a 
year is given with the necessary assumptions postu­
lated and tested on observed data . Chapter V further 
includes the study of dependence of annual flood 
series and partial flood series, as well as how the 

, degree of dependence of partial flood series changes 
with the change of the truncation level. 
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Procedures used in developing the mathematical 
model of .daily flow series are presented in Chapter IV. 
Results of generation of long records of daily flows, 
by using the parameters of the Boise River, Idaho and 
the Powell River, Tennessee, are shown in Chapter VI. 

The comparison of efficiency in using annual and 
partial flood series for estimating annual flood peaks 
of given return periods, by using generated daily flow 
series, is presented in Chapter VII. The long records 
of generated daily flow series are used for verifying 
properties and assumptions, as required in the develop­
ment of the partial flood series model. 



Chapter II 
REVIEW OF LITERATURE 

2.1 Definitions of Annual and Partial Flood Series 

Flood data is usually li sted either in the form 
of an annual flood series or a partial flood series. 
Annual flood series is a sequence_ of annual floods, 
with annual flood defined as the largest instantane­
ous peak discharge of each year of record. Some­
times the maximum mean daily discharge of each year 
is used as this flood. The partial flood series 
are not as precisely defined as the annual flood 
series. The definition of partial flood series 
depends on the application of the flood frequency 
curves as well as the hydrologic river basin charac­
teristics. Water Resources Council (1976) defines 
the partial flood series as a sequence of separate 
flood events. These separate floods are arbitrarily 
defined as events separated by at least as many days 
as five plus the natural logarithm of square miles 
of drainage area, with the requirement that the inter­
mediate f lows must drop below 75 percent of the lower 
of the two separate maximum daily flows . Zelenhasic 
(1970) and Rousselle (1972) defined the partial flood 
series as all flood peaks which are called exceedances 
above a given truncation level. In t he case of a 
multiple peak flood hydrograph, only the largest 
discharge i s considered to be the f lood peak. This 
latter treatment of partial flood is an approximation, 
with an expectation that the independence of flood 
peaks would be_closely preserved. It is feasible to 
separate a complex hydrograph in such a way as to 
obtain independent flood peaks; however, that approach 
would complicate the estimate of partial flood series 
with no significant advantage in modeling floods by 
the partial series approach. 

2.2 Theories of Probability Distributions of Annual 
Flood Peaks 

Large numbers of references are avai l able on 
flood studies by using the statistical approaches. 
It would be beyond the scope of this study to cover 
all the methods proposed to date. For purposes of 
showing the versatility of approaches to the problem, 
some analytica l methods that have been used by indi­
viduals and agencies in recent years will be reviewed. 

Flood probability distribution functions have 
been tested empirically, and when found unsatisfactory 
they hav~been replaced by the new functions. It was 
found out relatively early that· logarithms of annual 
flood peaks are often well fitted by the Gaussian 
normal function. Because of high skewness coefficient 
in flood frequency distributions, functions with such 
characteri stics are looked for. If annual flood peaks 
could be considered as products of effects of a large 
number of random causal factors, it should be log­
normally distributed, since logarithms of the variable 
could be considered as sums of effects of a large 
number of random causal factors, therefore normally 
distributed by the central limit theorem (Chow, 1954) . 

Based on the annual flood series of 1959 long­
record river gaging stations in the United States, 
Bear d (1954) concluded that with rare exceptions the 
logarithms of annual flood of mean daily flows are 
normally distributed. 

Foster (1924) preferred to work with untransformed 
data and hence sought to fit the skewed distribution 
functions. He introduced the use of the Pearson Type 
III density function, with the empirical support for 
i t from data, although some hydrologists consider the 
application to be somewhat difficult. 
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The Gumbel extreme value distribution is one of 
the three limiting forms of distributions of the 
largest member of a sample of N independent random 
variables from a distribution which satisfies certain 
conditions in the asymptotic behavior of its tails. 

Extreme value theory indicates that if the random 
variable XN is the maximum in a sample of size N from 
some population of x values, provided N is sufficiently 
large, the distribution of XN is one of the three 
limiting forms, the choice depending on the parent 
distribution of x. Since the maximum daily flow in a 
year is the maximum of N ~ 365 values, Gumbel (1941) 
postulated that it should be distributed as the ex­
treme value variable. However, the N values of daily 
flows are highly dependent and they are not identically 
distributed, si nce it is well known that daily flows 
are highly autocorrelated with periodic parameters. 
If, therefore, the annual flood peaks fo 11 ow an extreme 
value distribution, it is for some other reason than 

' those stated by Gumbel. If daily flows are not in­
dependent in the annual collection of 365 values, one 
may find a group of independent values to replace 
dependent values. Unfortunately, thi s group i f 
determined would be so small that the assumption of 
a large sample would be violated. Furthermore , the 
critical assumption is the assumption that the parental 
population is made up of identical ly distributed 
random vari~bles. It is not feasible to assume that 
the daily flows of the first of May have the same dis­
tribution as those of the first of December, as shown 
by Quimpo (1967) because the mean and the standard 
deviation of daily flows are periodic. Hence, the 
theoretical arguments that flood peaks follow an 
extreme value distribution are weak, not supported by 
time series properties. In addition, the probl em is 
the selection of the type of extreme value di stri ~ 
bution; according to extreme value theory, this distri­
bution depends on the type of parental distribution, 
which is not known a priori. 

At present, the latest word on frequency analysis 
of annual flood series i n the United States may be the 
method adopted by Water Resources Council (1976) . It 
is condensed in Bulletin No. 17, prepared by the Hydro­
logy Committee of the Council.. This bulletin 1s an 
extension of Bulletin No. 15, "A Uniform Technique 
for Determining Flood Flow Frequency" (U.S . Water 
Resources Council, 1967, and also Benson, 1968). At 
its inception the method rai sed controversies among 
water resources agencies. The suggested and adopted 
probabil ity di stribution function for flood peaks in 
the bulletin is the Pearson Type III distribution 
function applied to logarithms of the annual f l ood 
peaks, briefly called the Log-Pearson Type III 
function. Pa.rameters of that function are expressed 
in terms of the mean, the standard deviation, and 
the skewness coefficient, computed for logarithms of 
annual flood peaks. 

The unadjusted ·frequency curve is obtained by 
computing the logarithms of annual flood peaks which 
correspond to selected points on the frequency scale. 
Since the samples used in hydrologic studies are of 
finite sizes, an adjustment of the exceedance frequency 
is ~ecessary. The magnitude of flows which correspond 
to each of the sel ected points ; s computed by : 

log Q = x + KS , 

in which log Q = the logarithm of flow which corres~ 
ponds to a specified value of the unadjusted 



exceedance probability, x = the mean of logarithms 
of sample values, S =the standard deviation of 
logarithms, K = the deviation from the mean {x-x)/S 
{in the standard deviation units) of variable values 
with the exceedance probability P {unadjusted) . 

The Guidelines by Water Resources Council suggest 
a series of analytical and statistical refinements to 
improve the accuracy of frequency curves obtained by 
that procedure. Such a refinement is the elimination 
of the bias in relation to the average future expecta­
tion , by adjusting the exceedance probabi l ity P to 
an expected exceedance probability which accounts for 
the actual sample size. Another refinement relates 
to the skewness coefficient. Since hYdrologic records 
are usually shorter than 100 years, the sample esti­
mates of this coefficient are unreliable. Specifically, 
if records available are of 100 years or more, the 
station skewness coefficient should be used exclusively. 
For records of 25 to 100 years, a weighted skewness 
coefficient should be calculated in which the stat ion 
skewness is given the weight of {N-25)/75, where N ~ 
the length of record, and the 9eneralized skewness is 
given a weight of {1.0 - {N-25)/75]. Guidelines also 
pro vi de adjustments for zero flow, i ncomp 1 ete records . 
and the treatment of outliers. 

A problem of increasing interest in flood frequency 
analysis is the reliable estimation of skewness coef­
ficients of historical flood records. The result of 
experiments made by Matalas, Slack, arnd Wallis {1975), 
further commented by Klemes {1976), has shown that in 
applying the concept of regionalizing {and, even more, 
contouring; Hardison, 1974) the skewness coefficient of 
annual flood peaks has a serious fault. In their con­
cluding remarks, Matalas, Slack, and Walli s {1975) 
caution that the regional estimates of the skewness 
coefficients should be conditioned on the record length 
N, because of the bias and boundness of the smal l sample 
extimates. More cautions on hYdrologic "grounds were 
advanced by Klemes {1976) . First, · that the regional 
estimates of skewness coefficients shoulQ be conditioned 
also on basin area and phYsiographic features. Second, 
that the skewness coefficients of annual flood peaks 
are likely to vary along the course of a river, with 
reversals i n the direction of change. Similarly, the 
skewness coefficient of a tributary may be very differ­
ent from that of the main river. Thi rd, it follows 
that the regional estimates of skewness coefficient, 
even though they depend on sample size , basin area and 
main physiographic features, reflects only an overall 
average tendency of the regional skewness coefficient, 
so•they cannot be expected to be good estimates for 
individual basins or gaging stations. They should not 
be used as design standards for assessing flood 
frequencies at individual si tes. 

Natural Environment Research Council {1975) of the 
United Kingdom adopted the general extreme value dis~ 
tribution (of which the Gumbel distribution is a special 
case) to achieve standardization of flood-frequency 
procedures used in the United Kingdom. As reported by 
the Council, seven distribution functions were tested 
by calculating the goodness of fit indices for 28 
stations with 30 years or more of records in Great 
Britain and for seven stations of between 23 and 44 
years in Ireland. The result of the test showed that 
the Pearson Type III and the log-Pearson Type III 
functions were sensitive to the formulation of tests, 
and their goodness-of-fit changed p 1 aces i n the order of 
merit when the type of test was changed. The general 
extreme value distribution was more stable, and for 
this and other reasons it was recommended as the first 
choice among distributions of annual flood peaks by 
the Council. However, when only a small sample is 
available, say N less than 25, the Council recommended 
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that the Gumbel distribution be fitted if an estimate 
based on the sample data alone is required. However , 
it should not be used for gross extrapolations. 
·because on the average this leads to an underesti­
mation of peaks for high return periods. 

Another distribution, which consists of a mixture 
of two distributions, was su~gested for annual flood 
peaks by Singh and Sinclair (1972). If the annual 
flood peaks could be classified in some objective 
manner into two groups , between which there is a 
noticeable difference i n the distribution of variate 
values, then t he concept of a mixture of distributions 
may be useful. For example, the annual flood peaks 
might be classified according to whether they arise 
from thunderstorm rainfall or from other types of pre­
cipitation, or from snowmelt. This application by 
Singh and Sinclair is a device for i ntroduci ng a five 
parameter distribution, while previously only two and 
three parameter distributions have been used. A 
mixture of two normal distributions, applied to 
logarithms of annual flood peaks, was proposed. How­
ever, this did not require a classification of flood 
records into two types, and the estimation of para-

. meters of each component distribution and of the 
mixture parameter separately. The proposed method of 
estimation of parameters was by using only means and 
variances. They concluded that for the medium to 
high floods (of greatest interest to engineers and 
hydrologists) the prediction was satisfactory by this 
method. 

2.3 Theories of Probability Distributions of Partial 
Series of Flood Peaks 

The standard approach to the analysis of flood 
peaks consists roughly either by applying the limit­
ing distributions of the maximum value in a sequence 
of independe·nt, identically distributed random vari­
ables, such as Gumbel' s approach, or simply by testing 
which theoretical distribution best fits the observed 
frequency distributions of annual flood peaks. A 
different approach to the problem of flood peak 
analysis is to use a stochastic model for the des­
cription and analysis of excessive stream flows, or 
the partial flood series. 

Borgman (1963) discussed the meani ng and impli­
cation of the return period. He proposed the risk 
criteria such as the encounter probabi 11ty, dis tri­
bution of the waiting time, distribution of the total 
damage, probability of zero damage, and the mean total 
damage. Each criterion was derived from three mathe­
matical simpl ifications of the actual physical and 
engineering situation. 

Shane and Lynn (1964) developed a probability 
model based on the time independent Poisson process 
and the theory of sums of a random number of random 
var iables for using in the analysis of base-flow 
flood data. From the model, design equations were 
derived relating several commonly used measur,es of 
risk to the design discharge: recurrence interval 
distribution, encounter probability and expected re­
currence interval. Furthermore, Shane and LYnn (1969) 
developed confidence limits along with a lower bound 
for the corresponding level of confidence for evalu­
ating the effect of sampling errors on flood risk 
evaluation from base-flow flood data. 

Kirby (1969) defined flood peaks as successes 
or exceedances in a sequence of randomly spaced 
Bernoul l i trials , each representing the occurrence of 
a hydrograph peak. An arbitrary criterion for dis­
tinguishing between floods and ordinary hydrograph 
peaks was u:sed. His model showed that, at 



sufficiently small exceedance probabil ities, the 
probability distributions of times between exceedances 
and the number of exceedances approach those implied 
by trials from a Poisson process. 

Although the theory of extreme va1ues has been 
exte~ded.beyond Gumbel's distribution function, its 
appl1cat1ons to flood frequency analysis have been 
limited to that distribution, except for the appli­
cations made by Todorovic and his co-workers (Todoro­
vic, 1970; Todprovi c and Zelenhasic, 1970; Todorovic 
and Rousselle, 1971; Todorovic and Woolhiser, 1972), 
a~d G~pta! Duckstein, and Peebles (1976). Gumbel ' s 
d1str1but1on stems from applying the classical 
extreme value theory to a complete series (such 
as daily flows). As mentioned before, the mathe­
matical assumptions underlyi ng the classical extreme 
value theory are not applicable to most flood problems. 
However, the theory developed by Todorovic and his co­
workers may be more meaningful for flood frequency 
analysis than the classical extreme value theory. 

The first attempt to develop a theory by Todorovic 
(1970), Todorovic and Zelenhasic (1970), was based on 
stream flow partial duration series. The series of 
flows in a partial duration series within an arbitrary 
but fixed time interval is represented by a random 
number of random variables. The time dependent Poisson 
process was used to describe the distribution of the 
random number of exceedances. It is applied to stream 
flow by further assuming that the individual exceed­
ances form a sequence of identically independent 
random variables which are represented by an expon­
ential distribution. However, the theory is suffici­
ently general as to treat also the non-identically 
distributed exceedances. In addition, it is applicable 
over any arbitrary time interval of interest, such as 
season or a year. 

From a physical point of view, this method appears 
more feasible for flood peaks than the classical ex­
treme value theory for two reasons. First, when the 
truncation level which defines a partial flood peak 
series is taken adequately high, the assumption of 
stochastic independence among individual exceedances 
becomes reasonable. Second, the assumption that the 
number of exceedances in a fixed time interval is a 
random variable allows this approach to be applied to 
an arbitrary time interval, which is not true for the 
classical extreme value theory. 

The extension of the above approach to flood 
frequency analysis by Todorovic and Roussel le (1971) 
was by realizing that for a time interval equal to a 
year the assumption for exceedances being identically 
distributed is unrealistic, since different storm 
types can produce different flood characteristics from 
one season to another. Accordingly, they derived a 
distribution function for the largest flood peak for 
the case where two or more different exceedance dis­
tribution functions occur within a time interval. 

By considering the application of this approach 
for deriving the distribution function of the largest 
exceedance in a time interval, the question requiring 
attention is the independence of the event that exactly 
k exceedances occur in a given time interval and the 
event that all those k exceedances are less than or 
equal to the specified value. In other words , the 
question is whether the magnitude of those exceedances 
are independent of the number of exceedances in a time 
interval . The case pertaining to previous works by 
many authors is that the magnitude of exceedances are 
independent of the number of exceedances (Todorovic 
and Zelenhasic, 1970) . 
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Todorovic (1971) used the above method , together 
with the mathematical assumptions of Todorovic and 
Zelenhasic (lg7o), to derive another important 
property of the extreme ·flood, namely, its time of 
occurrence within a selected time interval . The ex­
pression for the time of occurrence of the extreme 
flood obtained by Todorovic (lg71) is exact. It was 
tested on two rivers in the United States by Todorovic 
and Woolhiser (lg72). Gupta, Duckstein, and Peebles 
(lg76) extended the work by Todorovic and Woolhiser 
(lg72) and developed the expression for the joint dis­
tribution function of the largest flood peak and its 
time of occurrence. They also modifi ed this expres­
sion, valid for the case of identically independent 
exceedances, to the case of independent but non­
identically distributed exceedances. 

2.4 Relationship between Annual and 
Partial Flood Series 

The empirical relationship between the probability 
of annual flood series and the expectancy of partial 
flood series was investigated by Langbein (1949) and 
the correspondi ng relationship was derived by Chow 
(lg5o). let PP be the expectancy of a variate in the 
partial flood series being equal to or greater than 
x, and let m be the average number of events per year, 
or mN be the total number of events in N years of 
record. Then Pp/m is the probability of an event 

being equal to x or greater, and 1 - PP/m is the 
probability of an event being less than x. Thus the 
probability of an event of magnitude x becoming a 
maximum of them events in a year is (1 - Pp/m)m. 
The probability approaches exp(-PP) when PP is smal l 
compared with m. Hence, the probability P of an a 
annual flood series of magnitude x being equal to or 
exceeded is 

or 

PP • -ln (1 - Pa) 

in whi ch PP approaches Pa as both Pp and Pa become 
small. The recurrence intervals in partial flood 
series are smaller than in annual flood series , but 
the differences become negligible for floods greater 
than about a five-year recurrence interval 
(Langbein, 1949). 

In more mathematical terms, if partial flood 
models and annual flood models are derived under 
specified assumptions, and if these models are accepted, 
the theoreti cal relationship between annual and partial 
flood series may be derived. When the Poisson distri­
bution for the number of exceedances in a year and the 
exponential distribution for the magnitude of these 
exceedances are assumed, combined they give a double 
exponential or Gumbel distribution ·Of annual flood 
peak series (Zelenhasic, 1970). The double exponential 
distribution of annual flood series is an exact dis­
tribution, derived from the model of partial flood 
series under commonly used assumptions. 

Cunnane (lg73) used the above relationship for 
comparing the statistical efficiency of estimates, 
Q(T), of the T-year flood by using the annual and 
partial flood series. On the basis of commonly used 
assumptions, he concluded that the estimate of Q(T) of 
annual exceedance series (i.e., the exceedance series 



that has the average number of exceedances per year 
equal to one) has a larger sampling variance than the 
annual flood series estimate fo r the return periods 
greater than 10 years. For the same range of return 
periods the estimates of Q(T) of parti al · flood series 
have a smaller sampling variance than the estimates 
from annual flood series only if the partial flood 
series contai ned at least 1.65 N items , with N = the 
number of years of record. These results are based on 
a theoretjcal approach as well as on general assumption 
t hat the distribution of annual flood series is exactly 
a Gumbel distribution and the partial flood series is 
represented by the combination of the Poisson distri­
bution for the number of exceedances and the exponen­
tial distribution for the magnitude of those 
exceedances. 

2.5 Modeling Daily Flow Series 

In the analysis of time series , their structure 
can be considered to be a combination of three com­
ponents: trend component, periodic or cyclic com­
ponent, and stochastic component . The trend component 
may occur as a result of either man- made changes 
within the watershed or by natural causes. The 
presence of a periodic component is attributed to 
astronomical cycles. The dependence among the suc­
cessive values of the stochastic component are usually 
described by a deterministic model plus the independ­
end stochastic component. If the trend does not 
exist or is not significant, the general structural 
model reduces to a combination of periodic parameters 
and a stochastic component. The description and 
separation of these deterministic and stochastic com­
ponents of hydrologic time series are described by 
Yevjevich (1972c). If the t ime series can be separated 
into components, the generation of their new samples 
can be carried out by the reversed procedures. 

Roesner and Yevjevich (1966) used a seasonal 
model for generation of monthly flows. The annual 
periodicities were in the mean and standard deviation 
of the series , while the dependence of stochastic com­
ponents was fitted by the Markov model s. Harmonics 
of periodic parameters were inferred by spectral ana­
lysis, and described by Fourier series . Quimpo (1967) 
fol]owed a similar representation for daily flows. He 
applied this approach to daily runoff records from 17 
gaging stations in the United States, and found that 
all the series of stochastic components satisfied ap­
proximately the second order autoregressive model. 

Tao, Yevjevich and Kottegoda (1976), and also 
Tao (1973), using the same data as Quimpo (1967), made 
an extensive study of fitting the distribution func­
tions to independent stochastic components for differ­
ent time intervals of series. The important con­
clusi ons are: (1) In case of independent stochastic 
components of daily flow series, none of the proba­
bility distribution functions currently used for 
fitting the frequency distributions could pass the 
chi-square and Smirnov-Kolmogorov tests; (2) The 
double-branch gamma function gave the best goodness­
of-fit among the distribution functions tested; 
(3) The logarithmic transformation provides some 
improvements in the analysis by assigning different 
weights to values of the original series and by re­
ducing flow fluctuations in comparison with the 
original series; and (4) Errors in determining the 
number of significant harmonics and errors in esti­
mating their Fourier coefficients greatly affect the 
accuracy of inferred per iodic functions. 

The use of a similar model for generating daily 
flows on British data was studied by Hall and O'Connell 
(1972). They transformed the origina] series by taki ng 
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natural logarithms of daily flows and performing an 
analysis on the transformed series. Six harmonics 
were required to describe the periodic daily means 
and standard deviations. First-order Markov models, 
with a lognonmal random component , were found to fit 
the stochastic component. They faced the same problems 
as Quimpo (1967), and Tao, Yevjevich and Kottegoda 
(1967), namely that it is difficult to find a good dis­
tribution function of independent stochastic component, 
as tested by commonly used test statistics. By gene­
rating new sequences of daily flows , equal in length 
to the historical record, they found that the daily 
means and daily standard deviations, as well as the 
f low duration curves of the generated f lows, were 
remarkably similar to those of the historical data. 
However, during the summer half-year, a lesser fluctu­
ation was apparent in the daily standard deviation of 
generated data. 

So far, the classical hydrologic analysis by 
using Markovi.an or other linear models, with periodic 
parameters, has been successful in generating stream 
flow series with a long time interval, such as for 
weekly and monthly flows. Extensions of these models 
•to daily flows have met a limited success . This is 
mainly due to high variation of flows, unconventional 
probability distributions of independent stochastic 
components , and a failure to simulate processes to 
transfer hydrograph characteristics i nto the h]storical 
flows (Kottegoda, 1972) . Investigations on the origin 
of these failures in case of daily flow series were 
undertaken by Vargas (1977) . By using the data gene­
ration method, he systematically checked each of the 
stages of modeling and estimation of model parameters, 
with the purpose of assessing whether failures origi­
nated by biases in estimation procedures, or by in­
appropriate models. He concluded that the inference 
on the number· of significant harmonics in periodic 
parameters affected al l stages of estimation. The 
underestimation of the number of harmonics in periodic 
daily means and standard deviations led to a ·'rejection 
of the hypothesis of independence of stochastic com­
ponents in the dependence models, while the over­
estimation seemed to have no effect. The estimation 
procedures are sensitive to the type of distribution 
used for the stochastic component . Procedures 
initially developed for the normal distribution are 
not sufficiently robust to be applied to non-normal 
dependent variables, especially those of high~y 
skewed distribution functions. 

The more or less similar approaches to ·the above 
described method have been proposed for generating 
daily stream flows. Green (1973) proposed the method 
based on the linear interpolation for the logarithms 
of 5-day average flows. The 5-day average flows 
were produced by using Kottegoda's model (1972). Beard 
{1967) used the procedure based on generation of 
monthly stream flows and subsequent allocation of the 
monthly total amount to each day. The daily flows 
were generated for those months, when flow fluctuations 
within a month were important. The daily flows gene­
rator consisted of a 2-pass generation by the use of a 
second-order Markov chain applied to standardized 
variates derived from a log-Pearson Type III distri­
bution. He used a linear regression of the standard 
deviation of daily flow logarithms, within each month 
of record, and the logarithm of total flow for the 
month. 

Natural Environmental Research Council (1975) of 
the United Kingdom studi ed the application of the shot 
noise model for generating daily flows. The flow was 
considered as the sum of a series of random impulses. 
Each impulse consisted of a sudden random rise of 
height Y which decayed exponentially. These impulses 



occurr ed as a Poisson process. The impulse height Y 
is a r andom variable which may be represented by an 
exponential, gamma, or a special form of the Pareto 
distribution. 

Kel man (1977) developed a model which takes into 
conslderation the diversity of physical factors that 
produce the stream flow. He divided the daily stream 
flow r ecord Qt into two sequences according to the 
increments (Qt- Qt_1). The positive i ncrements, whi ch 
assumed to be produced by bursts of surf ace and sub­
surface flow were characterized by a weak persistence. 
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The negative increments were the consequence of water­
shed emptying process, and hence had a strong persist­
ence. He represented the sequence of positive 
increments by a power transformed, truncated normal 
distribution with the first-order autoregressive model. 
The sequence of negative increments was obtained by 
assumi ng that recession discharges were a stoch~stic 
output of two linear reservoirs . 

The literature is full of other approaches to 
generation of new samples of daily flow series. Only 
those have been reviewed herein, which have an 
influence on the content of this study. 



Chapter Ill 
THEORY Of PROBABILITY DISTRIBUTIONS 

Of PARTIAL SERIES OF FLOOD PEAKS 

The objective of this chapter is to develop 
probability distributions of largest exceedances 
above selected truncation levels for the time interval 
of a year . These distributions estimated from partial 
flood series can then be used to estimate f lood 
exceedances for given return per iods. The approach 
by Todorovic and Zelenhasic (1970) is used as the 
basis in this study. Discrete and continuous distri­
bution functions to be used in fitdn.g the frequency 
distributions of the number and the magni tude of 
exceedances, respectively, are described. In addition 
a method used for compari ng sampling variances of 
annual flood peaks of given return periods obtained 
from annual and partial flood seri es is presented. 

The application of the theory of probability 
distributions of partial series of flood peaks to 
observed daily flows of 17 gaging stations in the 
United States is presented in Chapter v. 
3.1 Phenomenological Considerations 

According to Kirby (1969), any stream f low hydro­
graph can be interpreted as a sequence of nearly 
instantaneous hydrograph peaks separated by relatively 
longer periods of low flows. Because of the nature of 
the phenomenon, the number of these peaks in a given 
i nterval of time (O,t) and their magnitudes are random 
variables. 

For a given t runcation level Qb. consider only 
those separate flood peaks Qi in the time interval 
(O, t) that exceed Qb (Fig. 3-1). It is necessary to 
define the separate f lood peaks for the partial flood 
series . The definition normally depends on frequency 
analysis and the stream characteristics . As suggested 
by U.S. Water Resources Council (1976) , the separate 
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Fig. 3-1 Schematic Representation of a Stream 
Flow Hydrograph 

flood peaks are arbitrarily defined as flood peaks 
separat ed by at l east as many days as five plus the 
natural logarithm of the square miles of drainage 
area, with t he requirements that the intermediate 
flows must drop below 75 percent of the l ower of the 
two separate flood peaks. This criteria is used as 
the guideline in this study. Howeve·r, in case of a 
river with highly fluctuating daily flow hydrograph, 
the time between the two successive flood peaks is 
taken to be somewhat less than that suggested by the 
Water Resources Council, si nce the intermediate f lows 
drop much below the 75 percent of the lower of the 
two separate flood peaks. In any case , flood peaks 
can and are assumed to be precisely defined. By such 
definition, the separate f lood peaks associated with 

a given truncation level, Qb , are stil l separate flood 
peaks for the truncation level Qb < Qb. In other 
words, the number of separate flood peaks above a gi ven 
truncation level Qb is a non-increasing function of Qb. 
The number of separate flood peaks are the same for 
the various truncation levels that are smal l er t han the 
minimum flow of the considered time interval. For 
example, the number of separate flood peaks for the 
truncation level Qb shown in Fig . 3-2 is 4, while for 
the t runcation level Qb is 10. 

Let define 

( 3-1 ) 

in which ti > 0 is a random variable for all i = 1,2, . .. 
With each t i the time T(i), when the corresponding 

• separate flood peak has occurred (Fig. 3-1 ) , is associ­
ated. The separate flood peak exceedance flows, ci ' 
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from now on wi ll be cal led t he exceedances. 

Q 

fig. 3~2 Example of Extracting Partial flood Series 
from Daily Flow Hydrograph 

Consider an i nterval of time (O,t) and denote by 
x(t) the largest c in thi s time interval. Since 

v 
the number of t in (O,t) is a random variable that 

v 
depends on time t, x(t) is defi ned as: 

x(t) = max Cv 
t(v) ~ t (3-2) 

By virtue of definition it follows that for every 
t ~ 0 and 6t > 0 

x(t) ~ x(t • 6t) (3-3) 

Thi s implies that x(t) is a stochastic process of non­
decreasing sample functions. 

In the following an attempt is made to determine 
a distribution function Ft(x) of the stochastic 
process x( t ), 

(3-4) 

However, before going into the derivation of this dis­
tribution , distributions of the number and t he magni­
tude of exceedances must be developed. 



It is important to note that a year is considered 
in this study as the time interval. The purpose of 
using the partial flood series is to include more data 
into analysis , especially in case of small sample 
sizes. If the year is divided into different time 
intervals such as seasons, it may not be feasible to 
analyze the distribution of the magnitude of exceed­
ances which occur during a season such as summer, 
because of the small number of exceedances that may 
occur during that season. Since the number of exceed­
ances is small, the estimated distribution parameters 
for the magnitude of exceedances may be unreliable. 
Theref ore, the time interval of a year is considered 
and (v are assumed to be identically distributed 
random variables throughout the year. 

3.2 Distributions of the Number of Exceedances 

Let n be denoted as the number of exceedances 
in the time interval of a year. By definition n is 
a non-increasing function of the truncation level Qb. 

Denote E = (n=v) then it follows that 
v 

e.n e. " .. for all i#j and 
l J U E = n v ' v=O 

where .. stands for the impossible event and n stands 
for the certain event. Hence E , for v = 0,1 ,2, ... , 

v 
is a discrete event representing a countable partition 
of n, and 

(3-5) 

is the probabi lity that exactly v exceedances occur 
in a year. 

