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ABSTRACT 

Tile subject matter of this paper is the generation of 20 samples. each SO y~ars lon~. of three variables 
related to water input s into and retardation of flows in connecting channels of the Great Lakes: (1) Mean 
monthly net basin water supplies of five lakes; (2) Mean quarter-monthly net basin "ater supplies of two 
smal l er lakes (Ontario and Erie); and (3) Flow retardations in connecting channels because of freezing and weed 
effects. The methods of obtaining the net basin water supplies and cnannel f l ow retardations are described as 
developed by the Great Lakes various conunittees. For each of series of the above t hree variables, first the tests 
of homogeneity (trends) in data have been performed, basically by using the t - statistic and Student t-distribution. 
The Lake St. Clair mean monthly net basin supplies have been found to have a trend. Also the two connecting 
channels (the St. Mary River, the St. Clair-Lake St. Clair- Detroit Rivers Systems) had decreasing trends in flow 
retardation series. All series are studied further with the trends in parameters removed. 

Periodic parameters in al l three var iables are found to be the mean and t he standard deviat ion. The auto­
correlation coefficients and the skewness coefficient are found not to be periodic. The stochastic components, 
after the periodic mean and standard deviation are identified and removed , are found to be gr eatl y autocorrel ated. 
The simple first - and second-order autoregressive linear models are found sufficient to describe these dependences . 
For the resulting white noise (independent, identically distributed stochastic components) of all series, the 
three-parameter lognormal distributions have been found as good approximations. 

The principal component analysis has been used in generating the new samples of the mean monthly net basin 
supplies. The approach of generating f irst the monthl y values, and then superimposing the generated four dif­
ferences of mean quarter-monthly values was shown to be difficult to apply, because both the conser vation of mass 
(swn of fo ur differences to be zero) and the autoregressive model could not be satisfied simultaneously. For 
small number of ser i es of the same var iable, the sample cor r elation between t he independent stochast ic components 
was used in generating new samples. 

iv 



PART I 
INTRODUCTION 

This part relates to two aspects of generation of 
new samples of a set of station series, namely (1) The 
reduction of periodic-stochastic time processes to nor­
mal , independent , identically distributed random vari­
ables, space dependent, as an n-dimensional process , 
transformed to n principal components; and (2) The 
description of the Great Lakes data used in simulating 
the var ious series of net basin supplies of these lakes 
and flow retardations in connect ing channels . 

Chapter 1 

GENERAL APPROACH TO GENERATION OF SAMPLES OF A SET OF 
STATION SERIES 

1. 1 Basic Charaater of HydroZogia Area-Time Processes. 
In sampling area-time hydrologic processes by various 
data collection services, the most current practice is 
in appr oximating the areal variation by a set of points , 
and in observing the variation of particular variables 
in time either as continuous recordings, discrete t ime 
observations, or the cumulative values over the speci­
fied intervals. The general area-time process x{X, Y; t}, 
as a three-dimensional process, is then separated in 
n time processes, such as: x

1
(x

1
,v

1
,t); x

2
cx

2
,v

2
;t); 

... ; xn{Xn,Yn;t), where (Xi,Yi) are the coordinates of 

n points, i • 1,2, ... ,n, and t are either discrete 
intervals or continuous time. 

The basic character of nearly all hydrologic pro­
cesses, for small 6t (say 6t smaller than a year) , 
is that they are periodic-stochastic processes depen­
dent over the area. Mostly the station random vari­
ables x1,x2, .. . ,xn are of mixed distributions, be-

cause the parameters (mean, variance, autocovariances , 
skewness, etc.) vary periodically over the year (or in 
case of 6t smaller than a day, also often over t he 
day). These mixed variables most often have skewed 
distributions with a kurtosis coefficient different 
from three of the normal distribution. 

1. 2 Generation of New SampZes . To simulate m sam­
ples each of the size N for all n stations, by pre­
serving the time structure and areal dependence, if n 
is not too small (say five or more), the best presently 
available approach is to use the stationary multivari­
ate normal distributions of n identically distributed 
components, time independent and areally dependent, and 
the principal component analysis. By r emoving the pe­
riodlcity in parameters of time series, the stationary 
dependent stochastic components are obtained. By in­
ferring the proper dependence model for the stochastic 
component, the independent, identically distributed 
process in time (the noise) can be singled out . If 
this noise is not normally distr ibuted, a further t rans­
formation (logarithmic , cubic root, and similar ) may be 
used to arrive as close as practically feas ible to nor­
mal independent identically distributed stochastic com­
ponents along the time intervals, as the white noise. 
The n mutualry dependent components then represent 
the multivariate normal distribution as the starti ng in­
format ion for the use of principal components anal ysis. 

By using the n x n covariance matrix, or for stan­
dardized normal variables the correlation matrix, the 
well known procedures of transformation of n mutually 

1 

dependent normal variables to n mutual ly independent 
normal variables, or th~ principal components, can be 
used . Computer oriented procedures and programs are 
available currently for this analysis. 

For principal components as the normal , identi­
cally distributed random variabl es , independent both 
in time and in area, it is then simple to generate by 
the Monte Carlo or experimental method the m samples, 
each of the size N (or several sizes N. if this is 
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needed}, for each of n components. The inverse pro­
cess then transforms the generated sampl es of principal 
component s into the multivariate normal components, de­
pendent among themselves but independent in time. This 
means a preservation of areal dependence specified by 
the correl ation matrix. Applying to each component the 
corresponding time dependence model, inferred in the 
structural analysis of time series, the n t ime depen­
dent stationary stochastic components are produced . 
The superposition of inferred functions for periodic 
parameters then produces the n components, which pre­
serve both the time structure and areal dependence. 