Following the previous works by several authors, 
the Poisson distribution has been widely used to fit 
frequency distributions of n· The mean is equal to 
variance in the Poisson distribution. Inspection of 
partial flood series obtained from the mean daily flow 
data for 17 gaging stations used in this study indi ­
cated that many series have the ratios of mean to 
variance far from unity. The reason is that the 
Poisson distribution has only one parameter and may 
not be sufficiently flexible to fit frequency distri­
butions of n for all cases of the study. Furthermore, 
since the partial flood series is obtained from the 
daily flow series instead of from series of instant­
aneous discharges, the distribution of n may depart 
more or less from the Poisson distribution. Hence , 
the selection of the best discrete probability dis­
tribution to be used in fitting frequency distribution 
of n is needed and is studied by using the records of 
17 dai ly flow series in the United States . The 
selected distributions for study, whi ch are more or 
less simil ar to the Poisson distribution. their 
important properties and the method of estimating 
their parameters, are: 

Po.i.Mon V.i.!>tJUbu..ti..on. The probability density 
function is 

f(x;.\) , X = 0,1,2, ... , (3-6) 

with .\>0 as a parameter. The mean and variance are 
equal, or E(x) = var x = .\. The maximum likelihood 
estimate of A is x, or the mean of all the numbers of 
exceedances . 
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Mixed Po.i.64on V.iA:tM.bu-tian. Let Al >0 and A2>0 
be parameters of two Poisson distributions , that are 
mixed in proportions p and 1-p, respectively. The 
probability density function of the mixed distribution 
is 

(1-p) 

->.2 
e Ax 

2 
-x-;1--, x = 0,1,2, ... , 

(3-7) 

where, without any loss of general ity, >.1>>.2. The 
k-th factorial moment of x is 

(3-8) 

Jhe mean and the variance are E(x) • p.x1 + (1-p)>.2 , 

and var x = PAl + (1-p) A2 + p(l-p)(A1-.x2)2. Hence, 
the mean is always smaller than the variance. 

For this particular distribution, the maximum 
likelihood estimation is complicated. Two methods of 
estimation of parameters p,A1 and A2 are considered 
(Cohen, 1963). One is based on the first three sample 
moments, and the other on the first two sample moments 
and the sample frequency of zero. 

For the first method , the estimates of p, Al. A2 
are obtained by using the equations 

- " !. (e ~) .\1 + 
2 

A2 
1 • 2 ca ~) 

and x - x2 -p • 
>..1 - i2 

with x the mean, and e and y defined as 

• v (3) - xv(2) 
e -2 

V ( 2) - X 

and 

Y • x'" - v " (2) 

(3-9) 

(3-10) 

The k-th factorial moment of x can be determined 
from the data by 

1 m 
vCkJ = n L xcx- 1) ... cx-k•lJ "x 

x=O 
( 3-11) 

in which m = the largest observed value of x, nx = 
the sample frequency of x, and n • the tota l sample 
size, i.e., n is the sum of m+l values of nx . 

Estimates of p, >.1 , and A2 based on the first 
two sample moments and the sample frequency of zero 
are obtained by solving first the following equation 
for ~2 by an iterative procedure, 

·. 

!' 



(3-12) 

in which n0 • the number of zero observations in the 

sample, G(i2) = a function of ~2 • expressed by 

v - i~ 
G(~ ) = (2) 2 = i 

2 - - 1 X - ).2 
(3-13) 

With ~2 determined from Eq. 3-12, ).l follows from 
Eq. 3-13 as 

x - ~2 (3-14) 

and ~ follows from the third expression of Eq. 3-9 as · 

(3-15) 

HypeJL·Po.iAt.on V.iAtlt-i.bu.ti.on. The probability 
density function is 

, X= 0,1,2, •.. , (3-16) 

where 

F
1 

(1;).;6) = 1 e e2 e3 

+ I + -). (-).-+ 1-) + .,..). .,..,().-+71 ~)("""t.-+-=-2 )'" + ... (3:-17) 

is. the confluent hypergeometri c function with first 
argument equal to 1, and A and e parameters . 

The distribution of Eq. 3-16 may be classified 
according to A=l , A> 1 , or O<A< 1. If A=l , it reduces 
to the Poisson distribution. If A>l, the variance 
exceeds the mean, and the distribution has been called 
"Super Poisson." If O<A<l, the variance is exceeded 
by the mean, and the distribution has been called 
"Sub Poisson." 

The mean of Eq. 3-16 is given by 

~ • a1 = 6 + (1 - ).) (1-£0) , (3-18) 

in which f
0 

= l/F1(1 ;).;e). The higher moments about 
the origin are given recursively by 

aj+l • (9-).+1) aj + e[jaj-1 + (~) aj-2 + 

+ <tJ aj-k + + ja1 + 1], j "' 1,2,. · · (3-19) 

The variance is given by 

~2 = 6(1+~) + ~(1-~·A) (3-20) 

The methods of estimation of parameters ). and e 
are summarized as follows (Crow and Bardwell, 1963; 
Bardwell and Crow, 1964). The maximum likelihood 
estimates can be obtained by solving the equations 

(3-21) 

1 aF1 • 1 n 
--- 'f(A) + - ~ 'f(~+x.) .. 0 
F1 a~ n i=1 1 

a - _ r6)• where 'i'(~) • - lnf().) is the digamna 
a~ r (~) 

function. 

The two-moment estimates can be obtained by 
solving the following equation for a by an iterative 

"'procedure, 
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and then ). is found by using the equation 

(3-23) 

The explicit and simple modified moment estimates 
of ). and e may be obtained in using the first three 
moments about the origin, aj' j = 1 ,2,3, by 

2 
• ala3 - a2 
e • 2 

2a1 + a1 - a2 (3-24) 

and 

). · e - e'•l 
in whi ch a' = a three-moment estimate of a convenient 
parameter 

(3-25) 

Modified moment estimates using the frequency for 
x•O are obtained immediately by 

(3-26} 

and 

i = a - a· • 1 



Nega.ti.ve B.Ut.omia.l 0-U.tM.bu.t.i.on. 
dens i ty f unction is 

The probability 

· r+x-1 r x 
f(x;r,p) • ( x ) p q = 

r x r(x+r) p 9 
xl r (r) , X :: 0 ,1, ... , 

in which r>O, 0~ p~l. and q:l -p. 

The mean and variance are 

E(x) .. !9.. 

I p 

and 

var x = q 
p 

Hence, its mean is smaller than its variance. 

(3-27) 

(3-28) 

The maximum likelihood estimates of parameters r 
and p can be obtained by solving the equations 

1 p = 
• i(i 1 

and 

1 
n 1 

n 
lnp = '!'(;) ~ 'l'(x.+r) ~ s (3- 29) n L n X. . 

i =l i=l l 

in which 

with n = the sample size, x • the mean of data val ues. 
The parameter r can be estimated by using an iterative 
procedure of the equation 

ln [ 1 ] 
1 • itr (3-30) 

Mi:d:Wr.e o 6 Two Geome.tM.c V.U.tM.bi.Lt<.o~U.. A mixture 
distribution of two geometric distributions has the 
left side with a truncated geometric distr ibution and 
the right side with a standard ~eometric distribution. 
Guerrero-Salazar and Yevjevich {1975) used this 
distribution to fit frequency distributions of the 
longest run-length in case of samples of given sizes. 
The probability density function of this mixed 
distribution is 

a(1-9 )9Y - x 
1 1 I 

1 _ 9 y + 1 {O . 1 • 2 •...• y l 
1 

(l-a)e
2

(1-9
2
)x 

+ I 
( l -9 )y+1 {y+1, .... } 

2 
(3-31) 
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with 91 and 92 = the parameters of each part, 
respectively, y = a location parameter and a a a 
partition parameter. The location y is estimated 
either by the mode y = m or by y = m-1, a by 

& = .I p . • 92 by <x2 -r>-1 with x2 the mean of 
1 =1 1 

A 

sample values greater than or equal to y+l , and e1 
by an iterative solution of the equation 

1 Y - x1 
---.-A-- + 

1 - 81 91 

cr•1)ei 
Ay+1 

1 - 91 
(3-32) 

with x1 • the mean of sample values which are smaller 
than or equal to y. 
3.3 Distributions of the Magnitude of Exceedances 

The other distributions that require investi ­
gations are the common distribution functions, H(x), 
i.e., H(x) = P(~ <x), of all exceedances ~ , v- v 
v = 1,2, ... , in a year. Presently, few theoretical 
grounds i ndicate the forms of distributions of all 
exceedances. Two probabi l ity functions have played 
an important role for the magnitude of flood peaks: 
ganma and exponentia 1 (Zel en has i c, 1970). In previous 
works of sever al authors the exponential distribution 
has been widely used in fitting frequency distributions 
of ~v· Sufficient evidence does not exist to indicate 
the exponential distribution to be universally 
applicable. For that reason, and similar reasons in 
t he case of the use of Poisson distribution for the 
number of exceedances, several distribution functions 
are selected to study their fits to frequency distri­
butions of ~v· The results are then compared with 
the goodness-of-fit statistics with that of the 
exponential distribution , in order to find ou~ the 
best probability distribution functions for ~v · 

The selected conti nuous probability distribution 
functions for the study , their properties and the 
parameter estimation are: 

EJCponen..ti.al. D.U.tlt..i.bu.U.on. The Pearson Type I II 
distribution f unction has three parameters, denoted 
by x0, 8 and y. The special case occurs when the 
lower bound x0 = 0, giving the two-parameter gamma 
distribution. Another case arises when y = 1 and 
x
0 

= 0, giving the one-parameter exponential distri-
bution. The probability density function of 
exponentially distributed random variables is 

1 -x/8 f(x;8) = 6 e , x > 0 

The mean and vari ance are 

} 

(3-33) 

(3-34) 

The moment and maximum likelihood estimates take 
the same form as 

I 

t 



, 1 n -
B = - L X. = X 

n i=l l 

with n = the sample size. 

(3-35) 

Gamma V~~ution. The probability density 
function is 

f(x; B,y) (3-36) 

in which r (y) = the complete gamma function, B and y 
are scale and shape parameters, respectively. The 
mean and variance are ~ = Sy and o2 = s2y. 

The moment estimates of 6 and y are obtained by 

and 

-2 , X 
y =­·2 

0 
(3-37) 

If x, ~ and g are the sample estimates of mean, 
standard deviation and skewness coefficient, the moment 
estimates of y, e. and x0 are obtained by 

4 
y = :z 

g 

' 1 ' ' 
ll = 2 go 

. - .. - 2a 
xo = X - Sy = X - ~ 

g 
I (3-42) 

The approximate maximum likelihood estimate of the 
lower bound x0 is obtained by solving the following 
equation by an iterative procedure (Tao, Yevjevich, 
and Kottegoda, 1976) 

1 + (1+4A/3) 1/ 2 - • 1 ~ 1 __::...._-->-=,_.:.:,:!..?7::o--- - (X-X ) - [. 
1 + (1+4A/3)1 / 2 - 4A 0 n i =1 x. ' 

l - xo 
0 .(3-43) 

in which 

(3-44) 

in which x and a = the sample mean and sample standard once x
0 

is determined, the parameter y is estimated by 
deviation, respectively. 

The maximum likelihood estimates of 6 and yare 
obtained by solving the two equations 

• X 

! 
s = -:: 

y 

and (3-38) 

- ' • 1 = 0 1nx - 1ny + '(y) - n E1nxi 

The method of solving the second expression of 

Eq. 3-38 ·for y is approximated by 

1 + (1+4A/3)1/ 2 
y = - 4A - - try ' (3-39) 

- 1 • 
in which A is defined by A= lnx- n E~nxi' and ~y 
is approximated by ~Y = 0.04475(0. 26)Y. 

PeaA4on Typ~ lil V~~ution. The probability 
density function is 

_1 -(x-x0)/S 
(x-x0) Y e 

f(x;x0,S,y) = --=-- - ---­
eY r (r) 

(3-40) 

with y = the shape parameter, s = the scale parameter, 
and x0 = the location parameter. 

The mean, variance and skewness are 

11 = x0 + By 

2 2 
o = 6 y 

2 g =-
IY I ( 3-41) 
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r s 1 • (1•4A/3)1/2 - 6r 
4A 

with A given by E~. 3-44 and 6y approximated by 
y = 0.04475(0.26)Y. 

The parameter B is then estimated by 

(3-45) 

(3-46} 

We..i..bu.U V~.t!Ubution. The two-parameter Weibull 
distribution has the probability density function 

b-1 b f(x;a,b) = abx exp(-ax ), x > 0 (3-47) 

with a > 0 and b > 0 parameters. If b = 1, this 
distribution becomes exponential, with the parameter a. 

The mean and variance are 

( (3-48) 

The maximum likelihood estimate of b is obtained 
by solving the following equation by an iterative 
procedure 

n n b n L n L 1nxi) 0 -+ lnx. --- (x . 
b l n b i =1 l 

i=l L X. 
i=1 l 

(3-49) 



Once b is determined, the parameter a is estimated by 

• n 
a = - n--· (3-50) 

L X~ 
i=l l. 

T lvr.ee-P aJz.amdeJt Log 1101Una..(. V.<..6.ttU.bu.Uo n. The 
probability density function is 

f(x;x0,11 ,o ) y y 

1 1 ln (x-xo) -~~ 2 
[ { y } l ' exp - 2 o 

(x-x0)oyili y 

where x0, lly and ay are parameters. 

(3-51) 

If a variate x follows the lognormal distribution, 
y = ln(x-x0) has a normal distribution with mean lly 
and variance o~. The probability density function 
of the transformed variate y is then 

1 1 Y-ll 2 
f(y;lly,ay) = -- exp [- - (-~} ] 

afu 2 a 
y y 

(3-52) 

The mean and variance of x are 

i 
(3-53) 

02 
(e y - 1) 

Equation 3-51 is the three- parameter lognormal 
distribution function. It becomes the two-parameter 
lognormal distribution funct~on for x0 = 0. The 
maximum likelihood estimate x0 is obtained by solving 
the following equation by an iterative procedure (Tao, 
Yevjevich and Kottegoda, 1976) 

n 1 1 n 2 • [ L - .-] [n ) ln (xi - xo) -
1=l xi-XO l.=l 

{.!.. ~ ( • ) }2 t.. ln xi -x0 n i=l 

(3-54) 

with ~O determined from Eq. 3-54, and the maximum 

likelihood estimates of lly and ay are obtained by 

(3-55} 

(3-56} 
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MKxed Exponential V.<..6.ttU.bution. A mixture of two 
exponential distributions is composed of two popu­
lations of type of Eq. 3-33, with parameters a1 and a2, 
respectively, and mixed in unknown proportions p and 
1-p. The resulting probability density function is 

-1 -x/al 
f(x;p,a1,a2) =pal e + 

-1 -x/a2 
(1-p) e2 e , x > 0 (3-57} 

in which 0 ~ p ~ 1, e1 > 0, and e2 > 0 as parameters. 
The r-th moment about the origin is expressed by 

~~~ = E(Xr) = pr(r+l)a~ + (1-p)r(r+l)a~ 

Hence, the mean and variance are 

11 = pl31 + (1-p)B2 
2 

o = pe1 cza1 - pe1) + Cl-pJe2ca2 + pa
2
) -

2p(l-p)e1e2 

(3-58) 

(3-59} 

The estimation of parameters p, a1, a2 by ~sing 
the maximum likelihood method is complicated. A 
simple method of estimation is by using the first 
three sample moments. 

Let m], m2 and m3 denote the first three sample 
moments about the origin for a sample of Eq . 3-57. 
Estimates 81 and s2 are obtained by solving the 
following equation (Rider, 1961) 

(3-60} 

with j=l or 2. 

The estimate of p is then obtained from 

(3-61} 

The two roots of Eq. 3-60 are e1 and e2, being 

immaterial of which root is designated e, or ~2' 

The estimate p of the proportion p, obtained by 

substituting e1 and 82, respectively, in Eq. 3-51, 
refers to the component having a1 as parameter, and 
1-p refers to the other component. 

3.4 Distribution of the Largest Exceedance in a Year 

The important probability distribution function 
in flood analysis, obtained by the use of partial flood 
series, is the distribution of the largest exceedance 

,, 

:~ 
I~ 

,. 
' 

'1 .• 
i·i 



in a year. It enables the computation of flood peak 
values for given return periods. Denote by x the 
largest exceedance of t in a year. The distribution \1 
x is denoted by 

:ex) "' P(~x), for x > 0 (3-62) 

The distribution of the largest exceedance can 
be derived by using the combination of distributions 
of the number and the magnitude of exceedances 
(Zelenhasic, 1970) 

F(x) . P(Eo) + L P( max t ~ xn Ek) ' (3-63) 
k=l l<v<k v 

with x =max t v= max( t1. t 2 • ...• tk) ' Ek • (n=k) 
l<v<k 

being the-event that exactly k exceedances occur in 
a year. 

Under the assumptions: 

(i) t 1. t 2 ... are independent of n. and 

(ii) t 1. t 2 •..• are mutually independent random 
variables with the common distribution function 
H(x), i.e., 

H(x) = P[t\1 ~ x) , (3-64) 

Eq. 3-63 is simplified to read 

(3-65) 

The validity of the above two assumptions will 
be investigated by using the observed data in 
Chapter v. 
3.5 Evaluation of the Return Period 

The rarity of a flood peak may be conveyed in a 
number of ways, each expressing the probability of 
it.s exceedance or nonexceedance during a time interval, 
or alternatively each flood value may be considered 
as a function of its associated value of return 
peri od. The flood value for a given return period 
has played a major role in hydrologic and economic 
evaluations of water resources projects. It is 
important to derive the relationship between flood 
magnitude and its return period by using the 
probability distribution of the largest exceedance 
in a year. 

The time elapsing between successive peak flows 
to exceed a specified value x is a random variable. 
Its mean value is defined as the return period T of 
X. Following Rousselle (lg72), let x1• x2• x3 •... 
be a sequence of maximal annual values or of the 
largest exceedance in a year and let 

Hence 

Nx = min(v;xv > x) , for x > 0 

P(Nx=n) • P(x1 ~ x, x2 ~ x, ... , 

Xn_1 ~ x, ~ > x) 

for n = 1,2,3, ... 

(3-66) 

(3-67) 
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Because xv is assumed to be a sequence of 
independent random variables with the distribution 

F(x) • P(xv ~ x) (3- 68) 

then 

n-1 P(Nx=n) = [F(x)) [1 -F(x)) (3-69) 

with E(Nx) = the average number of years for the first 
exceedance of x to occur obtained by 

E(Nx) = I n[F(x)]n-l [1-F(x)] = l-F~x) 
n=l 

(3-70) 

The x values of Eq. 3-70 represent the largest 
annual flood peak exceedance flows for specified 
return periods, E(Nx)' and the distribution F(x) is 
given by Eq. 3-65. 

The value of E(Nx) obtained by Eq. 3-70 is the 
return period for annual flood series. This return 
period is different from the return period for 
partial flood series which can be alternately defined 
as follows: 

With each selected truncation level Qb' the series 
of exceedances ~ are well defined (see Fig. 3-1). \1 
For a given Qd > Qb' consider only those tv that 
exceed Qd and denoted by ~i· Let T* represent the 
inter-event time between two successive t t's. The 
expected value ofT*, E(T*), is the return period 
for partial flood series corresponding to the flood 
peak Qd and truncation level Qb. 

The purpose of this study is to use the partial 
flood series to estimate the distribution of annual 
flood series. Hence, the return period E(Nx) 
obtained by Eq . 3-70 is used for this study. 

3.6 Comparison of Efficiency of Estimates of Flood 
Peaks of Given Return Periods by Using Annual 
and Partial Flood Ser ies 

To answer whether partial flood series, obtained 
from the mean daily flow hydrographs, is mo~ 

• 
efficient in estimating flood peaks Q(T) of given 
annual return periods than annual flood series. the 
approach used is that of comparing the sampling 
variances, var Q(T), of Q(T) obtained from both flood 
series. let Q(T)a (see Eq. 3-76) and Q(T)P (see Eq. 
3-86) be the estimates of annual flood peaks of given 
return periods obtained directly from annual flood 
series and indirectly from partial flood series, 
respectively. If var Q(T)p of Q(T)p' estimate~ from 
the partial flood series, is smaller than var Q(T)a 
of Q(T)a estimated from the annual flood series , 

then the partial flood series is said to be more 
efficient or more useful in estimating annual flood 
peaks than the annual flood series. For convenience, 
the annual flood peaks will be called flood peaks 
Q(T) in this study. 



A stat istical model is chosen which gi ves the 
population partial flood series from which the model 
of annual f lood series can be derived. Each sample of 
partial flood series gives an estimate of Q(T). The 
corresponding estimate of Q(T) can be obtained directly 
from the sample of annual flood series. Hence, each 
sample series provides two estimates of Q(T), one from 
partial and the other from annual flood series. From 
many samples, the sampling variances of these esti ­
mators can be obtained, and compared. 

IJ4e o6 GeneM.ted Samptu o6 Daily F.f.oW4. To 
study the sampling variances of estimated flood values 
for given return periods, long records of mean daily 
flows are needed. Such long records would be con­
sidered to represent the known populat ion, from which 
various small samples are drawn. For each small 
sample of mean daily flow, the partial and annual 
flood series are derived. It follows that the flood 
Q(T) of a given return period T can be estimated from 
each sample of both series. Sampling variances of 
Q(T) for each sample size of the two series are then 
computed by 

1 m • 2 
var Q(T) • m-1 L [Q.(T) - Q(T)] 

i=1 l 
(3-71) 

where m = the total number of samples for given sample 
size N, Q.(T) = the flood value from the i-th sampl e, 

1 • 
i = 1,2, ... ,m, QTfT • the mean of all Qi(T) values. 

A method for generation of long records of daily 
flows is needed, since such long records of historical 
daily flows are not available. A model for generation 
of daily flows is developed and used in order to gene­
rate a long record (such as 1000 or 2000 years) of 
daily flows. Procedures used in developing the daily 
flow model are presented in Chapter IV, with t he 
appli cation to the Boise River and the Powell River 
given in Chapter VI. 

S e.te.c.ti.o n o 6 Mo de.t6 6oJt Annual and Pall.ti.a.t F .f.ood 
S~u. It is necessary to emphasize that the main 
puriPOSe is to compare var Q(T) of Q(T), whi ch results 
from the estimation of Q(T) from the annua l flood 

series, with the corresponding var Q(T) from the 
estimation of Q(T) f rom partial flood series. The 
stat istical model should be chosen in such a way as 
to represent the population partial flood series, from 
whi ch the model of annual flood ser ies can be derived. 

The empirical relationship between expectancies 
of partial flood series and probabilities of annual 
flood seri es, which was suggested by Langbein {1949), 
is first considered since it is not dependent on the 
assumed flood model. Two main objections can be 
raised in using this empir ical relationshi p, that can 
make the compari son of sampling variances of Q{T) 
either inappropriate or unfeasible: {1) For a given 
sample of N years, it is not feasible to estimate 
Q{T) for T greater than N years, by using the plotting 
position, because the extrapolation is needed to 
estimate Q{T), subject to errors; and {2) Though the 
number of floods in a partial flood series is greater 
than for an annual flood series, this greater number 
tend to include the lower floods, or floods of the 
low return period, with flood at the high return 
periods being generally close to or identical with 
those of the annual flood series. Hence , for a given 
sampl e of size N, the flood values for the return 
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periods close to N year s are generally of the same 
magnitude for both series. It follows that in the 
range of return periods close to N years the ratio 
of sampling variance of Q{T) would be close to unity. 

It was shown by Zelenhasic (1970) for the partial 
flood series , when a Poisson distribution for the 
number of exceedances i n a year and an exponential 
distribution for the magnitude of exceedances are 
good fits, and under some commonly used assumptions, 
that combined they give a double exponential or 
Gumbel distribution function for the annual floods. 
Thi s theoretical finding is used in the comparison of 
sampling variances of Q(T) obtained from the two flood 
series. Only two parameters must be estimated from 
the available sample. This is an advantage in using 
this finding since the sampling variance of Q(T) 
depends on the sampl ing variances of estimates of 
distribution parameters as well as on t he number of 
parameters used. 

Ovuva.Wn o6 Flood MagnUu.du and the.<A SampUng 
VCl/t.Utncu, 6olt Given Re.twtn P~dh, 6JWm Annu.ai. F.f.ood 
Se/Uu by tu..i.ng Gumbel V.i.J.bU.bu.tion. 

(a) Gumbel O.U.bU.bu.tion and E4t.Una.Uon o6 1.-tA 
Pa.Jtame.telt6. The probabi l ity density function is 

f(x;u,a) = ~ exp[ -(x~u) -e -(x-u)/a] (3-72) 

and the distri bution function is 

F(x) = e xp[ -e-(x-u)/a) (3-73) 

in which u = the location parameter , and a a the scale 
parameter. 

The mean, variance and skewness are 

11 = u + O.S772a 

2 1 2 2 
a = 61f a 

g : 1.14 

(3-74) 

The maximum likelihood estimates of u and a are 
obtained by solving the equations 

-y. 
-n + l: e l = 0 

! a 
and (3-75) -y. 

n - l: yi + l: y.e l 
l 

0 . 
a 

in which n = the number of observations , yi = (xi-u)/a 
= the Gumbel st andardized or reduced variate. The 
solution of Eq. 3-75 for a and u are obtained by the 
Fisher method which uses the information matrix as an 
iterative procedure. A demonstration of the method is 
given by Jenkinson (1969), and also Natural Envi ronment 
Research Counci l (1975) of the United Kingdom. 

• (b) E4.ti.ma..te Q.(T) a. and .<..:u Samp.U.ng Va.tUa.nc.e. 

Let Q(T)a denote the flood magnitude for a given 



return period T obtained from the annual f lood series 
by using Gumbel distribution. Hence, the estimate of 
Q(T)a can be obtained from 

Q(T)8 • u + ay(T) (3-76) 

i n which y(T) s -ln[-ln(l - f>J, the Gumbel reduced 
variate, and T = the return period. 

The sampling variance of Q(T)a in Eq. 3-76 is 

Yar [~(T) 8] • Yar u + 2 coy [u,ay(T)] 

+ Yar [ay(T)) (3-77) 

The variance-covariance matrix of the maximum 
l i kelihood estimates of~ and~ (Kimball, 1946) is 

[

Yar (u) 

coy cu.~> 

COY (~,~)] "" 

yar (a) 

[ 

6 2 
2 1 + 2 (1 - y) 

(I 1r 

n 6 
2 (1 -y) 

• 

~ [ 1.11 

0.26 

0.26 ] 

0.61 (3-78) 

~ 2 ~ 2 
Therefore, var u = 1.11 a /n , var a= 0. 61 a /n; 

and cov (u.~) = 0.26 a 2/ n. By substituting these 
values into Eq. 3-77, then 

2 
Yar [Q(T) 8] • an [1.11 + 0.52 y(T) + 0.61 y2(T) ] (3-79) 

The var Q(T)a obtained from Eq. 3-79 is the 
theoretical sampling variance, based on the assumption 
t hat the distribution of annual floods is exactly the 
GYmbel distribution. It wi l l be used for comparison 
with t he sampling variance Q(T)a obtained by the 
empirical met hod of Eq. 3-71. 

VeA.iva..ti.on o6 Flood Ma.gn.Uw:fu and the..ilt Sampt.i.ng 
V~cu, 60JL G.iven Re.twut PeA.iodl. , 6Jtom PtVLti.at 
Flood!. Selt.iu by UA.ing Comb.ina.t.ion o6 Po.i..h~on and 
Ex.pone.n.tial. V.i6tM.bu..tio~ . 

(a) E6~ Q(T)p. The distribution of the 
number of exceedances in a year is assumed Poissonian, 
and the distribution of the magni tude of exceedances 
exponential. The di stribution of the largest 
exceedance in a year is then given by Eq. 3-63. In 
addition , two more assumptions described in Section 
3. 4 are used in this approach. 

Hence, Eq. 3-os can be applied as 

(3-80) 
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For the case under discussion, the common dis­
tribution function of all exceedances ~ is 

\1 

H(x) • 1 - exp (- i> , x ~ 0 (3-81) 

and the distribution of the number of exceedances is 

-). k 
P(E..) =~ 

J( kl (3-82) 

By substituting Eq . 3-81 and Eq. 3-82 into Eq. 3-80, 
the distribution of the largest exceedance in a year 
becomes 

which in the limit becomes 

F(x) (3-83) 

The relationship of Eq. 3-70 between the di s­
tribution function of the largest exceedance and the 
return period is 

T• - 1-1-F(x) (3-84) 

By eliminating F(x) from Eq. 3-83 and Eq. 3-84, 
the flood exceedance for a given return period is 
expressed by 

X = a 1n i + S y(T) (3-85) 

wi th y(T) = -ln[-ln(l-1/T)). Because x = Q-Qb' i n 
which Qb • the truncation level which defines the 
partial flood series and Q = the annual floods above 
Qb, the annual f lood ~agnitude for a given return 
period T, denoted by Q(T)P, obtai ned indirectly from 
partial flood series , becomes 

Q(T)p • ~ + a ln i + a y(T) (3-86) 

with S and A the parameters estimated from the partial 
flood series . 

Suppose that m peaks in excess of Qb, wi th m the 
random variable, have occurred in n years. Let 
~~~ · v = 1,2 •... ,m denote these exceedances above Qb. 
The maximum likel ihood estimates of>. and a are 

and 

~ m 
). . -

n 

(3-87) 

1 m 
with 'C • - L ~ , the mean of a 11 exceedances. · 

v m v•l v 

(b) Sampling V~nce o6 Q(Tl . The der ivation • p 
of sampl ing variance of Q(T)P is mainly based on work 
by Cunnane (1972). For more details the reader is 
referred to this work. 



Since A and 6 are the maximum likelihood estimates 
of A and 6, their varianc~s and covariance are 

and 

2 
var B = L 

m 

~ A 
var A = ­n 

COV (S,X) = 0 

(3-88) 

The sampling variance of Q(T)P of Eq . 3-86 is , 
for Qb a constant 

var [Q(T) 1 = var (Sln~) + 2 cov [~lnX,6y(T)1 p 

+ var [Sy (T) 1 

2 • 
+ Y (T) var (6) 

By using 

{3-89) 

var [f(x,y)1 var (x) + 2 (af) caf) cov (x,y) ax ay 

var (y), 

with derivatives with respect to x andy evaluated at 
the expected values of x and y, respectively, then 
var ( Sln~) becomes 

var (eln~) "' (ln;\.) 2 var ceJ + 26 l~A cov ce.x) 
2 

+ ~ var (~) 
A 

2 
2 

= (lnA) var ceJ + ~ var (i) 
). 

since cov ( S . ~) = 0. By using 

cov(f(x,y) ,g(x,y)] ~ c;~) (*) •var(x) + [ (~!) (*) 
+ (a£)(~) 1 • cov(x ,y) ay ax 

it foll ows 

+ c3f) (~) · var(y) ay ay 

(3-90) 

cov(Sl nX ,6) lnA •var(B) + { (1nA)(0) + (~)(1)} cov(~, ~) 

+ (~) (0) •var(X) 

ln;l.•var(B) 
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Substituting var( ~ln~ ) and cov( i lni,i) into Eq. 3-89 
2 

var[Q(T)p] = (1nA)
2

·var(B) + ~2 var(X) 

+ 2y(T) • lnX · var(S) + y
2

(T)•var(B) 

2 a2 62 
A £. (1nA) - + -- + 2y(T) •lnA· m m ).2 n 

2 
+ y (T) 

~ 2 m 2 
= m [(lnA) + nX + 2y(T)•1nA + y (T)] 

2 
= ~n {1 + [lnX + y(T)1

2
} (3-92) 

,since m = nA. 

Compa.ttMon o6 Samp.Ung VaJI..Utn.c.u o6 Flood Vai.u.e 
6oJt. a. G.<.ve.n Re.twt.n PeM.od Ob.t:IUned 6JLom Annual a.nd 
Pa.Jt.tia.t Flood S~u. Under the approaches used, the 
the sampli ng variance of Q(T) for annual and partial 
flood peak series can be obtained both theoretically 
and empirically. The following are procedures used . . 
in compari son of sampl in.g variances Q(T)a and Q(T)p 
for a given return period T. 

(a.) Exact TheMeilc.a.l App~~.oa.c.h. Let Rv 1 be 

the ratio of the sampling variances Q(T)a and' Q(T)p 
obtained theoretical ly from annual and partial flood 
series, respectively. Hence, for a given T, R 1 v, 
is obtained f rom Eqs. 3-79 and 3-92 as 

Ry = Xa
2

J1.11+0.52 y(T)+0.61 y
2

(T)] 

,1 B2 {1 + [1nA + y(T)]2} ( 3-93) 

The relationships between parameters u, a for 
annual flood series and parameters x, a for partial 
flood series can be derived analytically by compari ng 
Eq . 3-76 and Eq . 3-86, under the assumption . . 
Q(T)a = Q(T)P. Hence for 

a = S 

\ 
and ( 3-94) 

u = Qb + Sln.\ 

it follows 

= A[1.11 + 0.52 y(T) + 0.61 y2 (T)] 
Rv 1 - -

' {1 + [1n). + y(T)1 2} (3-95) 

Equation 3-95 shows how the ratio of sampling 
variances, obtained by the exact theoretical approach, 
varies with the return period T. For a given value 
of x, the relationship between t he ratio Rv ,l and the 
return period T expressed as the Gumbel reduced 
variate, y(T} , can be derived. The results of these 

' ~-· 



relationships, for the range of A from 0.8 to 5.0, 
are shown in Fig. 3-3. It can be concluded from 
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The larger A• the smaller is the sampling variance of 
the estimate of Q(T) by means of partial flood series. 
This result is later used for the comparison with the 
results obtained by using the approximate theoretical 
and the empirical approach, respectively. 

I b) AppMx..i.ma.te. The.o1te.t.i.c.al Appltoach. In th i s 
particular approach, instead of using the relation­
ships of Eq. 3-94, parameters u and a are estimated 
from the annual flood series of generated long record 
of daily flow series, and parameters A and s from the 
corresponding partial flood series. Let R 2 denote • v. • 
the ratio of sampling variances of Q(T)a and Q(T}p 
by this approach, then 

R v,2 

2 2 Aa [1.11 + 0. 52 y(T) + 0. 61 y (T)] 
2 2 

B { 1 + ( 1nA + y (T)] } 
(3-96) 

The difference between R 1 and R 2 is that the v. v, 
0 . .( 
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3-3 Relationship betwee~ the Rati~ Rv,l of 
Sampling Variances Q(T)a and Q(T)P, Based 
on Exact Theoretical Approach, and the 
Return Period T, for Given Values of A· 

Fig. 3- 3 that, based on exact theoretical approach , 
the partial flood series estimate of Q(T) always has 

7 

a smaller sampling variance than that of the annual . 
flood series for the return period T less than 5 · 
years. For the whole range of return periods, the 
partial f lood series estimate of Q(T) has a smaller 
sampling variance than that of the annual flood series 
if the partial flood series value of A is at least 1.65. 

lo 

(c) Em~ Ap~ach. In this approach, the 
sampling variance of Q(T) for each flood series is 
obtain~d empirically by using Eq. 3-71. L:t Rv,3 
~enote the ratio of sampling variances of Q(T)a and 
Q(T)P, then 

n 
[Qi (T)a - Q(T)a]2 L 

R i • 1 
(3-97) v,3 n 

I [Qi (T)p - Q(T)p)2 
i =l 

with subscr ipts a and p indicating the estimates 
obtained from annual flood series and partial flood 
series, respectively. 



Chapter IV 
MATHEMATICAL MODEL OF DAILY FLOWS 

4.1 Purpose of Generation of Daily Flows 

The main purpose of generating the long record of 
daily flows is to compare the efficiency of estimates 
of flood peaks of given return periods by using annual 
and partial flood series. This carried out by com­
paring the sampling variances of flood values for 
given return periods obtained for each of the two 
ser ies, which in turn are derived from the generated 
daily flows. In addition, properties of partial flood 
series and approach are studied on this long record of 
generated daily flows. 

4.2 Selection of Length of Generation of Daily Flows 

It takes considerable computer time to generate 
daily flows for a long period of years. In this study, 
the ma·in purpose of generating a long record of daily 
flows is to investigate properties of extreme large 
values. When most major floods occur in the wet 
seasons, it is feasible and sufficient to generate 
daily flows only within that wet season. Important 
reasons justify the generation of daily flows only 
within the wet seasons , namely this approach requires 
less computer time, less computer core storage, while 
a sufficiently accurate approach in the estimation of 
model parameters. The number of harmonics in descrip­
tion of periodic parameters in the model then is 
smaller than if daily flows are generated for the 
whole year, for the same accuracy, for the simpl e 
reason that each periodic parameter has more variation 
in the whole year than that in the selected wet season. 
The main disadvantage of this approach is the problem 
of some distortion of partial flood series, because 
some small flood peaks, greater than the truncation 
level Qb, may occur i n dry seasons. This distortion 
can be minimized by expanding somewhat the period of 
generation from wet season into the dry seasons. The 
lowest required truncation level defi nes partial flood 
series . The season of generation is then selected in 
such a way as to have most of flood peaks greater than 
this truncation level. The lowest truncation level is 
selected i n this study so that the average number of 
flood exceedances per year is about 4 or 5. 

4.3 Mathematical Model for Daily Flows 

Genelt.al Concep.U . The mathematical model of 
daily f lows , studied by Tao, Yevjevich, and Kottegoda 
(1976) , was carefully reviewed. It is learned that 
it is relatively difficult to fit a probability distri ­
bution function to independent stochastic component of 
daily flows, because of its high skew"ess and kurtosis 
coefficients. Furthermore, it is difficult to remove 
completely the dependence from the dependent stochastic 
component after periodicities in the mean and standard 
deviation are removed. Vargas (1977) used the gene­
ration method to systematically check each stage of 
estimation procedure, to assess whether failures 
originate from estimation procedures or from inappropri­
ate models. The number of selected harmonics for 
periodi' c parameters affect a 11 the subsequent stages 
of estimation. Estimation procedures are sensitive 
to distribution of independent stochastic component. 

By removing periodicities in the mean and 
standard deviation only, the remaining series is 
usually considered as stationary. In generating daily 
flows for the study of extreme large values, it is 
important to consider not only the eventual perio­
dicities in autocorrelation coefficients, but also to 

preserve the skewness coefficient properties in gene­
rated data. The use of transformations may not only 
remove periodicities in the mean and standard devi­
ation, but also periodicities in autocorrelation and 
skewness coefficients. 

The three-parameter lognormal probability distri­
bution has important advantages not to be overlooked. 
It provides a relatively simple method for preserving 
the first three moments of observed data, with its 
logarithmic transforms normally distributed by de­
finition. It is attractive to transform the original 
data into normally distributed values as the first 
step of analysis, in order to use the two important 
properties of normal variables, namely that dependence 
structure does not affect the distribution, because 
the distribution of the sum of normal variables is 
normal, and that the second-order stationarity of 
normal variables implies the stationarity of high 
order also. .. 

The flows of each individual day of the year are 
assumed to follow the lognormal distribution with 
three parameters: lower bound of original data and 
the mean and standard deviation of transformed data . 
They are estimated from historic data of each indi­
vidual day. Loga rithmic transformations are applied 
to historic data by using the lower bounds in order to 
transform the original values to normal variables. 
Periodicities in the mean and standard deviation of 
transformed values are then removed. By using the 
postulated dependence model, independent standard 
normal variable is then obtained. 

To minimize the effect of the selected number of 
harmonics in periodic parameters on all subsequent 
stages of estimation i n this model, the numbers of 
harmonics of all fitted periodic parameters are 
estimated from the original data and not from trans­
formed data. 

Re.i.a..t<.on-6/Up between Momen.U o 6 No!Untl..t an.d 
Logno~ V~e6. If historic data follow a three­
parameter lognormal di stribution, the generated data 
should resemble historic data fn terms of mean, 
standard deviation and skewness coefficient, by using 
the relations of moments of the two processes 
(Matalas, 1967). 

Let "a" be the lower bound of variable X, with 
(X-a) lognormally distributed; then Y = ln(X-a) is 

normally distributed. The mean ~x' variance a~ , and 
skewness Yx are re}ated to the lower bound a, mean ~y 
and variance a~ of Y by 

and 

2 
(] 

llx • a + exp({- + 11y> (4-1) 

2 2 2 ( ) a • exp(2(a + 11 )] - exp(a + 211 ) 4-2 
X y y y y 

+ 2 
(4-3) 

Au.tJ:JcoMe.i.a..t<.on be.:tween No~ a.nd Logno~ 
P~ce66e6 . For X lognormal, withY= ln(X-a) normal, 



the first-order autocorrelation px(l) of ·x is expressed 

in terms of. the first-order autocorrelation Py(l) of 
y by 

So that 

2 
= exp[o(>y(1)] 

ex (o
2

) - 1 p y 

- 1 

(4-4) 

Py(1) "' ~ 1n {1 + p (1) [exp(o2) - 1]} • (4-5) 
a x Y 

y 

It can be proved that Eqs. 4-4 and 4-5 are valid 
for any time lag k (Mejia and Rodriguez-lturbe, 1974). 
Hence, 

- 1 
(4-6) 

and 

1 2 
p (k) • 2 1n {1 + p (k) [exp(ay) - 1]} . (4-7) 

y ay x 

CJ!.ou CoJtltda.t.i.o n be.twe.en No!UIIa.l. a.nd LognoJtmai. 
PMc.u4u. Let x1 and x2 be the original variables 
(two different popul ations), with means~ and~ x1 x2 
and standard deviations ax and a , and the cross 

1 x2 
correlation coefficient Px· Variables x1 and x2 are 
three-parameter lognormal with 

and (4-8) 

normal. Let ~y , ~y , ay· , ay , and p represent 
1 2 1 2 y 

means, standard deviations and cross correlation 
coefficient for v1 and v2. The relation of Px and Py 
is (Mejia, Rodriguez-Iturbe, and Cordova, 1974) 

p • - -1- ln {1 + px [[exp(a
2 

) . y a a y 1 yl y2 

(4-9) 

If ay
1 

= ay
2

• Eq. 4-9 is reduced to Eq. 4-7. 

AppUc.a..t.U>n o6 Mode.U.ng Conc.e.p.U .tD Va.Uy FtoWl>. 
Consider the matrix of daily flows: 

xl,1 xl 2 
' 

x2,1 x2 2 
' 

X 
p,t 

X 
p,1 X p,2 

X n,1 X 
n,2 

X 
2,t 

X 
p,t 

X n,t · 

X 1 ,w 

X 2,w 

X p,w 

X n,w 

(4-10) 
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with p • 1,2, ... ,n, representing the year number in 
the record, t , t • 1,2, . .. , w, the day number within 
the year , running cyclically from 1 to w, n = the 
total number of years, and w = the total number of 
days in the wet season. 

By considering daily flows to be from different 
populations for different days, the modeling concepts 
outlined above can be applied, provided that the 
marginal distribution of daily flows for each indivi­
dual day, or each column of matrix of Eq. 4-10, is 
lognormal. For example, if x1 , x2 , ••• , X , for 

tr ,T n,T 
the day t , is three-parameter lognormal, with mean 
~x , standard deviation a , skewness coefficient 

t'l" X,t 
Yx , and lag-one serial correlation coefficient 

>'C 
Px (1), the procedures explained above can be used 

,t 

to generate daily flows for the day t for as many 
years as required. Equation 4-9 is used to preserve 
the serial correlation between the successive days, 
valid for any lag k (k days apart). It is then 
expressed by 

[[exp(a
2 

k)-1](exp(a2 )-1])1/2} 
y,T- y,t ( 4-11) 

with px(k,t) and py(k,t) = the lag-zero cross cor­
relation coefficients between the day t-k and the day 
T of XP and YP , respectively. For convenience 

tT t'l" 

and understanding, they are called the k-th order 
serial correlation coefficients of daily flows. 

Removal. o6 PeM..ocii..c. PaJtame.telt6. The nonpara­
metric methods may be used to remove periodic para­
meters from a time series (Tao, Yevjevich and Kottegoda, 
1976). In case of daily flows, the total number of 
statistics i n the nonparametric method is very large 
in comparison with the total number of statistics i n 
the parametric method. Since i t is impossible to 
estimate so many parameters accurately from a limited 
size of sample series, these estimates must be subject 
to large sampling errors in the nonparametric method. 
The general objective of mathematical modeling of 
deterministic-stochastic processes is to condense 
information by developing models which use the number 
of parameters parsimoniously. Since the nonparametric 
method does not satisfy this objective, it is not used 
in this study. 

Let the periodic parameters be symbolized by 
v . The mathematical description of peri odic vari­

T 

ation of v is represented by the Fourier series 
T 

analysis as 

m 
v = v + ~ c. cos c2njt + e.) 

T j =1 J W J (4-12) 

in which v = the average value of vt, Cj = the ampli­
tude, ej • the angular phase, j = the index sequence 
of harmonics, m = the total number of significant 
harmonics, and w = the period in days. 

The alternative form to Eq. 4-12 is 



(4-13) 

wi t h Aj and Bj the Fourier coefficients, estimated 

from the w values of~ (where~ are sample values) , 
1: 1: 

by 

and ( 4-14) 

2 w A • 

B. " - L v sin 21fJT 
J W 1:=1 T W 

with the amplitude and angular phase expressed as 

c. 
J 
~ = J j 

and 

\ 
( 4-15) . 

-1 B. 
ej = tan c-..J) A. 

J 

Let s2(v ) be the variance of computed v . For 
1: 2 2 1: 

a harmonic j, var hj = (Aj + Bj)/2. The ratio 

var h. 
nPJ. = _.1_ 

s2(vt) 
(4- 16) 

represents the part of the variance of v explained by 
1: 

the j- th harmonic. Hence, the explained variance of 
k harmonics is 

( 4-17) 

This explained variance is used as the criterion 
for selecting the number of signifi cant harmoni cs. 

The first periodicity to be removed is in the 
skewness coefficient. It is accomplished by using the 
logar ithmic transformation, with the lower bound a, 
periodic. The symbol X stands for values of an p, , 
observed daily flow series with p and T previously 
defined. Let Yp denote the transformed variables, 

·' then 

Y • ln(X - a ) p,t p ,T 1: ( 4-18) 

Since XP i s assumed as lognormally distributed ,, 
with the lower bound a , Y must be normally dis-' p,. 
tributed with mean ~y and standard deviation a . 

, T y,1: 

Therefore, the periodicity i n the skewness coef­
ficient has been removed. 

The removing of periodicities in the mean and 
standard deviation of the transformed variable, Yp , 

, t 
is made by 

E: 
p, 1: 

y - II .. p,• y,, 
a y,t (4-19) 
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in which e: = the standardized stochastic component p,"t 
of YP , a dependent, normally distributed variable 

•' with mean zero and variance unity. 

Oepe.ndence. ModelA 6olt Sta..ti..on.aJt.y StocJuu..:tl.c. 
Component6. The e: variable, obtained by removing 

p,1: 
the periodicities in the mean, standard devi ation, and 
skewness coefficient of X , is stationary time series p , 1: 
provided the autocorrelation coefficients are not 
periodic. The models for dependence of e: may be: p,t 
moving average, linear autoregressive , a combi nation 
of the two, and other schemes. Si nce the autoregres­
sive linear models have been found in practice to be 
very useful in hydrology, they are appl ied i n this 
study. 

The dependence of a stochastic hydrologic series 
can be approximated by various orders of linear auto­
regressive models. The first-, second-, and third­
order autoregressive linear models are most commonly 
used rather than the higher-order models. 

The general m-th order autoregressive linear 
model is 

m 

tp,T : k~l ak,T &p,T-k + Ot ,T tp ,T (4-20) 

with ak = the autoregressive coefficients , which are ,, 
functions of serial correlation coefficients Pk, , ' 
which are either periodic or nonperiodic, a~ = .... 
the standard deviation of t which is periodic if p,T , 
ak are periodic, and tp = a stand'ardized variable 

tT tT 

independent of tp - k· Since cp is normally dis-
,T t T 

tributed, (p should be independent, normally 
• 't' 

distributed variable, with mean zero and variance 
unity. The serial correlation coefficient pk of 

oT 

the lag k is 

cov(c , t k ) p,1: p,1:- ( 4-21 ) 

Equations used for determi ni ng the coefficients 
ak , and a~ , with k = 1,2, and 3, are given below. 

t T o, t T 

(a.) F.llrA:t-OJtde.it Mod~. The first-order auto­
regressive linear model is 

t =a t +a t 
p,1: 1,1: p,T-1 (,1: p,1: 

The parameters a 1 and a are expressed as 
o1: ( oT 

and 
2 

- a l,t 

(4-22) 

(4-23) 

(4-24) 

(b) Second-Oitde.it Mod~. The second-order auto­
regressive linear model is 

I 
t 

I 
t 
i 
I 

I 
r 
I· 

., 



The parameters ak , k = 1,2, can be obtained from the 
, T 

following linear equations. 

1 

1 

with the solution 

The variance o~ is ._ ,T 

2 2 = 1 - a - a - 2a a p l,T 2,T l,T 2,T l,T-1 

{4-26) 

(4-27) 

{4-28) 

(c) Thi4d-O~~ Modet. The third-order auto­
regressive linear model is 

3 
£ t a E: +o C p,T k~l k,T p,t-k ~,T p,~ 

The parameters ak , fork= 1,2, and 3, can be 
, t 

obtained from the following linear equations 

Pl,t•l 

PI,T·I 

Pz . ,., PI ,t · 2 

T~~ variance o~ is ._,T 

p2 ,t-1 

Pl,t - 2 

a.l, t 

['·' 0
2,t P2,t 

a.3 , t P3,t 

{4-29) 

(4-30) 

If order of the linear autoregressive model is 
selected, parameters ak and o~ can be estimated 

, T ~ ,T 

from the sample autocorrelation coefficients. Finally, 
the independent standardized normal random variable 
t is computed from the c series. p,T p,1: 

4.4 Estimation of Parameters of Daily Flow Series 

For parameters defined in terms of moments and 
time lags, the standard errors of their estimates 
increase with an increase· of the moment order and 
time lag. The larger the standard error, the greater 
the bias is likely to be. As suggested by Matalas 
(1967), bias may be minimized but not completely 
eliminated. One technique for minimizing bias is 
regi onalization, which takes the form of relating the 

parameters, estimated from the historic sequences at 
a number of sites in a basin, to certain meteorologic 
and physiographic characteristics of the basin. 
Another technique for minimizing bias is the use of 
maximum likelihood estimation of parameters, since 
the standard errors of these estimates are smaller 
than those for estimates based on moments. However, 
maximum likelihood estimators are not always sta­
tistically unbiased, and they cannot be determined 
without making an assumption about the underlying 
probability distributions. 

The stages of parameter estimation are important 
i n the study of daily flow series. The numbers of 
significant harmonics of periodic parameters are 
decisive since the parametric method is used. The 
approach in this study is to estimate parameters 
directly from historic data, not from sequences from 
which periodicities in other parameters have been 
removed, t~ avoid the effect of the selected number 
of significant harmonics for those parameters in the 
further stages of estimation. 

The parameters used in generation are those of 
• the three-parameter 1 ognorma 1 dis tri but ion: at ., lly . t 
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and oy , the autoregressive coefficients, ak • with 
) T ,T 

k = 1,2, ... ,m. and the standard deviation of re­
siduals, o~ . Fourier series were not applied .... 
directly in fitting periodic functions to estimates 
of these parameters . Fourier series are used for 
fitting parameters which are estimated directly from 
observed data because parameters aT, lly,t ' oy,t' ak,t 
and o~ can be derived from them. .,.,T 

(a) El>t.irnat.Wn o 6 Lowell Bound, a,. For each 
particular d~ '• the mean 11 , standard deviation X,T 
o , and skewness coefficient Yx of XP T are esti-x,T ,T , 
mated by the method of moments. Parameters a , lly 

T , T 

and oy of the lognormal variable YP are then ,T ,T 
computed simultaneously by Eqs. 4-1 through 4-3. The 
main problem in this estimation is to obtain a 
reliable estimate of the skewness coefficient from the 
historic reco rd, especially in case of small sample 
sizes . Si nce the skewness coefficient is a function 
of the first three moments, the standard error of its 
estimate i s high and i t is also biased • 

Because t he distribution of daily flow series 
for each day is assumed to be a three-parameter log­
normal distribution , the maximum likelihood method 
can be applied in order to minimize biases 1n para­
meter estimation. The lower bound a for each day t 

T 

is obtained by maximum likelihood method in sol ving 
Eq. 3-54 by an iterative procedure. Since it js a 
nonlinear equation, it has more than one solution. 
In applyi ng iteration, the initial or starting value 
is important. to guarantee solution convergence. The 
starting value of aT i s first assumed to be close to 
the observed Xmin( t ), such as 0.975 Xmin(t ), where 
X . (t) = min[X , p .. 1,2, ... , n, for fixed -r]. If m1n p,t 
the iteration diverges to values greater than xmin( t) , 
the new starting value less than the first one is 
assumed and so on. The purpose is to obtain at that 
has the value nearest to, but less than ~in{t) . 

The fourier series is applied for fitting the 
periodicity in a . The explained variance of Eq. 4-17 

T 



is used as the criterion for determi ning the number of 
significant harmonics. For days of the year for 
wh ich the skewness coefficients are high, the maximum 
likelihOOd estimateS aT t end tO be positive and ClOSe 

to observed ~in(T). By using the Fourier series, 
some days have the fitted values of aT greater than 

the observed Xmin(T). Hence , some other consideration 
in select ing the number of significant harmonics for 
~T is that the number of days that have the fitted 
aT greater than Xmin(T) should be very small. 

Two alternative methods may be used to estimate 
parameters ~ and ay after the periodic a has y,T ,T T 
been computed: (1) By using the estimated val ues of 
aT (not the fitted periodic f unction values) in Eqs . 

3-55 and 3-56 for estimati ng ~y,T and ay,T' re­
spectively, with the Fourier series applied in fitting 
the periodic ~y ,T and ay,T; and (2) By using the 
fi t ted periodic function values of a, in Eqs. 3-55 
and 3-56 for estimating JJY and ay , respectively, 

, T , 't 

with the Fourier series then applied for f itti ng the 
periodic ~Y and oy . The experi ence of this study 

t t t T 

is that neither of these two approaches should be 
used. In the first approach, the Fouri er series 
analysis is applied for fitting estimates of each 
periodic parameter, a , JJY , and ay independently. T ,T 0 T 
The problem arises because the fitted a , ~Y and 

T oT 

ay for any day T are not matched among themselves, 
.t 

giving r ise to distortions in patterns of periodic 
functions JJ and a , with a large number of X,T X,T 
negative daily flows produced in generation procedure. 
Ey using the second approach the distortions are de-
crcJsed. By fitting a periodic function to at by 
using a certain number of harmonics, some days have 
t he fi tted at greater than ~in(t) , affecting then the 
estimations of JJ and a . The consequence is in y,T y,T 
distortions in patterns of llx versus T, and ax 

, t , 't' 

versus T, in generated daily flow series in compari son 
wi th those of historic data. 

To overcome thi s difficulty, Four ier series are 
used to fit the estimates of periodic parameters JJx 

, T 

and a , which are estimated di rectly from observed X,t 
data. The periodic lly and ay , are then derived 

, t , T 

from fitted periodic functions of a • ~ and ox 
T X, T , , 1' 

by using their r~lationships. 

(b) El..tima.t.Um o6 Mea.n 1.1 ,., ,,i ,-ta,n,ftt"<d x •. 
Vev~n ox, . The mean JJ c:: r.l.l the standard de-

T X , T 

viation ax ,t for each day t are .estima ted from the 
observed data by 

.. l ~ X 
np=l p, T (4-32) 
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and 

~ 1 ~ - ) 2] 1/2 oX,T = (n:r L (Xp t JJX, T 
p=1 ' 

(4-33) 

in which n = the number of years of observations. 

The periodic ~X and aX are then fitted by 
tT t T 

Fourier series . First, the explained variance is used 
as the criterion for selecti ng the number of signifi-
cant harmonics. Then, the final consi deration in 
selecting the number of signifi cant harmonics for 

a , nX and OX was for each day T tO have distri-
T t T ,.t 

butions of tp , by Eq. 4-19, close to a normal 
, T 

distribution, on the average , and as much so as the 
chi-square test permitted. 

The mean ~ and the standard deviation a of y ,, Y t T 

, T 
.yp are then obtai ned from the fitted periodic 
functions to a , ~ and ~ , by solving Eqs. 4-1 t X,t ' X,t 
and 4-2, namely 

and 

~ = ln (~ - a ) y,T X,T T 
1 2 

--0 2 y,T 

2 
0 y,T 

a 
ln [1 + (-.-.:..:.x"-',T'--)2] 

JJX,T - aT 

(c) El..:Wna.tion o6 SeM.al. CoMe.la.ti..on Coe6-
6~ent4 , px (k, t) . The serial co~relation coef-

( 4-34) 

(4-35) 

fici ents p (k, t) of X are estimated from sample 
X p,t 

series by (see Tao, Ye~jevich and Kottegoda, 1976) 

The Fourier series are used to f it the periodic 
values rx(k,t), k = 1,2, ... , m, with m =the order of 
the autoregressive linear model. 

Estimates of serial correlation coefficients , 
ry(k ,T) , of Yp ,, are obtained from the fi tted periodic 
functions to rx(k ,, ) by usi ng Eq. 4-11 in the form 

{[exp(oy
2 

k)-l][exp(a2 )-1]}112] ,T- y,T (4-37) 

Fi nally, the autoregressive coefficients ak and 
,T 

the standard deviation oc are derived from periodic ._ ,T 
f unctions of ry(k,t) by replacing pk by r (k. t ) in 

, t y 
Eqs. 4-23 and 4-24 for the first-order model, in Eqs . 
4-27 and 4-28 for the second-order model , and Eqs . 
4-30 and 4-31 fo r the third-order model, respec tively. 
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4.5 Problem of Generated Negative Flows 

By definition, the parameter a is a lower bound 

for observed values of XP . By nature, XP should be 
, t , T 

positive or zero. This implies that a should always 
T 

be positive in hydrologic appli cations . However, this 
interpretation may not be necessary, because a can be 

T 

positive or negative, and in fact is usually negative 
(Burges, Lettenmaier and Bates , 1975). According to 
experience of t hi s study, a depends on the skewness 't 
coefficient of XP . The smaller the skewness coef-

•' ficient, the more opportunity for a to be negative. 
T 

Because 

xp,~ = a~ + exp(Yp ) ' ' ,'t (4-38) 

the second t erm at the right side of Eq. 4-38 is always 
positive. If a, is positive, no problem arises with 
negative values of XP . If a is negative, on 

, T 

occasion XP may be negative since the normal distri­, r 
bution assigns non-zero probability to negative values . 

In thi s study, the possible mi nimum value of XP , -r 
is assumed zero, not allowing for negati ve val ues . 
The following procedure is used to minimi ze the effect 
of generated negative values. By considering a 

T 

negative, for xp = 0 then 
, T 

(4-39) 

following wi t h 

ln(-a ) - 11 
c* • __ ...;.T_ ..._y..._, -'-T 

T a y,T 
(4-40) 

The value c* is used as the lower limit of cp . 
T , T 

If a generated value of E is smaller than E*, it is p,T T 
set equal to e*, with the process of generation 

T 

continuing. The negative aspect may be in decreasing 
slightly the variance of generated ser ies. 

4.6 Generation Procedure 

The procedure, parameters, and equati ons used to 
generate new daily flow samples are summarized as: 

STEP 1 Obtain the Fourier parameters such as the 
number of significant harmonics , mean and 
Fourier coefficients, A and B of periodic 
parameters a , JJ , o and r (k,t) , k = 

T X,t X,T X 
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STEP 2 

STEP 3 

1,2, ... , m, with m • the order of the auto­
regressi ve linear model used. 

Compute periodic parameters a, , llx, t ' ox, , • 

and rx (k, t ) by using Eq. 4-13. 

Derive periodic parameters 11 and a y,T y,t 
frorn a , 11 , a by using Eqs. 4-34 and 

T X,T X,T 
4-35. 

STEP 4 Compute ry(k, -r ), k = 1 ,2, ... , m, from rx(k,t ) 
and oy by using Eq. 4-37. ,T 

STEP 5 Compute autoregressive coefficients ok,-r ' and 
the standard deviation of residuals o~ f ._ ,t rom 
ry(k,-r) by using Eqs. 4-23 and 4-24 fo r the 
first order model , Eqs. 4-27 and 4-28 for the 
second-order model, Eqs. 4-30 and 4-31 for the 
third order model, respectively. 

STEP 6 Compute lower limits c~ fo r days that have 
negative values of a

1 
by usi ng Eq. 4-40. 

STEP 7 

STEP 8 

STEP 9 

Generate standard normal random variables ( , . p,T 
for p = 1 , 2, ... , n, -r = -1 0,-9, -8, ... , -1 , 1 , 2, 
... ,w, where n = the total number of years of 
generated samples , and w the within-t he-year 
period of generation (note that ( ~ · for p,' 
t m -10 ,-9 , ... -1, are used as to avoid biases 
at generated • = 1,2, ... ). 

Introduce dependence to ~p.• ser ies, as the 
cp series, by Eq. 4-20; check for every , -r 
day ' whether a is negative, and if c is 't p,-r 
smaller than the lower limit e*, set e = 't p, t 
e~, and continue generation. 

Discard t he EP -values for t= -1 0, -9, . .. -1, , -r 
with only cp , t = 1 ,2, ... , , used in the 

, T 
next step. 

STEP 10 Compute the transformed series Y by p, t 

STEP 11 

Y = E 0 + jJ p, 't p, T y ,t y, -r 

Produce generated daily flow series of X p,-r 
from Y by the inversed transformation p, -r 

X = a + exp(Yp ). p,'t T , T 



Chapter V 
APPLICATION OF THEORY OF PROBABILITY DISTRIBUTIONS 

OF PARTIAl SERIES OF FLOOD PEAKS 

The theory of probability distributions of partial 
series of flood peaks is applied to the observed data. 
The partial flood series are obtai ned from 17 sets of 
daily flow series for gaging stations located through­
out the United States. Discrete and conti nuous pro­
bability di stribution functions, described in Chapter 
III, are applied to frequency distributions of the 
number and the magnitude of exceedances above the 
selected truncation level of partial flood peak series, 
respectively, in order to find out the best fitting 
functions. After the best distribution functions are 
inferred, the change of the goodness of fit indices of 
selected functions 1·/ith the truncation level is i n­
vestigated. Also c;,anges of parameters of these 
di stributions with the truncation level are studied. 
In addition, derivation of probability distribution 
function of the largest exceedance in the year is 
presented. 

The statistical dependence of partial and annual 
f lood series is investigated at the end of thi s 
chapter. Also, for partial flood series, the study of 
the change i n series dependence with the change in 
truncation level is included. 

S. 1 Research Data Used 

The data used in this study (Quimpo , 1967; Tao , 
1973) contain 17 series of daily flows from whi ch 17 
sets of partial flood series are derived. These 17 
daily f low series are from runoff records published 
by the U.S . Geological Survey under the condition 
that the flows are sufficiently virgin, or have not 
been al tered by significant man-made diversions or 
flow regulations. 

The names of gaging stations , their locations, 
drainage areas, mean flow, and other pertinent in­
formation are given i n Table 5-l , with the approximate 
geographic location of these stations shown in Fig. 5-1 . 

5.2 Chi-Square Goodness-of-Fit Test Statistic 

General ly, a goodness-of-fit statistic is useful 
to discriminate between f its of different probability 
distribution functions to the same frequency distri­
bution. If a single sample is available , the goodness­
of-fit statistic of each fitted distribution function 
is computed, and the distribution selected with the 
smallest statistic. Several test statistics may be 
used in testing goodness-of-fit of probability distri­
but ion functions. The chi-square and the Smirnov­
Kolmogorov goodness-of-fit test statistics are well 
known and f requently applied in statistics and hydro­
lo~. Test by Smirnov-Kolmogorov statistic is non­
parametri c or distribution-free. However, in case 
of goodness of fit, parameters of hypothetical distri­
bution functions, which are fitted to frequency 
distribution, are estimated from the sample data, the 
Smirnov-Kolmogorov test is not appr opriate and not 
used i n t hi s study. 

For chi-square statistic, the range of var iable 
values is divided into k mutual ly exclusive and ex­
haustive class intervals, each with a class frequency 
Oj and expected class probability E. (j=l,2, ... ,k). 

2 J 
The quantity (Oj - Ej) i s used as a measure of de-
parture f rom Ej ' but they cannot be compared from one 
class to another without scaling each class interval 

Table 5- l. Stations Selected for Invest igation 

USGS 
StAtion Station Location Are.a Records Hoan Standard Reaarks on 
llwaber Nwaber River Latitude Longitude (Sq. Ni.) Available Daily Flow Deviation Accuracy of Record• 

I 18.6265 Tlo•• nur Erwins, N. Y. 42.07 ' n•oa • 
Execllcnt. PAir durin& 

1370.0 1921·1960 ll78.6 2777 .8 I ocriods of ice effect. 

2 4.0710 Oconto nc3r Cit lett, Wisconsin 44'52' 8ft.l8 ' 678.0 
Cood. Fair durinc 

1921·1960 SC3.5 441.0 I neriods of ico effect. 

3 7.0670 Current at Van Buren No. 11•oo• 91*01 ' 1667 .o 1922·1960 1921.0 2694.3 
I Cood. Poor_ during 

norlods of ice effect. 

4 14.1590 Mckenzie Qt Mclcen:te Sr. Ore. 44.11' 122*08' 345.0 1924·1960 1638.2 744. 4 Excellent 

5 8.3335 Neches ncar Rockland Tex . 31.02' 94.24 I 3539.0 1924·19b0 2385.2 3813.0 Cood 

6 13. 1850 Boise ncar Twin SprlnllS Idaho 45. 40 ' 115 .. 44 ' 830.0 1921· 1P60 1172.7 1458.6 
r:xcollent •. Cood during 

I ooriods of ico effect. 

7 II. 2750 FA! h Creek near lletch·hetchv Cal. 37*58' 119.46' 45.2 1923·1960 1~1. 2 234.2 
IC~. Fa~r .ouuna 
I oeriods of i<;e effect. 

8 3A.18:;5 Cceenbrier near Alderson w. Va. 37. 44' so• 38 • 1357 .o ! 921·1960 1885.5 
C~ . Poor dur 1 n; 

3053.4 I ncriods of leo offeet. 

9 68.8905 Delaware at Va llel Polls£ X.on~:a 39.21' 95*27 ' 922.0 1923- 1960 375.9 1617.7 
Goo<!. -1'-al r du r 1 n~ 

I ncr! ods of iee effect. 

10 6A.0375 Madison newr V. Yellows tone. )Jont . 44.39' 111*0C' 419 .0 192C- 1960 458 . 6 190.7 
Excellent. li~ clurine 

I nerlods of ice effect. 

II 38.5320 Powell nel:r Arthur Tenn . 36.32' 83.38' 683 . 0 1921· 1960 1116. 1 1739.0 Good 

12 12 .II SO St. ~aries noar Lotus Idaho 47.1 5 ' llb*Ja• 437 .o 1923·1960 515.0 762.3 
Good. Poor_ during 

I Deriods of Ice effect. 

13 2A. OI60 Cownasture near C1ltton Forge Va. 37.48 ' 79.46. 456.0 1926- 1960 515.6 762.3 Cood 

14 lA. 2695 ~lod near Sorinofic ld Ohio 39*55 ' as•sz' 1474. 0 1921-19b0 487.2 686.7 
lH.,recd a t Pohono Br . , 

Good 

IS II. 2665 Yos .. ite Col. l7. 43' 119.40. 321.0 1921·1960 S9S. 7 979. 4 Cood 

16 18.3295 &:.tt cn kill ~t Battenville, N.Y. 43.06 1 73*25' 394. 0 1923- 1960 722.9 ?22.9 
GoOd. Fair aurtng 

I nerlods of lee effect. 

17 s. 3620 Ju•p ncar Sheldon, Wisconsin 45* 18 ' 90.57' 574 .o 1~21·1960 sos.o 1162.0 
Good. Foir during 
periods of ice effect. 

*According to USGS , the classification of the records are excellent, good , fair, or poor depending on 
whether errors in them are less than 5, 10, or 15 percent or greater t han 15 percent, respecti vely. 
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Fig. 5-l Geographic Distribution of Selected Stations 

2 proportionally to Ej. The measure used is (Oj- Ej) 1Ej 
and the test statistic of a fit is 

(5-1) 

This statistic is asymptotically chi -square 
distributed, with k-1 degree of freedom. When popu­
lation parameters are estimated from sample data, the 
number of degree of freedom is then decreased by the 
number of estimated parameters. For m parameters, 
the total number of degree of freedom is 

f=k-1-m (5-2) 

5.3 Oistribution of the Number of Exceedances 

The 17 sets of partial flood series are obtained 
from the 17 sets of daily flow series as described 
above. The series are exceedances above the selected 
truncation level Qb and are functions of it. For each 
station, 9-11 truncation levels were selected so that 
the average number of exceedances per year, ~. would 
vary from 1 to 4.5. 

Compa!LUon o6 0-i.hCJLe-te. PII.Cba.bilily O.U.tJUbution 
Functi.on.h 0oJL .the. Numbe.JL o6 Exc.e.eda.ncu . Five dis­
crete probability distributions outlined in Chapter 
III were fitted to frequency distributions of n for 
the 17 stations. The chi-square test statistics were 
calculated for all five distributions: Poisson, mixed 
Poisson, Hyper-Poisson, negative binomial, and the 
mixture of two geometries, as well as for all stations. 

The comparison of best fits of selected distri­
bution functions is made in two steps: (1) Compare 
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the goodness-of-fit statistics for each station series 
and various truncation levels; and (2) Compare the 
goodness-of-fit statistics for the 17 stations . The 
selected distribution is that one which has, on the 
average, the smallest goodness-of-fit statistic for 
all the selected truncation levels and for all the 
stations. 

The chi-square statistic is affected by the 
degree of freedom, which in turn depends on the number 
of parameters of distribution functions used. Instead 
of comparing the computed chi -square statistics 
directly, the exceedance probability of these chi ­
square values is used, in order to remove in compari­
son the effect of degrees of freedom. The function 
with the largest exceedance probabi lity of the computed 
chi-square is conceived as the best fit distribution. 
If 95 percent significance level is used in testing 
the goodness of fit, the fitted function that has the 
exceedance probability of computed chi-squar~ less 
than 5 percent is rejected. Let x2 denote the computed 
chi-square, and P(x2) its non-exceedance probability, 
or the exceedance probability is l - P(x2). The 
computed 1 - P(x2) for five distr ibutions, for various 
Qb ' and for station 1, are given as an example in 
Table 5-2. 

For each Qb four distributions (except Poisson) 
are ranked by t heir statistic values, from the largest 
to the smallest. The distribution that gives the 
largest value of 1 - P(x2) is ranked No. 1 for a given 
Qb. At the bottom of each column the sum of the ranks 
attributed to each distribution, and the total number 
of times (or Qb) that the distribution was rejected by 
the chi-square test at the 95 percent signifi cance 
level are shown. 



Table 5- 2. Comparison of Goodness-of-Fit Statistic 
Based on 1 - P(x2}. for Distribution 
Functions of the Number of Exceedances, 
for Various Truncation Levels and Stati on 
No. 1 

Statistic: 1 - P(l) 

Mixed 
Nwo!Mr Poisson Mixturo 

!run,cation of Class or Hyper- N~gative of 
Level Intervals Poisson Po is• on Poisson Binomial Coo111otries 

10800 10 0.005 0.0682* 0.054
30 

o.ou1* o.0284• 

11500 10 0.426 0.4262 
0.3843 0.4281 0.2114 

12000 10 0.297 0.4232 0.4024 
0.5111 0.4053 

12500 10 0.730 o. 7301 0. 7282 0. 7253 0.4884 

13500 10 0.591 0.6263 0. 7052 0. 7231 0.6014 

14000 g 0 .648 0.6481 0.6172 0.5753 0.5294 

14500 9 0.833 0.8331 0.6183 0 . 7302 o.sao4 

15000 g 0.298 0.2981 0.1053 0.1762 0.0244 

16000 9 0.398 0.3981 0.2143 
0.2672 0.0564 

17000 9 0.435 0.4351 0 . 0983 0.2982 
o.oo94 

18000 8 0.955 0.9551 0.8073 0.8632 0.5824 

Sua o f Ranks -- 16 31 20 I 4l 

NWIIber of Ti""'s 
Distribut ion is 
Rejected by Chi-
Square Test 1 0 0 0 3 

*Rank of 1 - P(x2} attributes to each distribution 
function for a given truncation level Qb. Distri-
bution function which has the smallest number of 
rank is considered as the best fit function for a 
given Qb. 

Distributions are further ranked on the basis of 
sums of ranks for each station. Entries in Table 5-3 
give sums of ranks , for different t runcation levels of 
all the stations. For each station four distributions 
are ranked by sums of ranks for al l the truncation 
level's, f rom the smallest to the largest. Sums of the 
new ranks attributed to each distribution are shown at 
t he bottom of each column. 

The number of times (or Qb) that distribution 
functions are rejected by the chi-square test at the 
95 percent significance level for each station are 
given in Table 5-4. The total number of times and t he 
percentage of t imes that a di stri bution function is 
rejected, for all Qb and for all stations, are shown 
at the bot tom of each column . 

These data show that : 

{i) The one-parameter Poisson distribution 
c~nnot_pass the chi-square test at the 95 percent 
s1gnif1cance level for all the stations studied ; 

(ii} Based on the results of Tables 5-3 and 5-4, 
t he mixed Poisson or only the Poisson distribution, as 
the case may be, give the best fit among all the con­
sidered discrete distribution functions• 

(iii) The mixed Poisson or t he Poisson di stribution, 
as the case may be, pass the chi-square test for all 
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stations and for the most i nteresting range of trun­
cation levels; and 

(iv) The four-parameter di str ibution does not 
give any improvement in the goodness-or-fit for the 
test criterion selected. 

In conclusion, the Poisson distribution wi th one 
parameter is not always sufficient to fit frequency 
distributions of n for all stations. It does not pass 
t he chi-square test at the 95 percent signifi cance 
level for all stations. However, for all stations and 
all selected Qb , the percentage of times that it is 
rejected by chi -square test is 26 .55 percent. 

The other four dist r ibutions also were applied 
wit h the goodness-of-fit tested by chi -square statis­
tic. On the average for 17 stations , the mixed 
Poisson or the Poisson as the case may be, gives the 
best fit among the considered distribution functions. 
This di stribution can pass chi-square tests with 95 
percent significance level for the range of interesting 
~b and for all stations. The percentage of times that 
it is rejected by the chi- square t est is 5.08 percent. 

Table 5-3. Goodness-of-Fit for Di stribution Function 
of Number of Exceedances Based on Sums of 
Ranks of All Truncation Levels , for 
l - P(x2) Statistic 

Suas of Ranks of All Truncation Levels 

Station Mixed Poisson Negative Mixture of 
Number or Poisson llyp<~r-Poisson Bino~ial Geometries 

1 161* 31
30 202• 434• 

2 lS1 253 152 354 

3 293 131 242 444 

4 161 212 283 
35

4 

5 253 201 zs2 304 

6 263 151 222 274 

7 282 231 293 304 

8 161 313 222 414 

9 262 161 263 324 

10 1?1 354 313 272 

11 zo1 222 243 444 

12 2111 242 283 38
4 

13 191 21
2 273 434 

14 272 141 293 404 

15 264 181 263 202 

16 171 222 243 37
4 

17 211 38
4 222 29

3 

Suas of Ranks 2g .. 34 44 63 

*Rank based on sums of ranks of a 11. Qb, attributes 
to each distribution function for a given station. 
Distribution function which has the smal l est number 
of rank is considered as the best fit function for 
a given station. 

**The smallest number of sums of ranks indicates 
that the mixed Poisson or Poisson distribution 
gives the bes t fit. 

' .. 

I 

l 
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Table 5-4. Number of Times (or Truncation Levels) 
that Distribution Functions are Rejected 
by Chi-Square Test at the 95 percent 
Significance Level, for Fitting the 
Frequency Distributions of Number of 
Exceedances 

I i Number of Times thot Distribution is Rejected 

Total Times Mixed I I : 
or : Poisson ! Mixture 

Station Truncation Hyper- · Negoti vc ' of 
I 
I 1 or 

Number Levels Poisson ; Poisson Poisson Bi nomial ' Geometries _j 
I 

I 

I 
11 1 

j 
0 

I 
0 0 

I 
3 I 

2 9 1 

i 
0 0 0 

I 
1 

I 3 11 9 1 I 1 1 1 . 
! I ! 4 10 1 I 0 0 1 

I 
1 

s 10 3 I 0 I 0 I 0 
I 

6 9 1 1 

I 

2 I I 1 

7 II 2 1 2 I 1 1 

8 11 0 0 

I 
0 

I 
0 0 

9 10 7 2 1 2 I 2 I 

10 II 0 0 I 7 . 1 I 0 

i I 

11 11 0 0 0 0 I 3 I I 
12 11 10 I I ! 3 0 I 0 

13 II 0 0 0 0 0 I 

14 11 4 I 0 I 2 

IS 9 2 2 3 4 I 

16 I 10 0 0 0 0 0 

17 I 11 6 0 0 0 2 

Total I 177 47 9 19 13 18 

Percent 100 26.55 s. 08 10.73 7.34 10.17 

Cha.nge o 6 Goodnu~ .:o6- F.U s.ta.:ti..L.tic. o 6 Se.tec.ted 
V-U..t!Ubuticm W.Uh a Cha.nge o6 TJumca.t.Wn Level.. The 
chi-squa re statistic, expressed as the exceedance 
probability 1 - P(x2), of the selected distribution, 
is investigated to determine its change with the 
change of truncation level. For each station, 9- 11 
truncation levels were selected in such a way that 
n Vafies from 1 to 4.5. For convenience, the trunc­
ation level is expressed in terms of n- The relation­
ships between 1 - P(x2) and n for all stations are 
plotted and studied. By using the method of inter-
polation, the average 1 - P(x2) at the particular n 
in the range of 1 to 4.5 are obtained. 

The change of the average 1 - P(x2) for all 
stations with the truncation level for the Poisson 
distri bution and the mixed Poisson distribution are 
shown by a dotted line and a full line in Fig. 5-2, 
respectively . 

Figure 5-2 shows that: 

(i) The goodness-of-fit by chi-square statistic 
and for both di stributions tend to be better as the . 
truncation level increases; 

(ii) The mixed Poisson distribution, when it can 
be applied, is an improvement, especially for the 
smaller truncation levels; and 

(iii) There is a tendency for the Poisson distri­
bution to be rejected on the average for truncation 
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1.0.---------------------, 
Average 

0.6 1-P(/J 

2 

Fig . 5- 2 Relati onship of Average 1 - P(x2) to the 
Truncation Level, Expressed as the Average 
Number of Exceedances per year, n for: ( 1) 
Poisson Distribution, and (2) Mixed Poisson 
Distribution, as Averages for All 17 Stations 

levels that have n greater than 5. 5, approximately. 
For some stations the Poisson distribution is rejected 
for most truncation levels of the practical range. 

Cha.ngu .i.n PMame.te!l.4 o 6 Se.tec.ted V-U..t!Ubuti.on 
w.U:h a change o6 TJumcation Level.. In order to study 
how the Poisson or mixed Poisson distribution can be 
applied, ratios R of mean to variance of frequency m,v 
distributions of n are plotted against the truncation 
level s for all the stations. Results are shown in 
Fig. 5-3 for stations nos . 1-9, and Fig. 5-4 for 
stations nos. 10-17. Departure from the Poisson dis­
tribution depends on the departure of the ratio Rm,v 
from unity. When the ratio is greater than unity the 
Poisson distribution may be still applicable , such as 
for cases of stations nos . 6, 10 and 15. For ratios 
less than one, such as for stations nos. 3, 9, 12 and 
17, the application of Poisson distribution is rejected 
by the chi-square test . In these particular cases the 
mixed Poisson with three parameters can be applied, 
since one of its properties is for the variance to be 
greater than the mean. 
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Relationship between Ratio R v of Mean to m, 
Variance and Truncation Level (Expressed as 
the Average Number of Exceedances per Year, 
n) for Distributions of the Number of 
Exceedances, Station Nos. 1-9 
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Fig. 5-4 Relationship between Ratio Rm v of Mean to 
Variance and Truncation Level' (Expressed as 
the Average Number of Exceedances per Year, 
nJ for Distributions of the Number of 
Exceedances, Station Nos. 10-17 

For stations for which the daily flow series 
fluctuates highly, the ratio R of the number of m,v 
exceedances tends to be smaller than unity. In this 
case the mixed Poisson distribution is applicable. In 
the opposite case , the Poisson distribution is ac­
ceptable. For stations such as nos. 1, 2 and 13, 
both distributions should be applied in Passing the 
chi-square test for the whole range of Qb. 

Since the Poisson distribution has only one 
parameter, A, and the maximum likelihood estimate of 
A is t he average number of exceedances, A decreases 
with an increase of Qb. 

The mixed Poisson distribution has three para­
meters: A1, A2 and p, with Al > A2, and p the 
proportion for Poisson with parameter A1 . By defi-

nition, Al >X> AL' and 0 > p > 1, where A is a para­
meter if the Poisson distribution is applied. The 
larger p in the mixed Poisson distribution, the closer 
the values of parameters Al and A. Table 5-5 shows 
how p, A1, and A2 for the frequency distributions of 

n for station no. 17 change with the change of Qb. 
For this case, p decreases with an increase of Qb and 

of Rm v· This table also shows when R is close to • m,v 
unity, as Qb increases, the Poisson distribution 

becomes a good fit. For example, for Qb = 5500 cfs, 
Rm,v approaches to unity and A2 ~A, hence, p 
approaches to zero. 

5.4 Distribution of the Magnitude of Exceedance 

The frequency distributions of the magnitude of 
exceedance of partial flood series for 17 daily flow 
series are used in the study for selecting the pro­
bability distribution function of best fit. The chi­
square statisti c is used for testing the goodness-of­
fit. The procedure used for the number of exceedances 
is also applied for this case. 

CompaJL(Aon o 6 CoiltinuolL6 PJt.Cba.b-Uay V.U..tM.bu.:tion 
Functio¥14 6o1r. Magn.U:n.d.e o6 Excee.dancu. The investi­
gation i3 divi ded into two steps . In the first, 
preliminary step, the five continuous distribution 
fu~ctions: exponential, gamma, Pearson Type III . 
We1bull and lognormal are used to fit the frequency 
distributions of the magnitude of exceedance ~ . 

v 
Detailed computations are not presented. Results 
show that exponential, gamma , and Weibull distributions 
have a more close fit than the other distributions. It 
is difficult to distinguish which one of these three 
distributions fits best. The percentage of times that 
each distribution is rejected by the chi-square test 
at the 95 percent significant level for all stations 
did not come to be 5 percent or less . These investi­
gations passed to the second step . 

A mixed exponential distribution with three para­
meters was appl ied , or an exponential distribution if 
a mixed exponential cannot be applied. The goodness-

Table 5-5. The Change of Parameters Al, A2, and p with the Change of Truncation Level for Distributions 
of Number of Exceedances, for Station No. 17 

Truncation Level, Qb 

1670 1850 2000 2500 3000 3500 4000 4500 5000 5500 6000 

Mean or A 5.154 4.667 4.462 3.769 3.256 2.744 2.410 2.026 1. 692 1.256 1.077 

Ratio R m,v 0.548 0.550 0.577 0.671 0 . 741 0. 746 0.814 0.725 0.822 0.991 0 .827 

p 0.512 0.554 0.559 0.479 0.318 0.385 0.486 0.199 0.181 0.00002 0.179 

A1 7.168 6.419 6 . 070 5.186 4.821 3.966 3.174 3. 787 2.980 26.509 2.092 

A2 3.039 2.491 2.426 2.468 2.528 1.979 1.690 1.589 1.407 1.256 0.855 

i by Mixed Poisson 9.251 6 . 530 9.755 17.362 14.560 14.444 7. 197 3.076 2.461 5.102 3.709 

/ by P,; lsson 36 .588 26.658 33.084 ~5.119 27.798 18.980 8.455 8.842 4.468 5.098 6.747 
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of-fit is compared for the three di stributions. Sums 
of ranks for all the truncation levels for the statisti c 
1 - P(x2) for each station are given in Table 5-6 . The 
sums of new ranks for all stations and for the three 
distributions are determi ned and given at the bottom 
line of each column. The number of times (or Qb) 
that a distribution is rejected by the chi -square test 
at the 95 percent significance level for each ·station 
is given in Table 5-7, with the total number of times 
of rejection shown at the bottom line of each col umn. 

The results show that the mixed exponenti al or 
the exponential distribution give the best goodness­
of-fit by chi-square test statistic. The percent of 
times that this distribution is rejected by the test 
is 13.57. The percent of times that it is rejected 
by the test is greater than five. Only station no. 5 
was rejected by the chi -square test at the 95 percent 
signi ficance level for all selected Qb. This number 
affects the total percent of times. However, for this 
station, only fi ve out of eight truncati on levels were 
rejected by the chi-square test at the 97.5 percent 
signi ficance level, and four out of eight truncation 
levels at the 99 percent signi ficance level. 

Tab le 5-6. Goodness-of-Fit for Di stribution Function 
of Magnitude of Exceedances Based on Sums 
of Ranks of Al l Truncation Levels for 
l - P(x2) Statistic 

Sums of Ranks of Al l Tr uncation Leve ls 

Station ft ixcd Exponent ial 
Number or Exponential Gamc~.a Wei bull 

171* ! 8 2* 
.. 

!93* I 

2 141 172 173 

3 171 182 193 

4 162 173 151 

s n3 16
2 91 

6 223 
172 91 

7 8 • 243 162 

8 101 
243 142 

g 151 203 19
2 

10 172 193 121 

ll 141 !83 162 

12 101 193 192 

13 173 
lS1 162 

14 141 
17

2 
! 73 

IS 162 91 173 

16 101 233 152 

17 1S1 273 182 

Sums of Rank! 26** 41 35 

*Rank based on sums of ranks of all Qb, attributes 
to each distribution function for a given station. 
Distribution function which has the smallest 
number of rank is considered as the best fit 
function for a given station. 

**I he smallest number of sums of ranks indicates 
that the mixed Exponential or Exponenti al distri­
bution gives the best fit. 

I 
I 
i 
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Table 5-7. Number of Times (or Truncation Levels) 
that Distribution Functi ons are Rejected 
by Chi -Square Test at the 95 Percent 
Si gnificance Level , for Fitt ing the 
Frequency Distributions of Magnitude of 
Exceedances 

Number of Ti01e5 t hat Distribution is Rejected ~tat ion fli xed hponential 
umber Exponent i al or Exponential GaiTilla Wei bull 

I 4 3 6 6 

2 0 0 0 0 

I 3 1 I 0 0 

I 
4 l I 0 0 I 

I s 8 8 8 8 

I 6 I 0 0 0 

I 7 8 1 8 8 I 
I 
I 8 0 0 0 0 

I 9 2 0 0 0 
.I 

10 0 0 I I 
I 
I II 0 0 0 0 

i 12 0 0 0 0 1 

' 13 2 2 I I 

' 14 0 0 0 0 I 
I 
; IS l I 0 I 

! 16 s 0 6 5 

17 10 2 7 4 

' I 34 .Total 43 19 37 

~Percent 30.71 13.57 26 . 43 24.29 

Two reasons ·may be responsi ble for the chi -square 
test to reject this particular river: (1) The partial 
flood series is approximately derived from the mean 
daily flow series and not from the instantaneous flow 
peak series ; and (2) This effect may be reinforced by 
the large outliers, since all the considered distri­
butions were rejected. For this particular river, the 
catchment area of about 3539 square miles is t he largest 
among al l the considered 17 r ivers . 

Cha.nge. o6 Goodnu~-o6- F-U S.ta.t<.6uc. o6 Sde.c..te.d 
V-i..6.:tJU.bu..Uon wi..th a Change. o6 TJtu.nc.aUon Level. The 
same procedure outlined is used here as for the distri­
bution of the number of exceedances, for the rhange of 
goodness- of-fit statistic with a change of the 
truncation level. 

The changes of the statistic of the average 
1 - P( x2), for all stations wi th t he change of the 
truncation level (in this case expressed by n) fo r the 
exponential and the mixed exponential distribut ions 
are shown by the dotted line and fu ll line i n Fig . 5-5. 

Figure 5-5 shows, for the averages of all 
stations, that: 

(i) The goodness-of-fit of chi -square statistics 
for both distributions tend to increase for high 
truncation levels; 

(ii) The mixed exponential distribution, when it 
can be appl ied, gives a goodness-of-fit improvement, 
especial ly for the low truncation levels; and 
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Relationship of Average 1 - P(x2) to the 
Truncation Level, Expressed as the Average 
Number of Exceedances per Year, n for: 
(1) Exponential Distribution, and (2) Mixed 
Exponential Distribution , as Averages for 
All 17 Stations. 

(iii) The goodness-of-fi t for the exponential 
distribution decreases rapidly with a decrease of the 
t runcation level in the range of lower truncation 
levels (or for n larger than 3). 

Changu .i..n Pa~tame.tei!A o6 Selected V.U..tlt.i.bu..ti.on 
with a Chang~ o6 T~n L~ve.t. Exponential dis­
tribution parameter, a, estimated by the sample mean 
by the maximum likelihood impl ies that the change of 
the mean with the truncation level is the change of 
parameter a with truncation level . By studying the 
17 frequency distributions of t , it is not conclusive v 
how a changes with Qb. For stations nos. 2,5,9 and 16, 
a clearly increases with an increase of Qb. For 
stations nos. 6 and 10, a clearly decreases with an 
increase of Qb. For other stations, the change in 
a with Qb is not clear. 

Three statistics, the coefficients of variation, 
skewness and kurtosis of frequency distributions of 
tv are investigated to find the ranges in whi ch the 
mixed exponential distribution should be applied. In 
case of coeffi ci ents of variation, the results are not 
quite conclusive, except that the mixed exponential 
distribution can be applied only in the range of high 
coefficients of variation, and not applied if it is 
less than unity. The population coefficient of vari­
ation of exponential distribution is unity, so that 
it is applicable i n a range of values close to uni ty. 

The mixed exponential di stribution can be applied 
if the skewness coefficient y is greater than two, 
except for station no. 13. For i t the distribution 
is not applicable in the range of coefficients 2.4 to 
3.1, but is applicable for values greater than 3.1. 
Figure 5-6 shows how the skewness coefficients of 
distributions of t for stations nos. 1-9 change with 

v 
Qb. The var iation in skewness with Qb for stations 
now. 10-17 are shown in Fig. 5-7. The higher the 
skewness coeffi cient, the more opportunity is there 
for the mixed exponential di stribution to be appli­
cable, with a better goodness-of-fit than for the 
exponential distribution. 
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Fig. 5-6 Variation of Skewness Coefficients ~ of 
Distributions of the Magnitude of Exceedance 
with the Truncation Level (Expressed as the 
Average Number of Exceedances per Year, n) 
for Station Nos . 1-9 
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Fig. 5-7 Variation of Skewness Coefficients y of 
Distributions of the Magnitude of Exceedance 
with the Truncation Level (Expressed as the 
Average Number of Exceedances per Year, nl 
for Station Nos. 10-17 

The mixed exponential distribution can be applied 
if the kurtosis coefficient is approximately greater 
than 7.5 , except for station no. 13. For it the 
mixed exponential distribution is not appl icabl e in 
the range of coefficients 13. 5 to 16.8, but is ap­
plicable for values above that range. The larger a 
value of the kurtosis coefficient, the better the 
application of the mixed exponential distribution. 

For the mixed exponential distribution, with 
three parameters s1, a2, and p, and without any loss 
of general i ty, let a1 > s2, and let p indicate the 
proportion for the exponential with the parameter 1. 
By definition, s1 >a> a2, 0 < p < 1, where a is 
a parameter if the exponential distribution is applied. 
For stations that the mixed exponential distribution 
can be applied for the whole range of Qb' such as 
stations nos. 7, 8, 9, 15 and 17, the proportion 
parameter p tends to increase wi th an increase of Qb. 
Table 5-8 shows how parameters a1, a2, and p for 
station no. 17 change with Qb. The change of moments 
and chi-square statistic for both distributions, are 
also included . 
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Table S-8. The Change of Moments, Parameters p, a1 and a2, and Chi-Square Statistic with the Truncation 

level for the Distribution of the Magnitude of Exceedance, for Station No. 17 

Truncation Level, Qb 

1850 2000 2500 3000 3500 4000 4500 5000 5500 6000 

Mean or a 3060.4 3047.5 3054.7 2992.8 2998.7 2867.2 2864.6 2884.9 3296.5 3307.8 

Coefficient 
of 
Variation 1.19 1. 21 1.24 1.30 1.35 1.46 1.54 1.61 1.54 1.61 

Skewness 5.558 5.606 5.739 5 . 813 5.828 5.764 5.632 5.449 5.109 4.940 
i 

38.45 32.26 29.38 I Kurtosis 52.02 52.06 51. so 50.61 48.26 45.87 42.33 

' p 0.014 0.016 0.020 0.031 0.041 0.064 0.082 0.102 0.111 0.135 
I 
; 81 14969.2 14580.2 14077.9 12837.7 12370.5 11149.6 10772.7 10509.8 11015.5 10746.8 

I 
; 82 2892.6 2862.8 2825.9 2674.3 
; 2 
X by 

. Mixed 
,Exponential 3.275 3.387 4. 003 3.202 

x2 by 
Exponential 26.861 28.521 30.550 36 . 879 

5.5 Probability Distribution of the largest Exceedance 

The main purpose of the study of partial flood 
series is to develop the probability distribution of 
the largest exceedance in a year. This distribution 
can be then used to estimate flood exceedances for 
gi ven annual return periods . It can be derived by 
using the combination of distributions o~ the number 
and the magnitude of exceedances above the selected 
truncation level. 

let n represent the number of exceedances in a 
year and {t }~ , represent a sequence of the magnitude 

\1 1 
of those exceedances . It is shown in Section 3.4 
that the distribution of the largest exceedance in a 
year is expressed by 

~ 

F(x) = P(n=O) + I P( max (\/ ~ xn n=k], 
lc•l 1~v~lc 

(5-3) 

with max t
11 

• max( c1,c2, .•. , f; k) "the random variabl e 
l ~_v~k 

which represents the largest exceedance in a year. 

Two assumptions are used in order to simplify 
the application of Eq. 5-J. The first assumption is 
that {t }~ are independent of n. The second assumption 

\1 1 
is that {( }~are mutually independent random variables 

\1 1 
with the common distribution function H(x). 

The test whether {( }~ are independent of n. the 
\1 1 

exceedances t are divided into groups which have the 
\1 

same number of exceedances per year, n. Because of 
short sample data, the {t }~ are divided into only two 

\1 1 

2601.1 2301.1 2157.6 2017.2 2329.2 2143.2 
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. 
3.860 5.933 8.152 9.684 3.472 2. 569 

38 .491 56.742 43.652 43.589 27.572 28.670 

groups. The exceedances {t }• with small n are 
\1 1 

combined into one group, while other exceedances with 
larger n are considered as the other group. For 
example, the first group may consist of all exceedances 
with n " 1, 2, and 3. All other exceedances are then 
considered as the second group. The idea is that the 
total number of exceedances in each group should be 
close together. The two-sample-Smirnov-Kolmogorov 
test is then used to test the hypothesis that the 
distributions of the t 's corresponding to the two 

\1 

groups are identical. Under the null hypotResis of 
equality of the two distributions, the statistic 

6 • max jH1(x) - H2(x)j 
X 

(5-4) 

has some distribution whose 95 percent quantile is 
approximated by 

6 .. 1. 358 
c (5-5) 

where H1(x) is the sample distribution function of 
t 's corresponding to the fi rst group with sample size 
n~ and H2(x) is the sample distribution function of 
the t

11
's of the second group with sample size n2. 

The results of the test for 24 exceedance series 
of 12 stations , each with two selected truncation 
levels, are shown in Table 5-9. This table incl udes 
station number, truncation level, average number of 
exceedances per year , sample size of each group, the 
computed 6, and the critical value 6c. All of the 
computed 6 are less than 6c· This implies that the 
null hypothesis cannot be rejected at the 95 percent 
significance level. That is , t he hypothesis that 



Table 5-9. Two-Sample-Smirnov-Kolmogorov Test for the 
Hypothesis that t he Distributions of t he 
~v's Corresponding to the Two Selected 
Groups are Identical 

Slllirnov- Kolmogorov 
Aver age S'""ple Sizes Statistics 

Truncation ~1.1111bcr of nl I 0 2 
Computed Cr1tica1 

Station Leve l ev pe!,. Year, Values Values 
Nucber Qb " ~ 6 

! c 

I llSOO 2.69 56 
149 

0.102 0.266 
I 12500 2. 28 52 37 0 . 096 0.292 
2 1000 3.54 64 74 0.150 o. 232 
2 1250 2.59 53 48 0. 130 0 . 271 
J 6000 4.00 58 94 0.190 i 0. 227 
J 9000 2. 55 53 44 0.090 o. 277 
4 2500 4. 58 89 76 0.090 o. 212 
4 3250 2. so 44 46 0. 200 0. 286 
5 5000 3.56 51 77 0.210 o. 245 
5 7000 2.42 43 o44 0 .185 0. 291 
6 4000 3.00 68 149 0. 220 0 . 255 
6 4250 2.67 45 59 0. 209 0.269 
7 600 4.14 92 61 0.157 0.224 

7 700 3.27 70 51 0.235 0.250 
9 4000 4 . 03 66 83 0 . 170 0 . 224 
9 6000 2 . 67 44 55 0.100 . 0. 275 

11 7000 3 . 28 62 66 0.070 0.240 
ll 8000 2.51 55 43 0. 105 0.276 

12 2500 2 . 76 58 44 o. 200 o. 272 
12 3250 1 . 97 34 :19 0 .290 0.319 
16 2500 4.27 90 68 0.095 0.218 
16 3000 2.65 47 51 0.130 0.275 
17 3000 3.26 57 70 0.150 0.242 
17 3500 2. 74 51 56 o.oso 0.263 

t he distribution of the magnitude of exceedances does 
not depend on the value of n cannot be rejected and 
hence it will be assumed that the {~ }~and n are 

\) 1 
i ndependent. 

The study of dependence of successi ve exceedances 
for a selected Qb is presented later in this chapter . 

Under the conditions that {(v}~ are independent 

of n. and { ~ }~are mutually independent random 
\) 1 

variables with the common distribution function H(x), 
the distr ibution of the largest exceedance, Eq. 5-3, is 

F(x) = P(n=O) + L [{H(x)}k • P(n=k)) (5-6) 
k=l 

The distribution of n. P( n=k), used is either 
the Poisson distribution, 

->. k 
P(n=k) = e kt (5-7) 

or the three parameter mixed Poisson distribution, 

P (n=k) 

->.1 k -Az k 
p e >.

1 
e >.2 

kl + (l - p) -k-1- (5-8) 

wi th>.= parameter of Poisson, and p, >.1, and >.2 ~ 

parameters of mixed Poisson distribution, respectively. 
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The common distribution function of ; 's is either 
the exponential distribution, v 

H(x) = 1 - exp(- ~) 
II (5-9) 

or the three-parameter mixed exponential distribution, 

H(x) p ' [ 1 - exp (- ~)) + 
Ill 

(1 - p')[l - exp(- ~)] 
1!2 

(5-10) 

with e = the parameter of exponential, and p', e1, and 
e2 = parameters of mixed exponential distribution, 
respectively. 

5.6 Statistical Dependence in Partial Flood ?eak Series 

One of the often-stated drawbacks of t he partial 
flood series i s that successive series values are not 
independent. To test whether the series of t he magni­
tude of exceedances is independent stochastic process, 

~ the correlogram of each series of 17 sets of ~ is 
v 

investigated for independence with 95 percent tolerance 
limits. l ags from one to one-third of total number of 
exceedances are checked, for various Qb. The 95 per-
cent tolerance limits, ru and rl , for an independent 
seri es are given by 

- 1 + t ..-'N-"k-2 
ru,1 = -N-k-1 ( 5- 11) 

with k = the lag , t 1. 96 = the value of standard 
normal di stribution for a two-tail test that p k = 0 
for k > 0 at t he 95 percent level, and N = the sample 
size. The range of Qb, the number of Qb withi n the 
range, total number of computed rk, the number of times 
and the percent of times that rk is outside the 95 
percent tolerance limits for each series are shown in 
Table 5-10. If Qb is selected i n such a way that 
n varies approximately from 1 to 4, the percent of the 
total number of rk of all seri es outside the 95 percent 
tolerance limits is 4.37 . or less than the expected 
value of 5.00. Only two out of 17 series have the 
percent of rk outside the 95 percent tolerance limits, 
7.04 and 8.66, which are more than the expected value 
of 5. DO. 

Since t he fi rst-order serial correl ation coef­
ficient, r1, is most important in non-periodic series, 
some further information is provided in Table 5-11 . 
Values r1 in the range of n from 1 to 4, are approxi­
mately within the 95 percent tolerance limits. The 
change of rl for al l t he 17 series, wi t h Qb are shown 
in Fig. 5-8 and the upper and lower tolerance limits 
included. This figure shows t he average r

1 
of all 

stations wi thin the 95 percent tolerance limits for the 
range of n from 1 to 4.5. When Qb decreases so that n 
is greater than 4.5 , rl tends to fall outside the 95 
percent tolerance limit. For more details, the 
relationship between r1 and Qb, in such a range of Qb 
that n varies from 1 to 4 or 5, and for each station, 
is given in the appendix. The relationship between 
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Fig. 5-8 Relationship between the Average First-Order 
Serial Correlation Coefficient. r1 and the 
Truncation Level, Expressed as the Average 
Number of Exceedances per Year, n 

Table 5-10. Summary of Study of Dependence of 
Successive Exceedances above the 
Truncation Levels 

, .. ,. .. ] R~nac of Number of Tot31 Number of Percent o 
Qb Qb Number o f Time s rk Times r k 

Expre~sed in the Computed is o:utside is outside 
!Number by n Range rk 95\ T. L. 95~ T .L. 

I 
i 
i 

1 1.13- 4 .10 11 283 14 4.95 

2 0 .97-4.03 9 255 3 I. I S 

s 0. 97- 5 . 61 11 373 17 4.56 

4 0.97-4. 58 9 222 II 4. 95 

5 I 0. 89-4 . 64 I 10 258 7 2 . 71 

6 I. 00-4.31 I 11 336 14 4.17 

7 1.24 -5.49 11 402 11 2. 74 

8 I. 00- 4.82 11 355 25 7 .04 

9 0 . 97-6.86 10 358 31 8.66 

10 0.83-4 . 94 .l1 352 17 4.83 

II 0 . 92- 3 .82 11 303 13 4.29 

12 0.78 -5.89 10 271 12 4 ,4:; 

13 0. 97 - 5 . 97 II 348 16 4. 60 

14 0.87-6. 05 10 326 16 4. 91 

I S 0.64 - 5 .10 10 323 8 2.48 

16 0 .86-4.27 9 237 12 5 . 06 

17 1.08-5. 15 II 420 9 2 .10 

176 5402 236 4 .37 

r1 and Qb' for the whole range of Qb, and fo r stati on 
no . 9 is also given as an example in the appendix. 
Table 5-12 shows the number and the percent of times 
that the first 15 values of rk of all series, with 
such a range of Qb that n varies from 1 to 4.5, are 
outside the 95 percent tolerance limits. The overall 
average percent is 4.01. 
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Table 5-11. Range of Truncation Levels with First 
Serial Correlation Coefficients either 
within or outside the 95 Percent 
Tol erance Limits 

n ~ith r 1 Outside R<~nge of n with r
1 

}stat ion Number Wi t hin 95 Percent T. L. 95 Percent T . L. 

I 1.13-4 .10 

2 0.97-4.03 

3 0.89-5.61 

4 0.97-4. 30 4.58, 5 .47 

5 0.89-4. 20 4 .64. 5. 36, (>.14 

I 
4. 31 I 6 1.00-3.50 

I 

I 7 1.24-5 .89 

I 8 0 .82- 4.82 

I 9 0 .97-4 .80 5. 16, 6.86 

I 10 0.50-2.56;3.30 - 4.10 2 .61 ' 3 . 06, .4. 31' 

I 
4.94 

II 0 . 85- 3.82 

I 
12 0 . 65- 4. -10 5 .89 

13 1.17-5.97 

14 0. 77-3.80 4 .41 , 6 . 05, 9. 26 . 
10.28 

IS 0.41 - 4.88 s .10 

16 0.66-4.27 

17 0 .92- S . l S 

Table 5-12. Number and Percent of Times that the 
First 15 Values of rk of All Series with 

Lag 
~umher 

l 

2 

:1 

4 

s 

6 

7 

8 

9 

10 

ll 

12 

13 

14 

15 

Total 

such Tru.nca t ion Leve 1 s for n to Vary Ap­
proximately from 1 to 4.5, that are out­
side 9·5 Percent To 1 erance Limits 

NtJober of Times that the F:i.rst 
15 Val ues of 'k of All Series 
.-re Outs ide 95 Percent T. L. Percent aae 

9 5 .36 

I 0.60 

s 2 .98 

4 2.38 

5 2 .98 

7 4 .17 

9 5 .36 

3 1. 79 

s 2.98 

Jl 6 . 55 

10 5.95 

15 8.93 

4 2.38 

10 5.95 

3 1 . 79 

101 4.01 

It can be concluded from the study of correlo­
grams, in such a range of Qb that n varies from 1 to 
4, that the dependence in the partial series of 
exceedances is not significant from the poi nt of view 
of practical applications. If Qb is lower than this 
range, the dependence may not be neglected, and it 
tends to increase with a decrease of Qb. 



5.7 Statistical Dependence of Annual Flood Peak 
Series 

Annual flood peaks are commonly assumed to be a 
series of independent events. If these flood peaks 
are .not independent, an effect would be the underesti­
mation of the sampling variance of the T-year flood. 

The dependence of annual flood peak series is 
also studied by using their correlograms. Each annual 
flood series of the 17 stations is tested for signifi­
cant departure from independence. The number of years 
of available records varies from 36 to 40 years. The 
first 15 rk values of each series are checked for the 
number and percent of rk values that are outside the 

Table 5-13. Number and Percent of Times that rk of 

Annual Flood Series of Each Station are , 
outside 95 Percent Tolerance Limits 

Stotion I Number of Lags that 
NUIIbcr rk Outside 95 Percent T.L. 

Las Nu11bers for I 
rk Outside 95 Percent T. L. 1 Percent 

l 0 

I 
0.00 

2 I 7 6 . 67 

3 1 12 6.67 1 

4 0 0 . 00 

5 2 3 , 9 13.33 

6 2 I 5. 12 13.33 

7 2 s, 13 13.33 ! 
8 0 0 . 00 ' 

9 I 11 6.67 I 
10 0 : 0.00 ; 

11 0 o.oo ' 
12 0 0.00 

I 

lJ 0 o.oo I 
14 0 0.00 . 

IS 1 s 6.67 i 
16 I II 

I 
6.67 ; 

I 
17 0 

: 
I II I 4 .:>1 

• 
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Table 5-14. Number and Percent of Stations for Any 
Specifi ed Lag k, that rk are outside 95 
Percent Tolerance Limits 

Number of Stations that 
aa ~UIIber rk are Outside 95 Percent T . L. Percent 

I 0 0 . 00 

2 0 0.00 

J I s .88 

4 0 0.00 

s 3 17.65 

6 0 0.00 

7 I 5.88 

8 0 0 . 00 

g 1 s .88 

10 0 o.oo 

11 2 11.76 

12 2 11 . 76 

13 I s .88 

14 0 0 . 00 

IS 0 o.oo 

Total II 4.31 

95 percent tolerance limits for each station, and 
results are shown in Table 5-13. The number and 
percent of stations with rk outside the tolerance 
limits for each lag k are shown i n. Table 5-14. The 
percent of times that an rk is outside the 95 percent 
tolerance limits is 4. 31 , which is less than the 
expected value of 5.00. The first and second serial 
correlation coefficients of all stations are within 
the 95 percent tolerance limits. The lag with the 
maximum number of stations outside the tolerance 
limits (3 out of 17) is k = 5. If the first ten lags, 
instead of the first 15 lags, were considered, the 
percent of times that rk are outside the 95 percent 
tolerance limits is 3.53, which is also less than the 
expected value of 5.00. It can be concluded, from the 
data used that the annual flood peak series are ap­
proximately independent series. 



Chapter VI 
GENERATION OF DAILY FLOWS OF TWO CASES FOR TESTING 

APPLICABILITY OF THE DEVELOPED MODELS 

Two series of daily flows, one for the Boise 
River nedr Twin Springs, Idaho, and the other for the 
Po.,.;ell River near Arthur, Tennessee, are used herein 
to test the met~ods developed, and to estimate para­
meters of daily flow model, as outlined in Chapter IV. 
Rivers with different characteri stics of daily flow 
series are selected. Patterns of da ily flow series 
vary, depending upon the geographic location and 
climatic conditions of their river basins. The Boise 
River has a smooth rai ly flow series , as well as smooth 
estimated daily me1..o1s and daily standard deviations 
over 365 days, since most runoff comes from snowmelt . 
The Powell River has rather a highly fluctuating daily 
flow series. also resulting in highly fluctuating of 
estimated daily means and daily standard deviations, 
since most runoff comes from rainfall . 

6.1 Generation of Long Daily Flow Samples in Case of 
Boise River 

Sd.ec.Ucn o.) Se.uo1t 6Cil Gc.neJta..Uon. The Boise 
River daily flow hydrograph indicates significant floods 
only within the wet season of 5 months, or 150 days, 
February 2d through July 27, as the season for gene­
rating of daily f lLAS. For t he truncation level of 
partial flood series, selected in such a way that the 
average number of exceedances per year is about 4, only 
two out of 163, or 1.19 percent of f l ood exceedances 
occur outside this season. These two floods are not 
significant ;n their magnitude. Hence, the distortion 
in partial flood se~ies by generating daily flows 
only within the se:~cted season is not significant. 

Te~.t o 5 LogJtOn.ma.t. V.i..-~.t!Ubu.ti.o1t 6<Jit. V,Ul.!f FK.ow~ . 
For each day of the selected season, the daily flow 
sample is of size equal to the number of .years of 
ava ilable records, or 40 years in thi s case. The 
maximum likelihood !>Stimates of a , lly and oy _, of 

T ~ T , I 

each day T, are obtained by Eqs . 3-54 , 3-55, and 3-56, 
respectively. By using the lower bound and logarithmic 
transformation, the transform~d variable Yp,T is 
co1:npute;d by YP = ln(XP -a ), 1~hich is then 

, T , t 't' ... 

standardized by using estimates ~ and o . If y,T y,T 
X _for each day~ is a three-parameter lognormally p.,. , 
distri buted variable, the standardized transformed 
variable wil~ be normally distributed with mean zero 
and variance unity. 

Fits of normal distributions to frequency distri­
butions of standar~ 1 zed transformed variabl es for 
1:ach day are testeo by chi-square test. Eight class 
int erval s which equal probability are used for this 
test . Results for days 3,6,9, ... , 150, are shown in 
Table 6-1. The maximum and average chi-square values 
are 13.608 and 4.974, respectively. For four degrees 
of freedom, the 95 percent critical value of chi-square 
i s 9.49; only five 1ut of 50, or 10 percent of the 
computed chi-square values are outside t he tolerance 
limit. Although this percent outside the tol erance 
limit is greater than the expected value of 5 percent, 
the chi-square values outside the limit are mostly 
close to it. Hence, distribution of daily flows of 
the Boise River are approximately three-parameter 
lognormal. 

TC'-b.t J6 Titdc.penden.c.c. ''6 Va.U.!] Ft.Jw SvU.e.6. For 
each day the serial correlation coefficients of daily 
flow series are computed and checked for departures 
from independence. The time i nterval between two 
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Table 6-l. Results of Tests for Fits of Lognormal 
Di stri but ion to Oai ly Flows of 
Individual Uays 

P)y I n.,,. I 
~u:11~rr Chi ... !u1Uir~· i Nt..ml>~_J 

Dny I 
<:hi -~·~u.Jr• ~unb• r t:hl ·S•.fJ:.rr 

-L---I I I 1. ~cs !;4 ( •• :.::;::> 10~· I ~. i ::i:, 

i I 

I h :.40S t7 (· .100 l·l~ ! !."· . ,·,o::~ 
I 

!i . t~US •. n 6 . ~·CO 
I 

I ~ 111 '. ~co 
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l$ 11. f1Z.S" Gf> ~ .~o)S ll 7 s.:;orJ 

1$ 4 .l 0~ ~~ 3 . 700 l 20 :L~?~· 

Zl •1. oos .. '. ~ .lOQ I •· 
"" I. 7·10 

<4 s. 700 --' J \1. 133 J :~ t..f.,,.! 

, 7. :os 78 ~.~().i l : ~· ;: . Ol~ 

30 10.(,1)8" fl t: .~7~ - "" • :; .l;)j. 

33 !l.lS:i ~4 ().:.~:: IJ!i -. '""·' 
;(, 5 . .;o~> 3~ : .oos l;tol :.oos 

39 4.J:ij ~0 ~ .. ~:.~ ~~I :.cos 

4~ 3.933 ~J 0 .4il8 14•1 •1. O•JS 

4 !> ~- 1J3 gr·, ~ .. :as 147 '" :75 

•b : .sr.o :)~' :.,OS 1!~0 !• . I;:; 

l.oo~ !•): • :.J:; ~ --
*Chi-square outside the 95:: tolerance 1 imit. 
~1aximum chi -square value • 13.608 
Average chi-square value = 4. 974 

successive values of dai ly flow series in this case is 
a year . The first ten lags of correlograms are 
checked for dependence. Resul ts of this test for 
series of days 3, 6, 9, ... , 150, are given in Table 
6-2. The percent of times that rk is outside the 95 
percent tolerance limi ts i s only 3, whi ch i s smal l er 
than the expected val ue of 5 percent. Al l r1, shown 
in Table 6-2, are within the 95 percent tolerance 
limits. Considering each individual day, the daily 
flow seri es is independent lognormal variable . However, 
the successive days of an entire series are highly 
serially correlated , as well known for the entire 
daily flow series. 

E~t.Uru.:t.i.on o6 PM.lm\:.tCM . The parametric method 
was used to highly reduce the total number of para­
meters to be estimated. The maximum likelihood 
estimates of the lower bound a, for T = 1,2 , ... ,150, 
are shown as curve (l) in Fig. 6-1. The daily means 
~x and the daily stdndard deviations ''x of XP _ 

' t 't ' ~ 
are shown as curves (l) in Figs. 6-2 and 6-3, res-
pectively. Periodicities exist in all of these curves, 
even though only the wet season is considered. These 
periodic parameters are fitted by Fourier ser ies 
harmonics. The number of significant harmonics for 
each periodic parameter is estimated by using pro­
cedure outli ned in Section 4.4. Results of the 
selected number of significant harmonics as well as 
the Fourier coefficients of a , ~ • and a are 

T X,l X,T 
given in Table 6-3 . The fitted functions for these 
numbers of signifi cant harmonics of a , ~ , and a 

~ X,t X,t 
are shown as curves (2) in Figs. 6-1 , 6-2 and 6-3, 





Tilblc 6-3 . Number of Significant Harmonics, Explained Variances, and Fourier Coefficients of Periodic 
P~rameters ~X , ox and a of Xp Series ,., , ,. ,. , ,. 

p- - · - -

I 
Fourier Coefficients 

I Number 

I of A 
l'•·r lodic Harmonics Explained 

i 

Par am<:!t Cr Used Variance Mean 1 2 3 4 5 6 7 8 I 

~X,T ·I 0 . 988 2243 . 90 - 1617.85 - 14 . 27 12 .92 10.4 2 I 
0 

X,T 
5 0. 968 1776 . 71 -756.40 -109 . 99 42.99 -33 . 30 - 10 .48 

a 8 0 .830 -oil.86 61. 66 1276.71 -209. 24 -640.9i .n.9o 205 . 21 128 . 99 -52.J 
T 

B 

l 2 3 4 5 6 7 8 

)JX , t 
tl 0 . 988 2243 . 90 -707 . 72 118 .10 17 . 30 t19.48 

i 
G 5 

X,T 
0 . 968 1776. 71 - 299.27 - 12. 99 -24. 32 69.71 -56.11 

a 
' 

8 0. 830 -671 .36 1629. 77 -208 .60 -738 . 59 86 . 58 401.10 116.56 -156. 79 -48. i2 

For the estimation of parameters of dependent 
stochastic component is usually sel ecting of the order 
of the autoregressive model, and when necessary the 
number of si gnifi cant harmoni cs of rx(k, t ), and 
k = l ,2, ... ,m, with m =the order of the model . The 
procedure i s not used herein in the study of dependent 
component of transformed variabl e Yp , in order to 

, T 

avoid errors resulting from removal of periodicities 
in a , ll and o . In thi s study the Fourier seri es 

1' y, T y, T 
analysis is used t0 fit periodicities in rx(k, t ). Then 

val ues of ry(k,,. ) are obtained from rx(k ,, ). by Eq. 

4-11. The order of the autoregressive model and the 
number of si gnificant harmonics of rx(k,,. ) are select ed 
by comparing the average values of rx(k,t), the shapes 
of the rx(k,t ) curves, and the patterns of the daily 
flow hydrographs of generated samples with t hose of 
t he corresponding hi storic data. 

The f irst-order autoregress ive model was not used 
since it produced generated daily flow samples with 
more fluctuation of daily flow hydro~raph than the 
hi stori c flows . The shape of the rx{k, t ) curves of 
t he generated samples did not sufficiently coincide 
with those of histor ic data. Improvements were signi­
fi cant by using the third-order autoregressive model, 
and it was selected for this study. 

The computed rx(l, ,.), rx(2, ,. ), and rx(J , ,. ) are 
shown as curves (l) in Figs. 6-5, 6-6 and 6-7, res­
pectively. The Fourier coeffi cients and the number 
of significant hamonics for each series of rx(k,t ) 
are given in Table 6-4. The fitted rx(k ,r ) cur ves , 
k = 1, 2, and 3, with the number of significant 
harmonics of Table 6-4, are shown as curves (2) in 
Figs. 6-5, 6- 6 and 6-7, res pectively. However, by 
using these Fourier coefficients, the average values 
of rx(l ,,.), r x(2,t) and rx(J, ,. ) of the generated 

Table 6-4 . Number of Significant Harmonics, Explained Variances, and Fourier Coefficients of Periodic'' 
Parameters rx(l, t ), r {2,t ) and r (3, t ) of X Series 

X X p ,T 

, ~;u:;:be r 
' of I . ! 
iPe!· i oC.ic IH~r:c.onics . Explnned i 
IP:name:~er Ust·d ' \'3rtar.ce 1 C.tc:1.n 

r-::-(l,T) :, 4 0.::52 : 0 .9331 l ·x. · !co .9s'is) 
. I , 
! I l 
I rx.(2 , r) i 4 0 .441 I O. Si55 
I I (O . SS·5l) 

r (3 , •) l 
X I 

4 

I 

0 . 5·12 0 . 8163 
(0 . 8320) 

Fourier Co~fficients 

B 
~·---------------------------~--------------------------~ i 

l 

-0.0058 

I 
' 

o.ooss 

0 . 0226 

2 :; 

-o. oos.t o. oos2 

-O. Ol.JO 0.0127 

-0.0236 0. 01SS 

4 2 3 

0 . 0039 - 0.0180 - 0. 0190 -0.0170 -0.01)9i 

0.0043 -0 . 0463 -0 . 0403 -0 .0380 - 0. 0113 

0 . 0026 - 0 . 0704 - 0. 0594 - 0. 0565 - 0 . Ol·ll 
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Fig. 6-5 First Seri al Correlation Coefficients, 
rx(l,T), with: (1) Estimates from Historic 
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Second Serial Correlation Coefficients, 
rx(2,t), with: (1) Estimates from Histor ic 
Data, (2) Fitted Periodic Function, and (3) 
Estimates from Generated Sample 
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Fig . 6-7 Third Serial Correlation Coefficients, 
rx(3,r) , with: (1) Estimates from Historic 
Data , (2) Fitted Periodic Function, and 
(3) Estimates from Generated Sampl e 
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sample tended to be smaller t han the average values of 
rx(l , r ), rx(2, T) and rx(3, t ) of the historic dat a, 
respectively. These effects likely result from biases 
in estimates of rx(k,t), since t he sample size is only 
40 years. Estimates are adjusted for biases by 
increasing the av€rage values of rx (1, , ), rx(2,, ) 
and rx(3, , ) from 0.9331, 0.8755 and 0.8168 to 0.9575, 
0.8951 and 0.8320, respectively. 

In concl usion, the total number of parameters used 
in the generation of daily flow samples by the mathe­
matical model of this study depends on the ·number of 
significant harmonics used for fitting the series of 
a, JJ , cr and r (k, t), k = 1,2, .. . ,m, by Fourier 

t X,T X, T X 
analysi s. In case of t he Boise River, and using the 
wet season of 150 days, 9 parameters are used for 
JJx , 11 parameters for ox , 17 parameters for a , 

, T , T 1' 

9 parameters for each of rx(k, t ), k = 1, 2, and 3. 
The total number is 64. In case of t he non-parametric 
method, the total number of parameters would be 900 . 

Ge.neJz.a-ti.on o6 Lung Vailtj Flow Sampie-6 . Fifty 
samples of daily flows, each 40 years long, were 
generated for wet season of 150 days. The tot al 
number of generated years was 2000. The set of 40 
year samples is selected for compari son of characteri­
stics of generated daily flows with the corresponding 
character1 stics of histori c seri es of the same sampl e 
size . The model for generation should preserve the 
mean, standard deviation, skewness coefficient, and 
the first three ser ial correlation coeffici ents, or 
distributions of historic daily flows of each day. 
The degree of preservation of these propert ies depends 
on how well daily flows of each day are fitted by the 
three-parameter lognormal distr ibution, and t he third­
order autoregressive model of dependent stochast ic 
component, as well as how wel l t he model parameters 
are estimated. 

6.2 Comparison of Characteri stics of Generated Da i ly 
Flows with Corresponding Characteristics of 
Historic Daily Flows in Case of Boise River 

The practical use of a model ultimately depends 
on its capacity to generate new samples that preserve 
characteristics of historic series. The main objective 
of generating new daily flow samples is to study 
properties of annual and partial f lood peak series , 
but not to check how correctly t he model preserves 
characteristi cs of historic series . Therefore, the 
purpose of comparison of charact eristics of generated 
series with corresponding hi stori c series is to 
ascertain whether generated series preserve i n practi­
cal terms some characteristics of historic series , at 
l east for purposes of this study. 

Compalu.<~on BMed on. Vail.!! Flow Se1Ue.6 . The 
comparison of characteristics of generated series 
with t hose of historic series is made in four steps : 

(1) Two typ·ical daily flow hydrographs of 
hi storic data, co nsidering only the sel ected wet 
season, as shown in Figs . 6-8 and 6-9, are visually 
compared wi th two typical daily flow hydrographs of 
generated sample, as shown in Figs . 6-10 and 6-11. 
Though the generated daily flow hydrographs have some­
what more fluctuating and sharper peaks than those of 
histori c data, general patterns are similar . 
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Mini mum Flow of 40 Years for Each Day t, 
X . (t), with: (1) Estimates from Historic m1n 
Data, and (2) Estimates from Generated Sample 

(2) Sequences of ~ , o and Yx , for sample 
X,T X, t t T 

no. 5 of generated daily flows are shown as curves 
(3) in Figs. 6-2 and 6-3, and curve (2) of Fig. 6-4, 
respectively. Figure 6-12 shows the visual comparison 
of maximum flow Xmax(t) for each day of historic data 
with the corresponding maximum flow of generated sample 
(from sampl e no. 5), for the same sample size of 40 
years. In case of minimum flow Xmin(t) for each day, 
the visual comparison is shown in Fig. 6-13. These 
figures display how the model preserves the general 
patterns of daily ·flows via ~x,t' ax,t ' Yx,t' Xmax(•) 
and Xmin (T). 

(3) Sequences of rx(l, t ), rx(2, t ) and rx(3,t), 
estimated from generated sample (sample no. 5), shown 
as curves {3) in Figs. 6-5, 6-6 and 6-7, respectively, 
are compared visually with the corresponding estimates 
of historic data, shown as curves (1) of those figures . 
By adjusting for biases of estimates for average values 
of rx(l,t), rx(2,t) and rx(3,,), the model seems to 
preserve well general characteristics of these periodic 
parameters of historic data. 

(4) The general mean, standard deviation, skewness 
coefficient, kurtosis coefficient, and the first three 
serial correlation coefficients of all data for each 
sample of generated daily flows of sample size of 40 . 
years are given in Table 6-5. Also, the number of 
adjustments for negative flows, as well as the maximum 
flow of each sample are included in this table. The 
average values for the set (of 50 samples), the 
standard deviation, the maximum value and the minimum 
value of each statistic are given at the bottom of each 
column. Estimates of historic data of corresponding 
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Table 6-5. Statisti cs of Generated Daily Flows for Each Sample of 40 Years of Records of the Set 

Sample 
Number 

10 

I I. 

12 

13 

14 

IS 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

Average 

St.Oev. 

MaJ<.iiiiUJI 

MiniiZD.llD 

Historic 
Data 

Number of 
Adjustments 
for 
Neg. Flows 

0 

10 

s 

0 

0 

0 

5 

6 

6 

0 

5 

I 

10 

0 

4 

I 

0 

0 

2 . 92 

2.53 

10 

0 

• ~aximum .... minimum 

Moments of Daily Flow Series 

Mean Std. Ocv . Skewness Kurtosis 

2178.52 1727 .OS 

2287.31 

2179 . 79 

2367.37 

2251.80 

2115.60 

2307 . 31 

2362.96 

2l38. 79 

1649.66 

1727 . 58 

1905.51 

1793.26 

1629.04 

1919.85 

1884.12 

1622.67 

2258.60 1783.81 

2224.57 1881.01 

2336 .4-4 1840.73 

2257 . 66 

2279.79 

2338.21 

2137.89 

2269. s 2 

2193 .49 

2207 .ll 

2442.61 

2230.74 

2297.40 

2178.30 

2274 .1·6 

2336 . 67 

1742.40 

1745. 47 

1916.98 

1624.64 

1671.07 

1637.20 

1828.87 

1894.68 

1662.27 

1722.52 

1759.41 

1825.92 

1826.29 

2251.94 1816 . 49 

2375.05 1910.94 

2279.57 1842 .84 

2266.16 1898.62 

2367 .16 1934.81 

2186 . 04 1753. 79 

2319.53 1821.18 

2128.38 1548.12** 

2222 . 85 1737 . 83 

2247 .OS 1724.81 

2308 . 03 1952. 03* 

2267.32 1787. 38 

2387.74 1817.61 

2315 . 03 1793.03 

2198.08 1838.89 

2203.97 1823.04 

2226.80 1689.09 

2185.28 1713.33 

2263.62 1702 .60 

2251.12 1715.06 

2111.53 .. 1618.45 

2245 . 2.2 1719.48 

2162.97 1653.65 

2233.23 1663 . 94 

2462. 84• 1896.03 

2258.38 

81.08 

2462.84 

2111 .53 

1771.90 

100-.08 

1952.03 

1548 .12 

2243.90 1776.71 

1.480 

1. 037•• 

1.366 

1.539 

1.292 

1.342 

1.480 

1.592 

1.230 

1.337 

1. 971* 

1.348 

1.149 

1.268 

1.498 

1.334 

1.103 

1.197 

I. 795 

1.338 

1.133 

1.126 

1.489 

I. 307 

1.246 

1 .533 

1.438 

1.326 

1.863 

1.464 

1.414 

1.396 

1.187 

1 -327 

1.211 

I. 702 

1.381 

1.196 

1 . 243 

1.479 

I . 764 

1.195 

1.464 

1.147 

1.258 

1.154 

i.314 

1.240 

1.441 

1.317 

1.369 

0.214 

1.971 

1.037 

1.219 

41 

5.572 

3.781 .. 

5 . 463 

6 .552 

4. 744 

5.101 

5. 729 

6.647 

4. 710 

s .257 

9.883* 

5.258 

4.104 

.. 5.077 

5.684 

5 .008 

4.173 

4 . 591 

a . 695 

s. 215 

4.332 

4.010 

5. 987 

4.726 

4.879 

6. 733 

s. 905 

4 . 889 

8.610 

6.499 

5.353 

5.453 

4.685 

5.303 

4. 268 

7 . 453 

5.158 

4.697 

4 . 549 

5 . 458 

8.873 

4.414 

6.017 

3. 988 

4.854 

4.088 

s .198 

4 .582 

6.026 

s .538 

5.475 

1.316 

9.883 

3 . 781 

4.156 

Average Serial 
Correfation Coefficient 

0. 9339 

0 . 9237 

0.9341 

0. 9348 

0.9342 

0.9339 

0.9347 

o. 9333 

0.9336 

0. 9323 

0.9312 

0. 9356 

0.9298 

0. 9281 

0. 9387* 

0.9312 

0.9314 

0. 9257 

0.9301 

0. 9334 

0. 9324 

0.9365 

0.9308 

0. 9307 

0. 9360 

0.9376 

0. 9376 

0.9338 

0.9316 

0. 9303 

0. 9323 

0 . 9313 

O. 92SS 

0. 9357 

0. 9314 

0. 9376 

0. 9385 

0. 9336 

0 . 9282 

0. 9339 

o. 9335 

0 . 9271 

o. 9272 

0 . 9279 

0 . 8706 

0 . 8514 

0 . 8756 

0.8751 

0 . 8772 

0 .8 764 

0.8777 

0 . 8731 

0.8733 

0 .8683 

0.8666 

0 . 8801 

0.8636 

0.8637 

0.8874* 

0.8691 

0.8690 

0. 8529 

0.8684 

0.8756 

o. 8689 

0.8806 

0.8672 

0.8673 

0.8804 

0. 8874* 

0.8820 

0.8748 

0.8647 

0.8655 

0. 8711 

0.8694 

0. 8535 

0.8786 

0.8673 

0. 8851 

0. 8862 

0.8720 

0.8647 

0. 8754 

0.8751 

0.85~2 

0. 8592 

0.8591 

0.8043 

0 . 7762 

0 .8156 

0 .8131 

0 .8168 

0.8151 

0 . 6214 

0 . 6127 

0 .8130 

0.8022 

0. 7995 

0.8260 

0. 7975 

0.8000 

0.834 7 

o. 8065 

0. 8032 

0. 7786 

0.8025 

0.8176 

0.8046 

0.8224 

0.8055 

0.8014 

0. 8261 

0.8374* 

0.8261 

0 .8137 

0. 7981 

0.8020 

0 . 8102 

0. 8080 

0. 7833 

0 . 8239 

0. 8002 

0 .8327 

0.8332 

0 . 8102 

0. 7993 

0.8198 

0 . 8134 

0. 7872 

o. 7936 

0. 7912 

Maximum 
Flow of 
Sample 

ll247 

11516 

13581 

16636 

11754 

11716 

13479 

15387 

12566 

14562 

18143 

14101 

10688 

12461 

12236 

10813 

11318 

11364 

19691* 

1:1333 

ll507 

11586 

12792 

11676 

15272 

16072 

14675 

12572 

16592 

18477 

12352 

13777 

10967 

13731 

10837 

15474 

11160 

13549 

11857 

12072 

18307 

11792 

13098 

10027 

0.9233•• 0.8470 .. 0.7741*• 12620 

0. 9304 0. 8700 0 . 8104 9368• • 

0 . 9378 

0 .9343 

0.9306 

0. 9289 

0. 9321 

0.135 

0.9387 

0 . 9233 

0 . 9331 

0 .8850 

0.8714 

0.8680 

0.8625 

0.8706 

0 . 125 

0.8874 

0.8470 

0 .8755 

0 . 8296 

0.8082 

0.8021 

0. 7958 

0 . 8084 

0.011 

0 . 8374 

0. 7741 

0.8168 

12055 

10914 

13134 

15534 

13209 

2351.03 

19691 

9368 

10800 



statistics are given at the last line of each column 
for comparison purposes. 

The average values of all samples for the mean, 
the standard deviation and the first three serial cor­
relation coefficients of generated data agree well with 
the corresponding estimates from historic data. The 
average values of all samples for skewness and kurtosis 
coefficients are somewhat greater than fo r historic 
data. This may result from large extreme values since 
samples of very high values of skewness and kurtosis 
coefficients are also samples with large extreme 
values generated. These large extreme values may also 
be responsible for the average value of maximum flows 
of 40 year samples to be greater than those of historic 
data. 

The effects of negative flows on the above statis­
tics of generated daily flows depend on the number of 
adjustments for neyative flows. On the average for all 
samples of the set, only 2.92 values out of 6000 
values, or 0.049 percent per sample of 40 years of 
daily flows, were adjusted for negative values, so 
effects of adjustment can be considered as smal l and 
neglected as such. 

CompaJ!Mon BMed on Annu.a.t Flood Se/Uu. The 
most important test of applicability of the model 
for this study is to find out whether it preserves 
the extreme values, expecially the annual flood series. 
For each 40-year sample of generated set of daily 
flows, the annual flood series is computed. Moments 
and statistics for each annual flood series are esti­
mated and results given in Table 6-6. For all samples 
the values of the mean, standard deviation and maximum 
and minimum value of each statistic are given at the 
bottom of each column. Corresponding statistics for 
historic data are also given at the last line of each 
column. The model seems to preserve some statistics 
of historic annual flood series. The average values 
of all samples for skewness and kurtosis coefficients 
are somewhat greater than those of historic series, 
likely as effects of large extremes generated in some 
samples. Some samples, however, have skewness and 
kurtosis coefficients smaller than those of historic 
annual flood series. By comparison, the differences 
between the average values of all generated samples 
and the historic values of both skewness and kurtosi s 
in case of the daily flow series are smaller than those 
for the annual flood series, the effect may be due to 
the small sample sizes (40 years) of the annual flood 
series since the reliability of estimating skewness and 
kurtosis depends on the available sample sizes. 

Compari~on based on statistics of daily flow 
series and their annual flood peak series of generated 
samples of daily flows show simi l ar characteristics to 
those of historic data. Therefore, generated samples 
produce extreme values which can be used for the study 
of flood peaks. 

6.3 Generation of Long Daily Flow Sampl es in Case 
of Powell River 

Sel.e.cti.on o6 SeMon 6011. Ge.ne.tt~Lt{.on. The Powell 
River daily flow hydrograph indicates significant 
floods only within the wet season of 9 months, or 
270 days, October 31 through July 27, as the season 
for generating daily flows. For the truncation level 
of partial flood series, selected in such a way that 
the average number of exceedances per year is about 
4, onl y 0.67 percent of flood exceedances occur 
outside this season. 
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Table 6-6. Statistics of Annual Flood Peak Series of 
Generated Samples, Each Sample of 40 Years 
of Daily Flows 

Sta tistics of Annu>l Flood Ser ies 
S3111p1e 
Number f1ean Std.Dev. Ske,..,.,ess l>urtosis Mini~u" Maximum 

6 

10 

11 

12 

13 

14 

IS 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

so 

6848.18 2 174.40 0 .48S 2 ' :>39 3595 

3445 

3S83 

4000 

3146 

2691 

3693 

3802 

3567 

3616 

2807 

3529 

4049 

3518 

6SS6. SS lSSl. 24.. 0. 906 s .184 

6926.13 2229.61 1.315 5 . 324 

7:39 .49 2669 .48 1. 709 6 . 926 

3 . 041 

4 . Ill 

3. 042 

3 . 824 

4.937 

5.673 

6 . 360 

6999.31 2 133 .U 0.3Z6 

6350. 59 1860 . 02 

7448.42 2 4S4 .61 

7380.16 2912 . Z6 

o.sos 
0.1>09 

1.013 

64S9 . 19 1 863 .06 1.109 

6971.75 2233 ,47 1.328 

7436 . 62 3238. iS• 1. 717 

7038 .59 2281. 45 1.186 

6769 .10 1798.28 0.512 2 .S34 

3 .452 

3.228 

3. 10S 

6781 .57 2164.44 0 . 823 

6749.82 2526.85 0 . 813 ZS32 

6547.02 1705 . 98 0. 852 4191 

6498. 82 1 744.90 0. 462 3 . 746 3057 

6382. 24 1 726.99 0. 737 4 ' 216 3160 

7S2S . 66 3 020.49 l. 852 9 . OSI 3449 

7417.66 2334.94 0.630 2.852 4273• 

67S0 . 09 18 04.98 0.590 3.375 3577 

6683. 13 1792.18 0 . 083 3. 567 2784 

6418.03 2170.21 0 . 973 5.068 2874 

7003 . 62 2111.88 0.431 2.561 4198 

7000.94 2137. 73 1.461 7 . 672 3667 

6938 . 35 2534.02 1. 508 6.430 3585 

6997 . 03 2498 . 91 1.406 5 . 211 3921 

7081.05 2071.19 0.664 3.725 3664 

706 1.46 2863 . 17 1.235 s .474 2931 

75 73. o1• 2557 . 22 1. 902 10 . 927• 3841 

6872.05 ll993.84 0.894 3.998 3429 

7072 ' 93 2 191.16 1.077 4.959 3727 

6308.03 1 759.14 0.848 3.953 3765 

6559.45 2373.36 0 . 736 4.162 2490· · 

7022 . 75 1894 . 02 0 .158 2 . 618 .l750 

7547.29 2882.07 1. 175 4.305 3970 

6966.69 2218.90 0.308 2 . 374 3385 

7263.88 2092 ' 31 0.680 4 . 276 3637 

6899.95 194 0.68 0.467 3. 23S 3487 

6662 .41 2312.09 0 .557 :1.049 2826 

6799 . 08 2818.13 2.097• 9 . 992 308S 

6815.37 1 967.64 O. S20 3 . 24S 3359 

6 720 . 46 24SS . 28 0 . 950 4 . 122 2931 

65S4 .35 1 783.30 0.1 40 2 . 254 3703 

6774 .47 1877.58 0 . 85S 4 . 241 3400 

6 213. 67•• l7S5.69 0.015.. 2.179.. 3117 

6788.39 1 927 . 83 0. 792 3.876 3728 

6536 . 07 203S ' 04 0.283 2 . S87 3019 

6632 .IS 2170.71 1.198 4 .3S7 4018 

7570 . 54 2468.23 1.400 S.672 4113 

11:47 

11Sl6 

13581 

16636 

ll7S4 

11716 

13479 

15387 

12566 

14562 

18 143 

141 01 

10688 

12461 

12236 

10813 

11318 

11364 

196 91• 

13333 

llS07 

11586 

IZ792 

11676 

15272 

16072 

14675 

12572 

16592 

1&477 

12352 
13 777 

10967 

13731 

10837 

15474 

Ul60 

13549 

USS7 

12072 

18307 

11792 

13 098 

10027 

12620 

936s·· 

1205S 

10914 

13134 

15534 

Avernge 6888.58 2203 . 26 0 . 886 4.433 3474 13209 

Std.Oev . 349 .15 390 .32 0. 498 1.918 446 . S9 2351.03 

1-l<l~imum 757 3 . 07 3288. 75 2 . 097 10 . 927 4273 19691 

Hi n ill>.lm 6213 .67 1 581. 24 0.015 2.179 2490 9368 

Histor ic 
Sample 6430. 00 1989.01 0 . 0531 2.184 2870 10800 

• naximum, '*'*minimum 



T~~ o6 Logno~ Vih~bution 6o4 V~ Fto~. 
Fits of normal distributions to frequency distri­
butions of standardized transformed variables for 
each day are tested by chi-square test with 8 class 
intervals of equal probability. Results for days 
l, 6, 11, ... , 261, are shown in Table 6-7. The 
maximum and average chi-square values are 13.808 and 
5.456, respectively. For 4 degrees of freedom, the 
95 percent critical value of chi-square is 9.49; only 
6 out of 53, or 11 .32 percent of the computed chi­
square values are outside the tolerance limit. 

E.t..ti.ma.t.Wn o6 Pa.Jtame.teM. The maximum likelihood 
estimates of a for -c = 1 ,2, ..• ,270, are shown as 

"C 

curve (1) in Fig. 6-14. The daily means~ and 
X,"C 

daily standard deviations cr of X are shown as 
X,"C p,-c 

curves (1) in Figs . 6-15 and 6-16, respectively. 
Periodicities exist in all of these curves with more 
fluctuating around the periodici ties than for the 
Boise River. Results of the selected number of 
significant harmonics and the Fourier coefficients of 
a,, ~x and ox are given in Table 6-8. The fitted 

, T , t 

'"" 

= 
roo 

·<C l 
-.w r 
·>00 

";~ ~ 
:~ ~_Mt 

T 

Fig. 6-14. Lower Bound a with: (1) Maximum Likeli ­

hood Estimates, (2) Fitted Periodic Function, 
~nd (3) Observed Minimum Values Xmin(-c) of 
p,-c 

Fig. 6-15 Daily Means, 
from Historic 
Function, and 
rated Sample 

\l , with: ( 1) Estimates 
X,t 
Data, (2) Fitted Periodi c 
(3) Estimates from Gene-
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Table 6-7. Results of Tests for Fits of Lognormal 
Distributions to Daily Flows of Individual 
Days 

Day 
Nwnber 

6 

11 

I
I 16 

21 

i 26 

! 31 

il' 36 
41 

46 

i 51 

! .. 56 

i 
1 61 

1 66 

71 

76 

81 

Chi-Square 
i Day 
~ Nul11ber 

7.208 86 

2. 733 91 

6 . 275 96 

3.533 101 

5.875 106 

5.933 Ill 

2.900 116 

3 . 300 121 

1.608 126 

4.500 Ill 

5.208 136 

2.333 141 

3.208 146 

5.533 151 

7.075 156 

8.275 161 

4.808 166 

171 

Chi·Squ~re 

13 .808* 

6.808 

u .4o8• 

3. 933 

4.100 

2. 275 

11 .408• 

7.300 

8.900 

6.900 

3.300 

0.808 

10.100* 

3.408 

2.333 

6 .100 

1.608 

5.133 

Day 
~mber, 

176 

181 

186 

191 

196 

201 

206 

211 

216 

221 

226 

231 

236 

241 

246 

251 

256 

261 

Chi-Square 

7. 208 

4. 100 

6.008 

11 . 608• 

6.500 

4. 208 

3.300 

1.533 

3.300 

4.008 

2.333 

7. 700 

3.133 

5. 300 

4.33> 

8. 733 

Jl. 533• 

2. 408 

functions for those numbers of selected harmonics of 
a , "x and ox are shown as curves (2) in Figs. 

"C ,T ,T 

6-14, 6-15 and 6-16, respectively. Number of days 
having negative a, in Fig. 6-14 is less than that of 
the Boise River since , on the average, the values of 
skewness coefficients of daily flows of the Powell 
River, shown as curve (1) in Fig. 6-17, are greater, 
The fitted function of aT using the selected harmonics 
results in some days, the fitted a, are greater than 
the observed minimum values of XP for the same days. 

, T 
Improvements were not significant by increasing the 
number of significant harmonics. 

The third-order autoregressive model was selected 
to represent the dependence of stochastic component of 
daily f low series. The estimates of rx(l ,-c), rx(2, -r) 
and rx(3, r) are shown as curves (1) in Figs. 6-18, 

6-19 and 6-20, respectively. The Fourier coefficient5 
and the selected number of significant harmonics for 
each series of rx(k,r ) are given in Table 6-9. The 
fitted functions of rx(k, -c}, fork= 1, 2 and 3 are 
shown as curves (2) in Figs. 6-18, 6-19 and 6-20, 
respectively. By using these Fourier coefficients , 
the average value of rx(l, r) of the generated sampl e 
was smaller than the corresponding average value of 
r (1 , -c) of the historic data, while the average values 

X 
of rx(2,t ) and rx(3, -c ) of the generated sample were 
larger. Estimates are adjusted for biases by in­
creasing the average value of rx(l , t ) from 0.8305 to 

0.8480, and by decreasing the average values of rx(2,T) 
and rx(3, T) from 0.6133 and 0.4723 to 0.6100 and 

0.4700, respectively. 

., 
:•, 



Fig. 6-16 
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Daily Standard Deviations, ax , with: 
tT 

(1) Estimates from Historic Data, (2) Fitted Periodic 
Function, and (3) Estimates from Generated Sample 

20 

I ., .. :: 

r 
1 
I 

! 

t 
a\___! 
'&"j: 

,I 
!! 
:: 
ll $ 

::~ .. .. .. .. . 
. ~ il 1i .. 
\~: : . 
o I I o 

o 0 I 
I (a ~ ~ ~~I 

; : f ~ :~ .. . .. .. ,, 
II tt 

\! u 
~ ll 

f 

~ I 

1
: ! 

II : -1 

l :~ l ... r

1
. 11\ .. ~.\j·: ~ 

: :: ~: ··! IU· ~ :v! :·:~. ~1··1 ·t~L ~J :• . ; : .. ~ . :. ;.l 
A, :; i ; ::;I ~.'\1,:! 

' :n: I·' 
\

00 

II • ; :: 

:; ~I f 
• i H 

~ 

Fig. 6-17 Daily Skewness Coefficients, Yx , with: (1) Estimates from Historic Data, and 
, T 

(2) Estimates from Generated Sample 
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Fig. 6-18 First Serial Correlation Coefficients , rx{l, -r ), with: {1) Estimates from Historic 
Data, {2) Fitted Periodic Function, and {3} Estimates from Generated Sample 
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Fig. 6-19 Second Serial Correlation Coefficients, rx{2,-r}, with: {1) Estimates from Historic 
Data, (2) Fitted Periodic Function, a,nd (3) Estimates from Generated Sample 
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Fig. 6-20 Third Serial Correlation Coefficients , rx(3,T) , with: (1) Estimates from Historic 
Data, (2) Fitted Periodic Function, and (3) Estimates from Generated Sample 

Table 6-8. Number of Significant Harmonics, Explained Variances, and Fourie~ Coefficients of Periodic 
Parameters ~x , ax and a of XP 

,T ,T T , T 

Fourier Coefficients 
Number 

of A 
Periodic Harmonics Explained 
Parameter Used Variance Mean l 2 3 4 5 6 7 8 

~ x,T 6 0.908 1400.14 - 875.05 0.834 3.184 0.851 -27.36 15.003 

a 
x,T 

6 0 . 568 1569.03 -694.28 -145.14 42 . 044 -1.867 -52 . 128 -16.619 

aT 9 0. 792 113.16! -35.013 30.646 -9 .268 - 1.072 -12.652 11.199 1.929 -8 . 531 

I B 

i 1 2 3 4 5 6 7 8 

~X,T I 6 0 .908 1400.14 373.52 -114.81 -38.262 -34.287 -113.38 58.944 

a 
X,T 

6 0.568 1569. 03 588.37 -135.26 - 17.165 -32.354 - 172.204 141.935 

9 

-6.325 

9 

a 9 0.792 113.16 -111 .228 90.905 -51.926 20.883 -20.098 10.309 13.744 -38.561 11.724 
1 
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Table 6-9. Number of Significant Harmonics, Explained Variances, and Fourier Coefficients of Periodic 
Parameters rx(l,T) , r (2,T) and r (3, T) of X Series 

X X p,T 

Fourier Coefficients 
Number 

of A B 
Periodic Harmonics Explained 
Parameter Used I Variance Mean 1 2 3 4 1 2 3 4 

r (l,T) 4 0.1107 0.8305 0.0184 -0.0218 0.0105 0.011.13 -0. 0181 0.0097 0 . 0128 0.0143 
,x (O .8480) 

rx(2,T) 4 0. 1927 0.6133 0.0633 -0.0444 0.0274 0.0172 -0.0571 0 .0163 0. 0214. 0. 0272 
(0.6100) 

rx(3,T) 4 0.2374 0.4723 0.0794 -0.0462 0.0342 0.0149 - 0.0783 0.0238 0.0210 0.0321 
(0 .4700) 

In conclusion, the total number of parameters for 
the d.aily flow model in case of the Powell River is 72, 
with 13 parameters used for ~ , 13 parameters for X,T 
.ax ,T' 19 parameters for aT, and 9 parameters for each 
of rx(k ,T), k = 1, 2, and 3. 

Ge.neJta.t.i..on. o6 Long Va.,il.y F.tow SampleA. Similar to 
the case of the Boise River, 50 samples of daily flows, 
each 40 years long, ~~ere generated for wet season of 
270 days. The total number of ~nerated years was 
2000. 

ltOOO 

,0000 

Dischara• 
(tfs ) 

6.4 Comparison of Characteristics of Generated Daily 
Flows with Corresponding Characteristics of ~ 
Historic Daily Flows in Case of Powel l River 

Compall.il.on. ~e.d on. Vail..lj Fl.ow Se!Li..eA. 

(1) A typical daily flow hydrograph of historic 
data~ considering only the selected wet season as 
shown in Fig. 6-21, is vi sually compared with a 
typical daily flow hydrograph of generated sample, as 
shown in Fig. 6-22. 

(2) Sequences of ~x , ax and ~x , for sample 
,T ,T ,T 

no : 1 of generated daily flows are shown as curves (3) 
in Figs . 6-15 and 6-16, and as curve (2) in Fig. 6-17, 
respectively. Figures 6-23 and 6-24 show the visual 
comparison of maximum flow, Xmax(T), and minimum flow, 
Xmin( T), for each day of historic data with the corres­
ponding maximum flow and minimum flow of generated 
sample (sample no. 1), for the same sample size of 40 
years, respectively. 

(3) Sequences of rx(l, T), rx(2,T) and rx(3,T) 
estimated from generated sample (sample no. 1), shown 
as curves (3) in Figs. 6-18, 6-19 and 6-20, res­
pectively, are visually compared with the corres~onding 
estimates from historic data, shown as curves (1) of 
those figures. 

(4) The general mean, standard deviation, 
skewness, kurtosis, the first three serial correlation 
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Fig. 6-21 Historic Daily Flow Hydrograph, Year 1950 
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Fig. 6-22 Generated Daily Flow Hydrograph 

coeffic:ents , the number of adjustments for negative 
flows, and the maximum flow, of all data for each 
sample of generated daily flows, 40 years long, are 
~iven in Table 6-10 . The average values for the set 
{of 50 samples), the standard deviation, the maximum 
and minimum value as well as the historic value for 
each statistic are given at the bottom of each column. 



Table 6-10. Statistics of Generated Daily Flows for Each Sample of 40 Y~ars of Records of the Set 

Smmple 
NUlllber 

10 

11 

12 

13 

14 

IS 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

31 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

so 

Averaae 

Std.Dev. 

MUimuJI 

lllni­

Hlstorlc 
Omta 

NUIIber of 
Ad)USt•onts 
for 
Neg. Flows 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

0 

0 

0 

0 

0 

0.400 

0.656 

2 

0 

llverace Serial 
Mo,..nts of Dally Flow Seri es Correlation Coefficient Maxl.aUII 

Flow of 
~lean Std .Oev. Skewness Kurtosis rx(l,t) rx (2 ,t) rx(3, t) Samplo 

1402.95 1703.35 

1368.35 1705.23 

1339.10 1597.78 

1467.59 

1409.91 

1334.59 

14ll.76 

1470 .14 

1333.29 

1438.59 

1383.19 

1490.37 

1368.06 

1362.99 

1468.80 

1323.79 

1467.32 

1339.02 

1535. 36• 

1467.53 

1428.17 

1418.27 

1444 .39 

1412.48 

1414.09 

1458.40 

1343.19 

1397.54 

1443.79 

1401.62 

1418.95 

1352.76 

1403. 86 

1407.98 

1431.31 

1412.87 

1517 ,4 

1382.90 

1381.68 

1394.23 

1354.83 

1349.73 

1960.17 

1692 . 12 

1599.77 

1800.29 

2042.24 

1621.36 

1731.86 

1921.81 

1882.01 

1741. so 
1748.98 

1910.88 

1650 .28 

1174.66 

1808.08 

1969.89 

2000.51 

1853.75 

1725 . 86 

2003 . 10 

1678.14 

1983.64 

1846.95 

1630.04 

1788.07 

1885 . OS 

• 1733 . 18 

1831.66 

1695 .75 

1768. 50 

1750.91 

1907.13 

1884.84 

2045 . 33" 

1659.51 

1853.63 

1829.48 

1644.73 

1676.83 

1412.75 1705.97 

1427 . 42 1857.82 

3.773 

s . 781 

3.707 

4.964 

3 . 966 

5.095 

5 .289 

5.078 

3.849 

3.676 

6 .706 

4.056 

5.507 

4 .128 

s .139 

4 .269 

3.891 

7.372 

4.387 

4.830 

4,491 

3.466 

5.557 

3.218 

6.999 

4.192 

4 .013 

4.679 

4. 513 

3.602 

4 .210 

5.472 

3.739 

4.362 

4.574 

4.681 

6.589 

4.026 

29.159 

98 .4l6 

25.067 

49.147 

32.248 

60 . 767 

56.255 

50.306 

27.456 

24 .776 

88.806 

32.565 

61.308 

30.776 

54.974 

36.908 

30.849 

122.990 

37.156 

45. 7Sl 

35.198 

22.442 

57.345 

19. 161 

117.991 

31.041 

31.127 

48.809 

40.777 

22.761 

32.921 

61.127 

24.062 

39.170 

35.616 

41.634 

110 .18 

32.026 

0.8430 

0 . 8283 

0.8331 

0.8414 

0.8381 

0.8389 

0.8339 

0. 8429 

0.8365 

0.8332 

0.8431 

0.8364 

0. 8252 

0.8397 

0. 8455 

0.8372 

0.8324 

0.8261"" 
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Fig. 6-23 Maximum Flqw of 40 Years for Each Day t, 
Xmax( t ), Wlth : (1) Estimates from 

... 

Historic Data, and (2) Estimates from 
Generated Sample 
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Fig. 6-24 Minimum Flow of 40 Years for Each Day t, 

Xmi n ( t), with: (l) Estimates from 
Historic Data, and (2) Estimates from 
Generated Sample 

The average value of all samples for the mean and 
the first three serial correlation coefficients of 
generated samples agree well with the corresponding 
estimates from historic data. The average values of 
all samples for the standard deviation, skewness and 
kur tosis as wel l as the ·maximum flow of each sample 
are somewhat greater than for the historic data. 

The effects of adjustment for negative flows on 
the above statistics of generated daily flows are not 
significant since, on the average for all samples of 
the set, only 0.400 values out of 10,800 values or 
0.0037 percent for sample of 40 years of daily flows, 
are adjusted for the negative values. 

Compali.(Aon Bat.ed on Ann.u.al FR..cod SeM.eA . For 
each 40 year sampl e of generated set of daily flows, 
the annual flood series is computed. Moments and 
statistics for each annual flood series are estimated 
and results given in Tabl e 6-11. For all samples , the 
values of the mean, standard deviation, maximum value 
and minimum value, as well as the hi storic value of 
each stati stic are given at the bottom of each col umn 
for comparison purpose. 

Similar to the case of the Boise River, compari­
sons based on stati stics of daily flow series and 
their annual flood peak series of generated samples 
of daily flows show similar characteristics to those 
of hi storic data, therefore, generated samples produce 
extreme values which can be used for the study of 
flood peaks. 
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Table 6-11. Statistics of Annual Flood Peak Series of 
Generated Samples, Each Sample of 40 Years 
of Daily Fl ows 

Stotistics of Annual Flood Series 
Sample 
Number He an Std . Oev. Skewness Kurtosis Mininnua MaximUII 

5 

6 

10927 .95 5272 .95 

11392.78 8031. 13 

10854. 23 4206.34 

12311.90 7120.14 

11606.19 5360.20 

10436.22 6989.33 

12416.98 7705.30 

13222.07 7390.74 

10950.29 

10983 .98 

12686. 24 

¢ 733.73 

41753.60 

9 161.01 

12214.13 6340 . 93 

12830.39 7793.28 

12151.52 5223.63 

11612 .45 7635.04 

10787.36 5272.58 

11649.36 5291 . 69 

11558.75 8321.41 

13177. 97 6362 . 54 

!3507.99 7082 . 30 

ll539. 02 5657.89 

11321.69 4046.33 

12647 . 83 7866 .62 

10168.24 3969.32 

13075. 18 9915 . 20 

10883.96 5886.33 

10663.42 4683.75 

11853.03 6 288 . 06 

12560.80 6928.61 

11199.29 4410.31 

ll728.24 

11333.71 

108~8. 98 

11538 .36 

11774.56 

5775.20 

7194 .48 

4552.77 

6 074.04 

6304 .09 

11674 .17 6648.23 

14603 . 34. 9 459. 35 

l. 716 

3.862 

0.6712 

2 . 077 

1.453 

2.099 

1.519 

1.835 

0 . 787 

0.862 

2.091 

1.614 

1.303 

0.867 

2. 207 

1.846 

1.642 

3. 205 

1.528 

1. 717 

1.032 

1.110 

1.685 

1.340 

3 . 525 

1.329 

1.449 

2.672 

l. 564 

0 . 268•• 

1 .366 

l. 771 

0.591 

1.473 

1.012 

1.578 

3 .362 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

11108.03 5 012 . 69 1.476 

11597.87 5973.67 0 . 861 

ll836.02 6793.56 I. 775 

10944.54 3852 . 09 0.346 

10832.05 S226.96 1.498 

10776 .18 3484 .65.. 0 . 610 

44 12554.12 8874.73 

45 9836.30 .. 4 308.80 

46 11887 . 24 s 723 . 28 

47 10982.94 5596.46 

48 10989.43 44!19.21 

49 12500.23 8971.60 

so 13079.42 11261.23• 

Average 11712.14 6308.25 

Std.Dev. 1337.90 1742 .33 

Maxi IliUm 14603.34 11261.23 

Mi niiDUlll 9836.30 3484 . 65 

Hi s toric 
Doto 13828.50 5144.76 

• maximWD, ••minimwa 

4 . 038• 

1.143 

0 .917 

1 .872 

1.147 

3. 745 

3.534 

1.699 

0. 924 

4 . 038 

0 . 268 

0.938 

7.291 

22.179 

2.916 

7 . 357 

5.908 

7.821 

4.960 

8 .373 

3.466 

3 .988 

7.831 

6 .691 

4 , 484 

4.142 

9 . 193 

8.521 

6.642 

15.301 

5.056 

7. 705 

3.504 

4 . 998 

6.019 

5.918 

!8 . 061 

4 . 427 

6 . 141 

14. 206 

s .165 

2 . 767 

5 . 469 

6.024 

2.673 

4. 932 

3. 161 

6.231 

18.261 

5.966 

2 .666•• 

6.585 

2 . 781 

6.022 

3 . 610 

23. 665• 

4.575 

3.424 

7.816 

4.886 

20.528 

16.838 

7.553 

5.306 

23.665 

2 . 666 

3.908 

3869 

4546 

4257 

4047 

3414 

4048 

4266 

3636 

3781 

4329 

3641 

3884 

4235 

4270 

2844** 

3654 

4518 

3868 

5808* 

3!151 

4006 
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4686 

4420 

4665 

3305 

4070 
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3196 

3889 
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3941 
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5441 

4883 
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4110 
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42139 
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33254 
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30847 
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Chapter VII 
TWO STUDY CASES OF EFFICIENCY 

OF ANNUAL AND PARTIAL FLOOD SERIES 

The long records of generated daily flow series 
for two study cases are used for compari ng efficiency 
of using annual and partial flood series for estimating 
f lood peaks of gi ven return periods in this chapter. 

for each Qb. In case of the Powell River, the changes 
of A, e. and Qb + el nA with the change of. Qb for all 
generated data are given in Table 7-2. 

It includes the comr3rison of sampling variances of 
flood values for given return periods obtained from 
annual and partial flood series. Comparison of 
sampling mean square errors of estimates of flood 
values for given return periods in case of use of 
annual and partial flood seri es is also investigated. 
The long records of generated daily flow series are 
used fo r verifying rroperties and assumptions , as 
required in the dev~lopment of the partial flood 
ser ies model. 

7. 1 Annual and Partial Flood Series of Generated 
Daily Flows 

The annual flood series of generated samples are 
largest f lood peaks of daily flow for generated wet 
season f lows. For each of two study cases, the Boise 
River and the Powell River, a total sample of gene­
rated 2000 years gives flood series of 2000 values 
of daily flows. 

Similarly, partial flood series for given 
truncation levels are obtained from generated daily 
flows. In case of the Boise River , the lowest trunc­
ation level Qb was selected in such a way that the 
average number of exceedances per year, estimate of 
A, is 5.166. Table 7-l gives the change of A with 

To ascertain whether annual and partial flood 
series, obtained from long sample of generated daily 
flows could be used for the study, relationships 
between frequenc i es of annual and expectancies of 
partial flood series are empi rically determined from 
generated data and compared with the expected relation­
ship resulting fro~ the Langbein method (Langbein, 
1949) , independent of any dSSumption underlying 
probability distribution functions. The magnitude of 
floods corresponding to specified exceedance probabi­
l ities are computed by l inear interpolation at the 
expected probabi l ity plotting positions , m/(n+l), 
with m ~ rank in descending order, and n = number of 
years of records, for annual flood series. Corres­
ponding expectancies of partial flood series are 
established by counting the total number of flood 
peak exceedances above each magnitude and dividing 
it by the tota 1 number of years of records. The 
computed expectancies of partial f l ood series are 
then compared with corresponding expectancies obtained 
from the Langbein method. The relationships between 
annua 1 flood frequency and parti a 1 f1 ood expectancy, 
as obtained by empirical method from generated data 
and by Langb~in's method, for Qb of 2870 cfs in case 

the change of Qb for all generated data of 2000 years. 

of the Boise River, and for Qb of 4500 cfs in case of 
the Powell River, are given in Tables 7-3 and 7-4, 
respectively. For a given exceedance probability of 
annual flbod series, the partial flood expectancy, 
obtained by the empirical method , agrees well with 

This table includes also the average value of the mag­
nitude of all exceedances, estimate of e, and Qb + el nA 

Table 7-1. Var iations of Values A, e, and Qb + alnA wi th Truncation Level Qb' for Par tial Flood Series 
Sample, 2000 Years Long, for the Boise River 

Truncation Level, Qb 

2870 3500 4000 4500 5000 5250 5500 5750 6000 6250 

5.166 4.156 3. 427 2.645 2 .091 1.819 1 . 559 1.352 1.182 1.009 

2136.0 1947.0 1807.3 1770.7 1679.5 1660.7 1668.3 1655.6 1630.0 1635. 9; 
' 

6377.5 6273.6 6226.0 6222.3 6238.9 6243.6 6239.7 6249.3 6272 .6 
i 

6264.71 

Q • 1751.65 

Table 7-2. Variations of Values A, a, and Qb + alnA with Truncation Level Qb ' for Partial Flood Series 
Sample , 2000 Years Long, fo r the Powell River 

Truncation Level, Qb 

4500 5000 5500 6000 6500 7000 7500 8000 8500 9500 

A 4.476 3.721 3.134 2.630 2.237 1.926 1.654 1.417 1.250 0.940 

a 3335.5 3461.3 3568. 1 3704.7 3813 .1 3890.1 3992.7 4123.3 4139.9 4333.2 

Qb + SlnA 9494.6 9544.7 9565.9 9576.1 9567.0 9545.5 9500.9 9421.5 9165.2 9228.4 -
Note: u • 9114 . 29; a • 4114.69 
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Table 7-3. Relationships between Annual Flood 
Frequency and Partial Flood Expectancy 
for Truncation Level of 2870 cfs, for 
the Boise River 

Annual Flood Series Partial Flood Series 

Empi rical Met hod l..angbei n ' s Method 

Flood Exceedance Return I Return Return 
~a&nitude Probability Period i Expect ancies Peri od Expec tanc ies Period 

3525 
I 

0.980 1.02 3.406 0 .29 1 3.912 0.26 

3664 0 . 970 1.03 3.233 0.31 I 3. 507 o. 29 

3805 0 . 960 1.04 3.077 0.32 3.219 0. 31 

3922 0.950 !.OS 2.927 0.34 i 2. 996 0.33 

4404 0.900 1.11 2. 302 0. 43 1 2. 303 0.43 
I 

5005 0.800 1.25 I !. 709 0.58 1. 609 0 . 62 

5539 0 . 700 1.43 1.248 0 . 80 1. 204 

I 
0. 83 

6010 0.600 1. 67 0 . 957 1.04 0. 916 1. 09 

6516 0 . 500 2.00 0.690 1.45 0 .693 1.44 

7093 0.400 2 . so 0.496 2 . 02 j o. 511 1.96 

I 7782 0. 300 

: :~~ I 
0.320 3.12 1 0. 357 2. 80 

I I 
8566 0. 200 0 . 197 5 . 08 . 0. 223 4.48' 

I 9650 
0.100 10. 00 0.090 I I .11 0 . 105 9 .49 

10987 0.050 20 .00 I 0.046 21.51 0 .051 19. 50 

ll364 0.040 25.00 0.037 27.03 0. 041 24 . s o 

1 12619 0 . 020 s o . oo 0 . 017 58. 82 0 .020 49. 50 

1 13770 0. 010 1oo. oo ! 0 . 008 117 .65 0.010 99.50 

15450 0.005 200.001 0.004 250. 00 o . oos 199. s o 

18140 0.002 500.0~ 1 0.002 500.00 0.002 499. so 

18476 0.001 1000.00 0.001 1000 . 00 o . 001 999 . so 

Table 7-4. Relationships between Annual Flood 
Frequency and Partial Flood Expectancy 
for Truncation Level of 4500 cfs, for 
the Powell River 

Annual Flood Series Parti al Flood Ser ies 

Exceedance ! Return 

Empiri cal Met hod Langbei n ' s Method 

Flood ~ J Retu~ j _' Return. 
Magnitude : Probability: Per i od I:xpcc taneics ! Period I Expcctancies i Period' 

I 
I I 

4194 0.980 1.02 4.170 0 . 24 : 3. 912 0. 26 
I 

4518 
I 

0.970 1.03 4 . 145 0.24 ! 3. 507 0 . 29 
I 

0 .26 ! 4733 I 0.960 1.04 ! 3.847 3. 219 0. 31 

4919 0.950 1.05 i 3 . 598 0.28 t 2.996 0.331 
I 

5727 0.900 !. Il l 2 . 700 0 . 371 2. 303 0 . 43· 

6926 0.800 1.25 1.843 0.541 1.609 0.621 

7985 0.700 1.43 i 1.336 0. 75 1 1.204 0.83! 
I 

9047 0.600 1.67 ! 1.001 1. 00 : 0.91 6 
1.091 I 

10120 

I 
0.500 2. 00 o. 746 1.34 0.693 1.44 

i 1,1415 0. 400 i 2. 50 0.544 1.84 0.511 
1.961 

: 13079 0.300 I 3 .33 0.362 2. 76 0 . 357 2 . 80 

I 

I 
i 15240 0 . 200 I 5.00 0. 224 4 . 46 0.223 4 . 481 ' I i 19183 0 .100 

I 10. 00 I 0.100 9 . 95 0.105 9.491 

1 23736 0.050 20 .00 0.048 20.83 · 0.051 19. 50. 

25152 

I 

0.040 25.00 ; 0.038 26.32 0 . 041 24.501 

I 30213 0 .020 50 . 00 . 0 .018 ss . 56 0 . 020 49.501 

I ,.~. 0.010 
I 

0.008 125.00 0 . 010 ... 001 99.50 

42139 
I 

200 .00 I 0 . 005 0 . 004 250 . 00 o . oos 199. so 

59205 

I 
0 . 002 500. 00 0 .002 500 . 00 0.002 4~9 . so 

I 61o9o 0 . 001 1000.00, 0.001 1000.00 0. 001 999.50 

that of the Langbein method, for both study cases. 
The expectancy of partial flood, obtained by the 
empirical method, may depend on Qb especially in the 
range of low return periods. The effect of Qb on 
expectancies of partial flood series for high return 

i l 

periods is not very high. Because of these agreements 
of expectancies of partial flood, for a given frequency 
of annual flood. the annual and partial flood series 
derived from generated daily flows of both the Boise 
River and the Powell River seem feasible for purposes 
of this study. 

7.2 Comparison of Efficiency of Annual and Partial 
Flood Series by Using Ratios of Sampling 
Variances 

Approaches used for comparison of sampling 
variances Q{T), outlined in Section 3.6, are applied 
here to generated data. The ratio of sampling vari-
ances of Q(T) based on the exact theoretical approach, 
Rv,l, given by Eq . 3-95 is shown in Fig . 3-3 as Rv,l 
versus the return period T for a given Qb' or the 
value of A. The derivation of R 1 depends on the v, 
relations between parameters: a , u (of annual flood 
series model), and il, 6 (of partial flood series model), 
as shown in Eq. 3-94. To take into consideration 
differences between~a and e. and u and Qb + 6lnA 1 

ratios R 2 or var Q(T) based on the approximate v, 
theoretical approach, as shown in Eq . 3-96 are 
investigated. 

In case of the empirical approach, the ratio of 
var Q(T), denoted by Rv, 3, is obtained by Eq . 3-97. 
For each flood series, the long sample of 2000 years 
is divided into small samples, each of size N. For 
each small sampl e, the estimates Q{T)a and Q{T)P .are 
obtained by Eqs. 3-76 and 3-86, respectively. Hence, 
for n samples each size N the ratio Rv, 3 is obtained 
for a given return period by Eq. 3-97. 

8oi6e Riv~. The a and u values estimated from 
annual flood series of 2000 years, are 1751.65 and 
5877.84, respectively. Theoretically a= 6, with 
6 estimated from partial flood series. Table 7-1 
shows how B varies with Qb. For this case, a is in 
the range of computed 6. As shown by Eq. 3-94, u 
Qb + elnA . Table 7-1 gives Qb + BlnA, estimated 
from partial flood series for various Qb. It is 
seen that Qb + s lnA for the range of Qb used is 
somewhat greater than u. 

By substituting the estimates &, ~ . and B for 
each Qb into Eq. 3-96, relationships between Rv,2 and 
T are obtained for various Qb and are shown in Fig. 
7-l. By comparing Fig. 3-3 with Fig. 7-1, relation­
ships between ratio of var Q(T) and T, based on the 
exact (Fig. 3-3) and approximate (Fig. 7-l) theoretical 
approaches, are simi l ar except for high values of 

A. For 1.00 ~A~ 2.25, Rv, 2 is greater t~an Rv.l 
for the whole range ofT considered. For A~ 3.4, 
the relationship of R 2 and T tends to be unclear. 

v' . 
In general, the larger A, the greater the value is 
R 2. Figure 7-1 shows also that Rv 2 for~= 5.166 
v, ' 

are smaller than R 2 for~ = 3.427, for any T. This v, 
may come from an error in estimating B, since e for 
~ = 5.166 is much larger than 6 for X= 3.427. It 
can also concluded "from Fig. 7-1 that for the studied 
range of Qb' the partial flood seri es estimates 



Q(T) have a smaller sampling variance than the annual 
flood series estimates, if i of partial flood series 
is at 1 east 1.40. It should be stressed that ratios 
Rv,l and Rv, 2 do not depend on the sample size. 

For empirical approach, results of relationships 
between Rv, 3 and T for various Qb' for N = 10,20,25, 
40,50, and 100, are shown in Figs. 7-2 through 7-7 
respectively. In general, curves of these figures' 
are similar to those of Figs. 3-3 and 7-1, and this 
is especially the case for curves of Fig. 7- 1. The 
conclusions from Figs. 7-2 through 7-7 are: 

(i) The ratio Ry,3 seems to depend on the sample 
s ize. For small N, Rv, 3 for a given T and for a given 
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Qb is larger than for large N, especially i n the 
range of high T and large ~-

(ii) For N = 10,20. and 25. Rv,3 is greater than 
unity for the studied range of return periods if A 
approximately is at l east 1.90; for larger N, A should 
be somewhat greater than 1.90 for Rv 3 to be greater 
than unity. ' 

(ii i) For large N, the number of generated samples 
is small, with R 3-curve unreliable since some of 

v' 
them for small ~ fall above the curves with lar9er 
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Y!TI 

Fig. 7-6 Variation of R 
3 

with the Return Period v, 
T for the Range of A from 5.166 to 1.009 
(Qb from 2870 to 6250 cfs), for N = 50, and 
for the Boise River Generated Samples 

A, which by theory should not be true for the derived 
flood models. 

Powell R~v~. The a and u values estimated from 
annual flood series of 2000 years, are 4114.69 and 
9114.29, respectively. Table 7-2 shows how s and 
Qb + alnA, estimated from partial flood series, vary 

with Qb. 

The variations of R 2 with T for the range of v, 
Qb from 4500 to 9~JO cfs are shown in Fig . 7-8. This 
figure shows that for the studi~ range of Qb~ the 
partial flood series estimates Q(T) have a smaller 
sampling vari ance than the annual flood series esti -
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Variation of R 2 with the Return Period T v. 
for the Range of A from 4.476 to 0.940 (Qb 
from 4500 to 9500 cfs), for the Powell River 

mates, if ~ of partial flood series is at least 1.60. -
For A> 1.60, R 2 is larger than R 

1 
for a given - v, v, 

T, especially for large A. 

In case of the empirical approach, relationships 
between Rv ,J and T for various Qb' for N z 10,20 ,25, 
40,50, and 100, arE shown in Figs. 7-9 through 7-14, 
respectively. Tht conclusions from Figs. 7-9 through 
7-14 are: 

(i) The ratio Rv,J seems to depend on the sample 
size. For smal l N, R 3 for a given T and for a given 

v. 
Qb is larger than for l arg~ N, especially in the 
range of high T and large A. 



(ii) For N = 10, Rv 3 is greater than unity for 
range of high T i f A app;oximately is at least 1.70; 
for larger N, ~ should be greater than 1.70 for R 3 v, 
to be greater than unity. 

(iii) For a gi ven N, R 3 i ncreases with decrease v, 
of Qb or wi th an increase of X. 

(i v) For a given N and for l arge ~ . Rv 
3 

in case 
of the Powell River are greater than R 

3 
i~ case of v, 

the Boise River, especial ly i n the range of high 
return periods . 
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Fig. 7-14 Variation of Rv, 3 with the Return Period 
T for t he Range of A from 4.476 to 0.940 
(Qb from 4500 to 9500 cfs), for N = 100, 
and for the Powell River Generated Samples 

In conclusion. based on the average of the two 
study cases, the estimates of Q( T) from partial f l ood 
series have a sma ll er sampling variance than the 
estimates from annual flood series, if partial flood 
series have A at l east 1 .65 based on the exact theore­
t ical approach , and 1.50 based on the approximate 
theoretical approach. The conclusion in case of the 
exact theoretical approach is similar to that con-
cluded by Cunnane (1973). Ratios of var Q(T) in case 
of exact and approximate t heoretical approaches do not 
~epend on t he sample size . For the em pi ri ca 1 approach, 
' should be at leas t 1.95 for Rv 3 to be greater than 
unity for t he range of N from lO' to 25, and for the 
range of high return periods. 

The case of var Q(T) obtained from the partial 
flood series to be less than the corresponding · 
var Q(T) obtai ned from the annual flood series implies 
than that the partial flood series is more efficient 
or more useful for estimating annual flood peaks of 
given return periods than the annual flood series. 

Results obtained from the exact theoretical, 
approximate theoretical, and empirical approaches are 
~omewhat different. Differences depend: (i) on how 
well the assumed fl ood models represent the true 
population models for both flood series , (ii) on the 
val i dity of assumptions used in derivin~ var Q(T) for 
each flood series, (iii) for the empirical approach, 
on the accuracy in estimating var Q(T) for each flood 
series, which estimates depend on the number of 
available samples , and (iv) eventually on there­
producibi li ty of properties of the daily flow process 
by generating new samples . 

In case of the exact theoretical approach, R 1 v, 
increases with an increase of A, for a given T, 
an~ it approaches infinity as A approaches infinity 
wh1ch can be seen from Eq. 3-95. However, there is 
a limit for ft which has the value much smaller than 
infinity. The value of !. may be close to infinity if 
the instantaneous flow hydrograph is used and every 
point of i nstantaneous flow above Qb is considered 
as the partia l flood series. In case of the use of 
mean rlaily flow hydrograph, the possible maximum 
val ue of A is 365 , if all cf r.1ean daily f1ows are 
above Qb and they are considered as partial flood 
series. However, by the definition of parti al flood 
series used in this study (Section 3.1), the value of 

A must be much smal l er than 365 since only separate 
f lood peaks above Qb are considered. By considering 
the assumptions used for deriving the assumed partial 
flood series model such as the indpendence of the 
successive exceedances, their validities tend to be 
supported by the observed data only within the range 
of Qb such that A is not greater than 4 or 5. Further­
more, in case of the empirical approach , the partial 
flood series is derived f rom the generated daily flow 
data whi ch are generated only withi n t he wet season 
of the year. Hence, for the range of Qb such that A 

is greater than 4 or 5, t he distortion of partial 
f lood series may not be neglected since some partial 
flood peaks may occur outside the selected.wet season. 
For these reasons, the comparison of sampling vari ­
ances of Q(T) of both flood peak series is studied 
only for the range of A up to about 5. 

7.3 Comparison of Theoretical and Empirical Sampling 
Variances of Estimates of Flood Values for Given 
Return Periods 

U~wg Anrtua.l Ftood Se!Uc-~ . Let Ra denote the 
ratio of var Q(T) estimated from annual flood series 
by using empirical and theoretical approaches. Then, 
from Eqs. 3-71 and 3-79, 

n 
N I [Q.(T) - Q(T)a]

2 
i=l 1 a ' R = ....,....___.::;_;_ ________ ---:

2
..---- , ( 7-1) 

a a2(n-l) (l .ll + 0.52 y(T) + 0.61 Y (T)] 

with N = the sample size in years, n =the number of 
of generateu sampl es of size N in the empirical 
approach, o = the ulOdel parameter estimated from 2000 
values of annual flood series, Qi(T)a = the Q(T) 
estimate from the i-th sample. 

Variations of Ra with t he return peri od T, 
expressed in terms of y(T), for N = 10,25,50 and 100, 
in case of the Boise River and the Powell River, are 
shown in Figs. 7-15 and 7-16, respectively. In case 
of the Boise River, the average values of Ra for the 
return periods are 1 .05, 1 .1 9, 1.15 and 1.39 for 
N = 10,25,50 and 100, respectively. For the Powell 
River , t he average values of Ra for the return 
periods are 1 .57, 1 .30, 1.35 and 1.45 for N = 10,25, 
50 and 100, respectively . For both cases, Ra tends 
to be constant in the range of high T, for a given N. 
On the average, Ra tends to increase with N, and t he 
es timated values of Ra fo~ all cases are gr eater than 
one; indicating thC:It var Q(T) based on the t hea-a 
reti:al approach is less than t he corresponding 
var Q(T)a based on the empirical approach . 

U6-i.ng P~a.t Ftood Se!Uu . Let RP denote the 
ratio of var Q(T) obtained from partial flood series 
by using the empirical and theoretical approaches . 
Then, from Eqs. 3-71 and 3-92. 

R = 
p 

n 

AN i~l [Qi(T)p- ~)2 

e2 (n-1) (1 + {lnA + y(T) }2) 
(7-2) 

with N = the sample size, n = the number of generated 
samples of size N in the empi rical approach, A and 
8 ~ the mode 1 parc: .. 1eters estimated from 2000 years of 
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1 

generated partial flood series , Qi(T}P = Q(T} estimate 
from the i-th sample. 

For a gi ven T, let RP be the average of RP for 
all selected Qb' and for a given N. Variations of 
lr with T for N .. 10,25,50 and 100, in case of the 
B~ise Ri ver and the Powell River, are shown in Figs. 
7-17 and 7-18, respectively. ~ tends to be constant p 
for a high return period, but to increase with its 
decrease. Consideri ng the whole range ofT,~ 
increases with an increase of N. For the Boise River, 
the average values of r for all the return periods p 
studi~d are 1 .39, 1.44, 1.59 and 1.90 for N = 10,25, 
50 and 100, respectively. In case of the Powell 
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River, the average values of Rp are 1.85, 1.95, 2.21 
and 2.69 for N • 10,25,50 and 100, respectively. 
Comparing for a given N and a given T, lr is greater 

p • 
than Ra. In using both flood series, var Q(T) in case 
of the theoretical approach is smaller than the 
correspondi ng var Q(T} in case of the empirical 
approach. 

7.4 Compari son of Sampli ng Mean Square Errors of 
Flood Val ues for Given Return Periods 

Nash and Amorocho (1966} concluded that the 
flood magnitude of any given T can be estimated 
subject to error resulting from two different causes: 
(1} Failure of the model to conform to the universe 
of flood peaks of a catchment; and (ii} sampling 
errors resulti ng from non- representativeness of the 
record from which the model parameters are estimated. 
To test the accuracy of the assumed model to predict 
the flood peak Q(T} for a given T from each ·f lood 
seri es , by considering the bias term, the comparison 
of sampling mean square errors in Q(T) is investigated 
on the long sample of generated data , considering i t 
as an assumed population. For a gi ven N, the sampling 
mean square err or M of Q(T) is computed by 

1 n 2 
M • - L [Ql. (T) - Q(T)] , 

n i=l 
( 7-3} 

with Q(T} = the expected value of flood peak for a 
given T, Q1(T) = the Q(T) estimate from the i-th 
sample , i = 1,2, ... ,n, and n =the number of samples 
of size N. 

By expanding Eq. 7-3, then 

( 7-4) 

with qrif =the mean of all Qi(T) 's. 



The term [QTTT- Q(T)]2 results from the failure 
of the assumed model to conform with the population 
of flood peak properties and the bias in estimating 
mode 1 parameters . 

For each flood series, the generated sample of 
2000 years i s spl it into two equal groups. The first 
group is assumed to be the population of flood series. 
The estimate of Q(T) for each T from the first group 
of long sample of annual flood seri es i s ass umed to be 
known population value . For the second group, the 
long sample of 1000 years is divided into small 
samples, each with size N. The value of M of each 
flood series is then computed by Eq. 7-3. 

Let Rm denote the ratio of M of annual flood 
series sample to the corresponding M of partial flood 
series sample. Then, 

n 
(Qi(T)a - Q(T))2 l: 

R i=l 
m n (7-5) 

l: (Qi(T)p - Q(T))2 
i=l 

with a and p standing for annual partial flood series, 
respectively. 

After computing~ for various T by using Q(T) 
estimated from the first group, another set of ~ is 
obtai ned by interchanging groups in the same procedure. 
The average value ~ for these two steps i s then 
obtained for each T. 

8oi4e Riv~. Variations of estimated Rm for 
each T and various Qb are shown in Figs . 7-19 through 
7- 24 for N = 10,20,25,40,50 and 100, respectively. 
Except for the range of high T, these figures show 
that, on the average,~ increases with an increase 

m " " 
of Qb up to Qb such that A is about two. For A < 2, 

Rm decreases with an i ncr ease of Qb. By considering 
Eq. 7-4 and the range of low Qb, the firs t right term 
in t hi s equation is favorable to the use of partial 
flood series in estimating flood peaks, while the 
second ri ght term is unfavorable for this purpose. 
In case of partial flood series, the first term 
decreases with an increase of A, while the second 
term may increase or decrease, likely increasi ng with 
an increase of A, especial ly in the r ange of large A. 

It i s interesting to note that Rm for a given 
T is very sensitive to the population val ue Q(T). The 
values of Q(T) for various T and for the long samples 
of the first group and the second group of annual 
flood series are si10wn in Tables 7-5 and 7-6, res­
pectively. Estimates of Q(T) of Gumbel distribution, 
denoted by Q(T)a, and of assumed partial flood series 
model, denoted by Q(T)p, from both long samples of 
the second and first groups are shown in Tables 7-5 
and 7-6, respectively. For the ran~e ofT from 500 
to 1000 years, the estimates of Q{T)P for Qb = 3500, 
4000, 4500 are closer to estimates of Q(T) obtained 
by using the plotting position than are the estimates 
of Q(T)a. Hence, for these ranges ofT and Qb, 
Rm are very high as shown in Figs. 7-19 through 7- 24 . 
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Table 7-5. Assumed Population of Flood Peaks for Various Return Periods, Obtained by Using: (1) Plotting 
Position Method, Q(T), for the First Generated Sample of 1000 Years, (2) Gumbel Distribution, 
Q(T)a• (3) Assumed Partial Flood Series Model, Q(T)P, for the Second Generated Sample of 1000 
Years, for the Boise River 

Return Period, T 

2 5 10 20 25 so 75 100 200 500 1000 

RCT) by Plotting 
!Position (First 
1000 Year Sample) 6482 8542 9665 11221 11430 12460 13428 14103 15386 18140 19690 

RCT)a 6520 8533 9867 11146 11551 12801 13527 14042 15277 16908 18140 

R(T)p for 

Rb = 287o 7267 9704 11317 12864 13355 14868 15747 16369 17864 19838 21329 

RCT)p for 

Rb = 3soo 7066 9267 10724 12121 12565 13930 14724 15286 16637 18418 19765 

R(T)p for 

·Rb = 4ooo 6968 9017 10375 11677 12090 13362 14102 14625 15883 17543 18798 

RCT)p for ~ 

Rb = 4soo 6942 8935 10255 11522 11923 13160 13880 14388 15612 17227 18447 

RCT)p for 

Rb ,. sooo 6914 8788 10028 11218 11596 12759 13434 13913 15063 16580 17727 

: (T) for I I p 
,Rb = s5oo 6912 8785 10025 11214 11592 12755 13430 13908 15058 16575 17721 

R(T)p for 

Rb = 6ooo 6930 8748 9951 11105 11472 12599 13255 13719 14835 16306 17419 

Tabl e 7-6. Assumed Population of Flood Peaks for Various Return Periods, Obtained by Using: {1) Plotting 
Position Method, Q(T), for the Second Generated Sample of 1000 Years, (2) Gumbel Distribution. 
Q(T)a• (3) As~umed .Partial Flood Series Model, Q(T)p• for the First Generated Sample of 1000 
Years. for the Boise River. 

Return Period, T 

2 5 10 20 25 50 75 . 100 200 500 1000 

Q(T) by Plotting 
Position (Second 
1000 Year Sample) 6538 8638 9617 10755 11131 12851 13522 13752 15533 18304 18476 

Q(T)a 6520 8477 9773 11015 11410 12624 13330 13830 15031 16616 17814 
I 

Q(T)p for 
• ~ = 2870 7052 9457 11049 12577 13061 14554 15421 16035 17512 19459 20931 

Q(T) for 
p 

Qb = 3500 6903 9116 10581 11987 12433 13806 14604 15169 16527 18320 19674 

Q(T)p for 

Qb = 4000 6806 8853 10208 11508 11920 13190 13928 14451 15707 17365 18618 

Q(T)p for 

~ = 4500 6794 8815 10152 11435 11842 13096 13825 14341 15581 17217 18452 

Q(T)p for 

~ = 5000 6786 8719 9998 11226 11615 12815 13512 14005 15192 16757 17940 

Q(T)p for 

Qb = 5500 6785 8694 9958 11170 11554 12739 13427 13915 1~086 16632 17799 
Q(T) 

p 
for 

~ = 6000 6802 8679 9922 11115 11493 12659 13336 13815 14967 16488 17637 
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Powett Riv~. Variations of estimated Rm for 
each T and various Qb are shown in Figs. 7-25 through 
7-30 for N = 10,20,25,40,50 and 100, respectively. 
These figures show that in the range of low T, ~ 
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(Qb f rom 2870 to 6250 cfs}, for N = 100, for 
the Boise River Generated Sample 

decreases with an increase of Qb' while in the range 
of high T it increases with an increase of Qb. By 
comparing with results of the study of the sampling 
variance of Q(T), the sampling mean square error of 
Q{T) for the partial flood series is influenced by the 
bias term in the range of low Qb. 

The population values Q(T) for various T and for 
the long samples of the first group and the second 
group of annual flood series are shown in Tables 7-7 
and 7-8, respectively. Estimates of Q{T)a and Q(T)p, 
from both long samples of the second group and first 
group are also shown in Tables 7-7 and 7-8, res­
pectively. By comparing Tables 7-7 and 7-8 with 
Tables 7-5 and 7-6, the assumed flood models for 
both flood series do not predict well the popul at ion 
Q(T) in case of the Powell River, especially in the 
range of high T. Consequently, the bias terms for 
both flood series are larger for the Powell River 
than for the Boise River. 

To determi ne the effect of the assumed population 
values Q(T) by using the pl otting position method of 
generated data s eries, Q(T}a and Q(T)P are used as 
population values Q(T) in Eq. 7-5 for both the annual 
and partial flood series. The results indicate that 
the relationship of Rm toT i s generally similar to 

the relationship betwe~n 'Rv , 3 and T for each sampl e 
size N. 



1.6 R., 

1.2 

0.8 

0.4 
2 

0.0 
0 

Fig. 7-25 

Fig. 7-26 

T 

5 10 20 50 100 200 500 1000 

vm 
z 3 5 6 7 
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Fig. 7-27 Variation of Rm with the Return Period T 
for the Range of A from 4.476 to 0.940 (Qb 
from 4500 to 9500 cfs) , for N = 25, for the 
Powell River Generated Samples 

The comparison of sampling mean square errors of 
Q(T) for annual and partial flood series depends on 
the assumed population value Q(T) , which is not known 
i n practical cases. ~ is sensitive to the assumed 
population value Q(T). However, if Q(T) is assumed 
to be estimated from the long sampl e of annual flood 
series by the method of plotting position, it can be 
concluded from the use of partial flood series that 
the first right term in Eq. 7-4 decreases with a 
decrease of Qb, while the second right term tends to 
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Fig. 7-30 Var iation of Rm with the Return Period T 
for the Range of A from 4.476 to 0.940 (Qb 
from 4500 to 9500 cfs), for N = 100, for the 
Powell River Generated Samples 

increase with a decrease of Qb , especial ly in the 

range of low Qb. If the partial flood series model 
is developed in such a way that the assumptions 
required for i ts derivation are still valid or sup­
ported by observed data in the range of low Qb, the 

partial flood series will be more efficient in 
estimating flood peaks of given return periods than 
the annual flood series, especially in cases of small 
sample sizes. 



Table 7-7 . Assumed Population of Flood Peaks for Various Return Periods, Obtained by Using: (1) Plotting 
Position Method, Q(T), for the First Generated Sample of 1000 Years, (2) Gumbel Distr ibution, 
Q(T)a, (3) Assumed Partial Flood Series Model, Q(T)P , for the Second Generated Sample of 1000 
Years, for the Powell Ri ver 

I Return Period, T 

2 5 10 20 25 so 75 100 200 500 100,0 

' 
IQ(T) by Plotting 
•Position (First 
11000 Year Sample) 10241 15284 19477 24482 26053 32119 35016 36351 42136 52896 61033 
Q(T) 10525 15069 18077 20962 21877 24697 26336 27496 30284 33963 36744 
~Q{T); for 

10347 14053 16506 18860 'Qb = 4500 19606 21907 23243 24189 26464 29465 31733 
IQ(T)p for 

Qb : 5000 10422 14254 16790 19224 19996 22374 23755 24734 27085 30188 32533 
Q(T) p for 

1Qb = 6000 10528 14634 17352 19960 20787 23335 24816 25864 28385 31709 34222 
E(T)p for 

Qb = 7000 10540 14816 17648 20364 21226 23880 25423 26514 29139 32602 35220 
IQ(T) for 
' p ,Qb = 7500 10524 14938 17860 20664 21553 24292 25884 27011 29720 33294 35995 
I 

IQ(T) for 
I p 
:Qb = 8000 10472 15081 18133 21061 21989 24850 26512 27689 30518 34251 37071 
Q(T) p for 

Qb = 9500 10404 15125 18252 21251 22202 25133 26837 28042 30940 34764 37654 

Table 7-8. Assumed Population of Flood Peaks for Various Return Periods -Obtained by Using: (1) Plotting 
Position Method, Q(T), for the Second Generated Sample of 1000 Years, (2) Gumbel Distribution, 
Q(T) , (3) Assumed Partial Flood Series Model, Q(T) , for the First Generated Sample of 1000 a P 
Years for the Powell River , 

Return Period, T 

2 5 10 20 25 so 75 100 200 500 1000 

Q(T) by Plotting 
Position (Second 
1000 Year Sample) 9961 15222 18930 23070 24392 28653 31445 32893 42274 61087 66087 

Q(T)a 10719 15503 18671 21709 22673 25642 27368 28589 31525 35399 38327 

Q(T) 
p for 

Qb • 4500 11087 14942 17495 19943 20720 23112 24503 25487 27853 30975 33334 

Q(T)p for 

Qb .. 5000 11204 15219 17877 20427 21236 23728 25176 26201 28665 31916 34373 

Q(T)p for 

Qb .. 6000 11341 15633 18474 21200 22065 24729 26277 27373 30006 33482 36109 

Q(T)p for 

Qb a 7000 11403 15944 18951 21835 22750 25569 27207 28366 31154 34831 37610 

Q(T)p for 

Qb • 7500 11404 16041 19112 22056 22990 25868 27541 28725 31571 35326 38164 

Q(T) for 
p 

38732 IQb = 8000 11393 16131 19267 22276 23231 26171 27880 29089 31997 35833 

'Q(T)p for 

l•Qb " 9500 11243 16382 19784 23048 24083 27272 29126 30438 33592 37753 40898 
r. 
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7.5 01~tr1but1on of the Number of Exceedances 

Ont of the assumptions in deriving the commonly 
otaumod partial flood model is the use of Poisson 
~1atrtbutton for the number of exceedances n. In 
the developed model either the three-parameter mixed 
Poisson distribution or the simple Poisson distri ­
but1on were found applicable. The following is the 
test on how the mixed Poisson distribution improves 
the goodness of fitting the frequency distributions 
of ~ for given Qb and N, as derived from the long 
generated sample. 

The first group of N = 1000 for the case of 
partial flood series of generated dai ly flows is used 
for investigation. For a given N, thfls long sample 
is divided into n small samples of equal size. For 
each small sample, the chi-square test statistic is 
used as criterion for fitting the frequency distri­
butions of n both by the Poisson and by the mixed 
Poisson distributions, with the number of class inter­
vals varying from 8 for the highest Qb to 12 for 
the lowest Qb, for N = 25, and from 1~ to 13 for 
N = 50 and 100, and from 12 to 15 for N = 1000, 
respectively, for the Boise River. In case of the 
Powell River, the number of class intervals varying 
from 9 to 12 for N = 25, from 11 to 15 for N =50 
and 100, and from 12 to 20 for N = 1000, respectively. 
Average values for all n small samples of chi-square 
statistic are computed for both distributions, with 
the results for N = 25, 50, 100 and 1000 shown in 
Fig. 7-31 for the Boise River, and Fig. 7-32 for the 
Powell River, respectively. 
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Fig. 7-31 Variation of Average Chi-Square X2 with 
Truncation Level (Expressed by A) for Fit­
ting Frequency Distributions of the Number 
of Exceedances by: (1) Poisson Distri­
bution, and (2) Mixed Poisson Distribution, 
for N = 25, 50, 100 and 1000, for the Boise 
River 
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-z Variation of Average Chi -Square ~ with 
Truncation Level (Expressed by. A} for Fit­
ting Frequency Distributions of the Number 
of Exceedances by: (1) Poisson Distri­
bution, and (2) Mixed Poisson Distribution, 
for N = 25, 50; 100 and 1000, for the Powell 
River · 

For both study cases, the mixed Poisson distri­
bution gives significant improvements in goodness of 
fit, especially if applied for large N. In case of 
the Boise River, the ratio Rrn of mean to vari ance ,v 
of frequency distributions of n decreases with an 
increase of Qb. For example, for N • 1000 years, ~.v 
varies from 1 .767 for the lowest Qb to 0.784 for the 
highest Qb. Hence, for the range of high Qb which 
R less than unity, the mixed Poisson distrJbution ·m,v 
is well applicable. 

In case of the Powell River, Rm,v increases 
with an increase of Qb: For N ~ 100 years, Rm,v 
varies from 0.662 for the lowest Qb to 0.749 for the 
highest Qb. The mixed Poisson distribution is well 
applied throughout the range of Qb considered. 

7.6 Distribution of the Magnitude of Exceedances 

Similar to the case of the di.stribution of n, 
the following is the test on how the mixed exponential 
distribution improves the gooQness in fitting the 
frequency distributions of the magnitude of exceedances 
~v · The procedure and data used are the same as for 
the case of distribution of n. The numbers of class 
intervals are 9,12,15 and 20, for N = 25,50,100 and 
1000, respectively . 

' I 



The average values of the chi-square statistic 
for all small samples for exponential and mixed ex­
ponential distributions are shown in Fig. 7-33 for the 
Boise River and Fig. 7-34 for the Powell River , res­
pectively. In case of the Boise River., skewness 
coefficients of the frequency distribut ions of <;: for 

· - v 
various Qb are not very large. The mixed exponential 
distribution could be applied only in a few cases . 
For N = 1000, the skewness coefficient varies from 
1.699 for the lowest Qb to 2.109 for the highest Qb 
However, the results of the study daily flow of 17 
stat ions show that the mixed exponential distribution 
could be well applied for cases of skewness coef­
ficient greater than two. Therefore, for N = 1000, 
the mi xed exponential distribution can be applied for 
the range of high Qb. For N = 25,50 and 100, improve-
ments of goodness of fit of thi s distribution are 
relatively small, since it is applied only for a few 
cases out of n small samples. 
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Vari ation of Average Chi-Square~ with 
Truncation Level (Expressed by A) for Fi t­
ting Frequency Distributions of the Magni­
t ude of Exceedances by: (l) Exponential 
Distribution, and (2} Mixed Exponential 
Distribution, for N = 25, 50, 100 and 
1000, for the Boise Ri ver 

In case of the Powell River, the mixed exponential 
di stribution can be applied throughout the range of 
Qb with significant improvements in goodness of fit, 
especially if applied for large N. The skewness coef­
ficients of the frequency di stri butions of ~v for 
various Qb are greater than two. For N = 1000, the 
skewness coefficient varies from 3.504 for the lowest 
Qb to 2.966 for the highest Qb. Hence, the mixed 
exponential distribution can be well applied through­
out the range of Qb. 

63 

100 

xz 

~ 90 

80 

70 

60 

so ~ 
.; 

40 

30 

20 

10 

0 
0 6 

Fi g. 7-34 Variation of Average Chi-Square "1 1~ith 
Truncation Level (Expressed by A) for Fit­
ting Frequency Distributions of the Magni ­
tude of Exceedances by: (1} Exponential 
Distribution, and (2} Mixed Exponential 
Distribution, for N = 25, 50, 100 and 
1000, for the Powell River 

7. 7 Dependence between the Magnitude of the Largest 
Exceedance and the Number of Exceedances 

One of the assumptions used in deriving the 
probabili ty distribution of the largest exceedance in 
a year is that {<;: }~ are independent of ~ . as given 

v l 
i n Section 5.5. This does not mean that the magnitude 
of the largest exceedance x is also independent of ~ · 
Instead, the magnitude of the largest exceedance in 
a year still depends on n of that year. 

Assuming that{<;: }~are independently identically 
v 1 

distributed with common distribution function H(x) 
represented by the exponential distribution with 
parameter e, and the distribution of ~ is represented 
by the Poisson distribution with parameter A· Hence, 
the distribution of the largest exceedance, given 
that n = k, i s identical to the di s tri bution of 
zl + z2 + ... + zk' where zl is the minimum of the k 
exponential di stributions with parameter e, whi ch is 
also the exponential distribution with parameter s/k, 
z2 is the minimum of the k-1 exponential distri butions 
with parameter e, which is also the exponential dis­
tribution with parameter e/( k-1}, and so on. There­
fore, the expectation of the largest exceedance, x. 
given that n = k, is 



k 
E[xln=k] I E(Z.] 

J j=1 

1 1 1 1) = 6 [k + (k-1) + + 2 + {7-6) 

and the variance of x is 

k 
var[xln=k] l: var[Z.] 

j=l J 

2 1 1 l 
1] 6 [- + --- + + -+ 

k2 (k-1) 2 l (7-7) 

since z1, z2, . . . , Zk are independent random variables 
according to the property of the lack-of-memory. 

Equation 7-6 shows how the expected value of x 
depends on n. The first group of N = 1000 for the 
case of partial flood series of generated daily flows 
is used for investigation the dependence between the 
expected value of x and n. The estimate of 6 is 
obtained from the long sample of 1000 years for each 
Qb. Let m denote the number of years out of 1000 
years that n = k, for a given k. For each of m year s 
that n = k, the largest exceedance is obtained. The 
average value of the largest exceedances for all m 
years divided by 6 is also obtained for a given 11 = k. 
Thi s result can be compared with the assumed theo­
retical values as shown by Eq. 7-6. 

For the Boise River, the relationships between 
the average value of the largest exceedance divided 
by Sand n, for Qb = 2870 , 4000, 5000 and 6000 cfs, 
are shown in Fi g. 7-35. In case of the Powel l River, 
the results of Qb = 5000, 6000, 6500, and 7500 cfs, 
are · shown in Fig. 7-36. Both figures also · include 
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E[x ln]/6, and the Num~er o~ Excee~ances in 
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Fig . 7-36 Relationships between the Average Value 
of the Largest Exceedance Divided by 6, 
E[x ln]/6, and the Number of.Exceed~nces in 
a Year, 0 , for the Powell RlVer, w1th: (l) 
Assumed Theoretical .Values, Eq . 7-6, (2) 
and (3) Upper and Lower Limits, Eq. 7-8, 
and (4) Computed Values, for Qb = 5000, 
6000, 6500 and 7500 cfs 

the theoreti cal relationships between E[xjn=k]/6 
11 = k, as well as the upper and the lower imits 
(one standard. deviation from the mean) which are 
expressed as 

and 

E(xln=k] ± lvar(x ln=k] 
6 6 (7-8 ) 

with E[xln=k] and var[xln=k] given by Eqs. 7-6 
and 7-7, respectively. 

Figures 7-35 and 7-36 show that the magnitude of 
the 1 arges t e·xceedance tends to depend on the number 
of exceedances in a year even though (~ }~ are 

v 1 
independent of n. especially in the range of small n. 
For large n, the results obtained by using the 
generated data are not conclusive since the number of 
years that 11 = k, or the value of m, is very small . 

7.8 Comparison of Goodness-of-Fit Statistics in 
Fitting Frequency Distributions of the largest 
Exceedance in Using Both the Developed and 
Commonly Assumed Models 

The developed probability distribution of the 
largest exceedance in a year is obtained from Eq. ?-6, 
with the distribution of the number of exceedance 1n a 
year either the mixed Poisson distribution or the 
Poisson distr ibution, the ~v distribution either the 
mixed exponential distribution or the exponential 
distribution, as the case will be. For the commonly 
assumed model , this probabi 1 i ty dis tri buti on is 
obtained from Eq. 3-83, with the distribution of n is 
assumed only Poissonian, the ~ distribution is assumed 

v 
exponential. In order to test how this developed 
model improves the goodness of f it of frequency 
distributions of the largest exceedance, the two 
models were fitted to frequency distributions of the 
largest exceedance obtained from the first group of 



Table 7-9. Chi-Square Test Statistics for Frequency Distributions of the Largest Exceedance, for the 
Commonly Assumed and Developed Models, and for the Boise River 

Commonly Assumed 
Developed Nodel (Eq. S-6) ~lodel (Eq . 3-83) 

Chi-Square Statistic Chi-Square Stat istic 

Truncation Computed Critical Computed Critical Type of Distribution Type of Distribution 
Level A Value Value Value Value of n of ~\) 

2870 4 . 973 87.96 27.6 87 . 96 27.6 p E 

3500 3 . 959 46.16 27 . 6 46 . 16 27 . 6 p E 

4000 3.279 30 . 87 27.6 30.87 27 . 6 p E 

4500 2 . 514 33.70 27.6 24 .58 25 . 0 MP E 

5000 1. 975 38 . 30 27 . 6 22.15 25 . 0 MP E 

5250 1. 725 29.83 27 . 6 20 . 37 25.0 MP E 

5500 1.488 34 . 97 27.6 19.18 25.0 MP E 

5750 l. 299 31.36 27 . 6 17 . i7 22.4 l-iP i'iE 

6000 1. 120 32 . 14 27.6 14. 95 22.4 ~1P IIIE 

6250 0.976 36 . 21 27.6 18.74 22.4 MP ME 
- -Note . P Po~sson, 14P - ~~~xed Po~sson, E - Exponent~al, ME - t~ued Exponentlal. 

Table 7-10. Chi-Square Test Statisti cs for Frequency Distributions of the Largest Exceedance, for the 
Commonly Assumed and Developed Models, and for the Powell River 

Commonly Assumed Developed Model (Eq. 5-6) 
~!odel (Eq. 3- 83) 

Chi-Square Statistic Chi-Square Statistic 

Truncation Computed Critical Computed Critical Type of Distribution Type of Distribution 
Level A Value Value Value Value of n of i;\) 

4500 4 . 808 774 . 681 27 . 6 22 .171 22.4 MP ME 

5000 3.995 604.238 27.6 18 . 595 22 .4 MP ME 

5500 3.403 511.105 27.6 17.317 22.4 MP ME 

6000 2.840 360.062 27.6 20 . 465 22.4 MP ME 

6500 2.406 260 . 850 27 .6 15.843 22 .4 MP ME 

7000 2.080 224. 111 27.6 10. 005 22.4 ~IP ME 

7500 1.800 188.086 27.6 11. 814 22.4 MP ME 

8000 1. 561 170 . 503 27.6 11.965 22 .4 MP ME 

8500 1. 363 152 .042 27.6 11.642 22.4 MP 14E 

9500 I. 018 96 .373 27 . 6 8 . 999 22 . 4 MP ME 

- -Note. P = Po1sson, MP = ~hxcd Po1sson, E " Exponent1a1, ME - M~xed Exponentlal. 

65 



parti'al flood series of N = 1000 years of the long 
generated sample of 2000 years . The chi-square statls­
tic is used to test the goodness of fit . Results of 
the computed and the 95 percent critical value of 
chi -square statistics with 20 class interva ls for 
various Qb and for the two models, are given in 
Table 7-9 in case of the Boise River, and in Table 
7-10 for the Powell River. Each table also gives, for 
each Qb, the type of the best distributions for n. 
and for ~v ' used in the developed model . 

The developed model represents an improvement in 
the g·oodness of fit in compari son with the commonly 
assumed model, especially in case of the Powell River. 
The chi-square values for the commonly assumed model 
are very large in the range of low Qb. However, the 
developed model seems to improve significantly the 
goodness of fit i n this range of Qb. 
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Cumulative Distributions of the Largest 
Exceedances in a Year with : (1) Observed 
Frequency Distribution, (2) Fitted Distri­
bution by the Developed Model, and (3) 
Fitted Distribution by the Commonly Assumed 
Model, Qb = 5000 cfs, for the Boise River 
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Exceedance in a Year with: (1) Observed 

, Frequency Distribution, (2) Fi tted Distri­
bution by the Developed Model, and (3) 
Fitted Distribution by the Commonly Assumed 
Model, Qb = 5000 cfs , for the Powell River 
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Fig. 7-40 Cumulative Distributions of the Largest 
Exceedances in a Year with: (1) Observed 
Frequency Distribution, (2) Fitted Distri ­
bution by the Developed Model, and (3) 
Fitted Distribution by the Commonly Assumed 
Model, Q = 7000 cfs , for the Powell River 

The fitted distribution functions of the largest 
exceedance in a year, based on both models, as well 
as the corresponding frequency distributions of the 
largest exceedance are shown in F1 gs. 7-37 and 7-38 
for Qb = 5000 and 5500 cfs, respectively, in case of 
the Boise River. In case of the Powell River, the 
results are shown in Figs. 7-39 and 7-40 for Qb = 5000 
and 7000 cfs, respectively. These figures show that 
the distribution function of the largest exceeda·nce 
obtained by means of the developed model has a better 
agreement with the observed frequency distribution of 
the largest exceedance than the corresponding distri­
bution function obtained by means of the commonly 
assumed model. In the range of high return periods, 
the developed model predicts well the flood value 
Q(T) for a given T. 



Chapter VIII 
CONCLUSIONS 

The topics investigated in this study belong 
basically into three areas: (i) development of the 
partial flood series model; (ii) development of the 
model for generation of daily flow seri es; and (iii) 
comparison of efficiency of estimates of annual flood 
peaks for given return periods by using annual and 
partial flood peak series. 

8.1 Development of Partial Flood Series Model 

Conclusions drawn from the development of the 
partial flood series model are: 

(1) Either the mixed Poisson or Poisson distri­
bution have the best fit, among all the considered 
discrete distributions, to frequency distributions of 
the number of exceedances per year; 

(2) Either the mixed exponential or exponential 
distribution have the best fit, among all the con­
sidered continuous distributions, to frequency 
distributions of the magnitude of exceedances; 

(3) In the range of truncation levels studied 
for partial flood ser ies , with the average number of 
exceedances per year varying from one to four, the 
dependence of successive exceedances is not signifi­
cant. When the truncation level is relatively low, 
the dependence may not be negligible, increasing with 
a decrease of the truncation level; and 

(4) The series of annual flood peaks can be 
considered as approximately independent. 

8.2 Development of Model for Generation of Daily 
FlCY'II Series 

The mathematical model, developed for generation 
of samples of daily flCY'IIs, and based on statistics of 
both the daily fl.CY'II series and annual flood peak 
series , leads to these conclusions: 

(1) The generated samples of daily flows have 
properties close to corresponding properties of his­
toric daily flow series; and 

(2) The generated samples reproduce well the 
extremes, so that these samples can be used for the 
study of properties of flood peaks. 

8.3 Comparison of Efficiency of Using Annual and 
Partial Flood Series 

The study of generated long samples of daily 
flows, used toinvestigate the efficiency of using 
annual and partial flood seri es, leads to these 
co nc 1 us ions : 

(1) Estimates of annual flood peaks of given 
return periods from the partial flood seri es have 
smaller sampling variances than the corresponding 
estimates from the annual flood series, when the 
average number of exceedances per year in partial 
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flood series is at least 1.65 for the exact theo­
retical approach, and at least 1.50 for the approxi­
mate theoretical approach. The conclusion in case 
of the exact theoretical approach is similar to that 
concluded by Cunnane (1973) ; 

(2) Ratios of sampling variances of estimated 
annual flood peaks in case of exact theoretical and 
approximate theoretical approaches do not depend on 
the sample size; 

(3) In case of the empirical approach, the 
sampling variance of annual flood peaks estimated 
from the partial flood series is smaller than the cor­
responding sampling variance of annual flood series 
for the range of investigated return periods, when 
the average number of exceedances in partial flood 
series is at least 1.95 for sample sizes 10-25, 
and somewhat larger than 1.95 for larger sample sizes. 

(4) For each flood series and for each sample 
si ze, the sampling variance of estimated annual flood 
peaks for given return periods by using the theo­
retical approach is smaller than the corresponding 
sampling variance of estimates in the empirical 
approach, with differences of these sampling variances 
increasing with an increase of the sample size, and 
being greater for partial flood series for a given 
sample size than for annual flood ser ies; 

(5) Comparison of sampling mean square errors of 
estimates of annual flood peaks for given return 
periods in case of use of the annual and partial flood 
series depends on the corresponding population flood 
peaks , if assumed to be known; 

(6) Assumed population flood peaks are sensitive 
to the ratio of sampling mean square errors, and in 
such a way that if flood peaks are assumed to be esti­
mated from the generated samples of annual flood 
series , the sampling variances of estimates from 
partial flood series decrease with a decrease of the 
truncation level, while the bias in estimates tends 
to increase with a decrease of the truncation level, 
especially in the range of low values of truncation 
levels; 

(7) When the model of partial flood series is 
developed with assumptions for its derivation sup­
ported by data for low truncation levels, the partial 
flood series is more efficient or more useful in 
estimating annual flood peaks than the annual flood 
series, especially in case of small sample sizes; 

(8) By using the observed and generated samples 
of daily flows, the partial flood series model, 
developed in this study (Eq. 5-6), gives a better 
fit of frequerncy distributions of the largest exceed­
ance than the commonly assumed partial flood series 
model (Eq. 3-83), especially for lCY'II truncation 
levels and for rivers with highly fluctuating dai ly 
flows. 
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Fig. A-1. Relationship between the First-Order Serial 
Correlation Coefficient, r1, of Series of 
Exceedances , and the Truncation Level, Qb, 
Expressed as the Average Number of Exceed­
ances per Year,~. for Station Nos. 1, 2, 
3, 6, and 8 
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Fig. A-2. Relationship between the First-Order Serial 
Correlation Coefficient, r1, of Series of 

Exceedances , and the Truncation Level, Qb, 
Expressed as the Average Number of Exceed­
ances per Year, n, for Station Nos. 4, 5, 
10, and 13 
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F1g. A-3. Relationship between the First-Order Serial 
Correlation Coeffici~nt, r1, of Series of 
Exceedances , and the Truncation Level, Qb , 
Expr essed as the Average Number of Exceed­
ances per Year, n, for Station Nos. 7, 9, 
12, and 16 
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Fig. A-4. Relationshi p between the Fi rst-Order Serial 
Correlation Coefficient, r 1, of Series of 
Exceedances. and the Truncation Level, Qb' 
Expressed as the Average Number of Exceed­
ances per Year, n, for Station Nos. 11, 14, 
15, and 17 

Fig. A-5 . 
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Relationship between the First-Order Serial 
Correlation Coefficient, r1, of Series of 
Exceedances, and the Truncation Level, Qb, 
(Expressed as the Average Number of Exceed­
ances per Year, n) as well as the Non­
Exceedance Probability of Separate Flood 
Peaks, F(Qb)' for the Whole Range of Qb and 
for Station :~o. 9 
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The samples of daily f low series were generated 
by a refined model. Two station series with different 
water regimes are used to t est the method developed. 

The estimates of annual flood peaks of given 
return periods from the partial flood peak ser ies 
showed a smaller sampling variance than the cor res­
ponding estimates from the annual flood peak series 
when the average number of exceedances per year in 
partial flood series was at l east 1.65 for an exact 
analytical approach, and at l east 1.50 for an approxi­
mate analytical approach. 
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water regimes are used to test the method developed. 
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