The method described has been used to generate the 
net basin supplies and channel f l ow retardations for 
the system of Great Lakes. 

1. 3 Procedure FoZlowed. The three parts, II, I II and 
IV, which relate to generation of samples for monthly 
net basin suppl ies to five of Great Lakes, quarter­
monthly supplies to two lakes , and the flow retardations 
in channels connecting the lakes, because of the winter 
ice cover , explain the procedures used in details. 

Chapter 2 

DESCRIPTION OF GREAT LAKES AND VARIABLES TO GENERATE 

2. 1 The System of Great Lakee. The data on Great 
Lakes in this paper and various descriptions are taken 
from official reports [1 through 6] and published pa­
pers. The total area of Great Lakes is about 95,000 
square miles , with the drainage area approximately 
203,000 square miles. The basin map is given in Fig. 
2-1. Principal hydrologic data for five of the Great 
Lakes are shown in Table 2-1. 

The imrnense ·storage capacity of the lakes repre­
s ents a large natural regulating water system. The 
ratios of the maximum to m1n1mum flows at the lake 
outlets are only two to three. Lake Superior, com­
pletely regulated, is the uppermost and largest of the 
Great Lakes with the outflow through the St. ~1ary 
River into Lake Huron. Lakes Michigan and Huron are 
at the same level since they are connect ed by the broad 
and deep Straits of ~lackinac. They are hydrologically 
treated as one lake. The outflow from these lakes is 
through the St . Clair River, then Lake St . Clair and 
the Detroit River into Lake Erie. The outlet fr om Lake 
Erie is through the Niagara River into Lake Ontario 
Lake Ontario, the lowest of the Great Lakes, is the 
smallest. Following the construction of the St . 
Lawrence Seaway and Power projects , the outflows from 
Lake. Ontario are also regulated . 

2. 2 ReguZ.ation of Great Lakes. At the request of the 
Governments of Canada and the United Stat es, t he 
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Fig. 2-1 The Great Lakes basin , with the subbasins (The map of the Great Lakes Basin Conunissi on). 

TABLE 2-1 
DATA ON THE GREAT LAKES (1860-1972), ACCORDING TO IGLLB STUDY 

Drainage Area ~lean Outflow 
Storage Range Depth 

Water Capacity Average of on 
Lake Land Surface Per Foot Eleva- Monthly Outlet (cfs) Total 

Area Area of Stage tion Mean Ri ver Drainage 
(Square (Square of Lake (above Stage Basin 
Miles) Miles) (cfs for m. s . l.) 

" 
(ft.) (inches) 

one month) (IGLD ,1955) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Superior 49,300 31 , 700 337,000 600.4 3 .8 St. Marys 75 , 400 12. 6 

St. Clair 
Michigan- 45,600 22,300 481,000 578 .7 6.6 Lake St . 187 ,900 11 . 6 

Huron 51,800 23,000 Clair 

St . Clair 6, 100 400 5,000 573. 1 5.8 
Detroit 188,900 

Erie 23,600 9,900 105,000 570.4 5.3 Niagara 202 , 300 10.6 

Ontario 27,200 7,600 80 ,000 244.6 6 . 6 St . Law- 239,700 11. 1 
renee 

TOTALS 201,500 94,600 1,003,000 *International Great Lakes datum, 1955 - elevation i n 
feet above Father-Point, Quebec, 

2 



International Joint Commission has undertaken an i nves­
tigation to determine whether it would be feasible and 
in the publ ic interest to regulate further the levels 
of the Great Lakes so as to r educe the extremes of stage 
which have been experienced in the past and bring about 
a more beneficial range of stage for the various water 
users. The Commission established the International 
Great Lakes Levels Board on December 2, 1964 to under­
take, through appropriate agencies in Canada and the 
United States, the necessary investigations and studies 
and to advise the Commission on all matters which it 
must consider in reporting on this matter. 

ln 1965 the Working Committee, which was estab­
lished by the Levels Board, appointed a Regulation Sub­
committee composed, in part, of members of the U. S. 
lake Survey, Corps of Engineers and the Inland Waters 
Branch, Canada Department of Energy, Mines and Re­
sources. The Regulation Subcommittee, and in partic­
ular, these two agencies, were assigned the task of com­
puting and coordinating the water supply data required 
for the development of regulation plans and to derive 
the basis of comparison for these plans . Preliminary 
water supplies and comparison data, covering the period 
January 1900 through December 1964, were issued in April 
1967. Subsequently, final water suppl ies and the basis 
of comparison data, covering the period January 1900 
through December 1967, have been developed and coor­
dinated. 

2. 3 Methods EmpZ.oyed to Obtain the Final Data. The 
historic or recorded data from which the required water 
supplies for the r egulation plans have been developed, 
were themselves developed, in part, by another inter­
national committee known as the Coordinating Committee 
on Great Lakes Basic Hydraulic and Hydrologic Data. 
The Committee developed data on water levels, river 
flows and physical characteristics of the Great lakes 
system. 

Because of their large areas, the levels of lakes 
Superior and Michigan-Hur on respond to changes in out­
f low much more slowly than do the levels of Lakes Erie 
and Ontario. The lake regulation studies are conducted 
on a monthly basis for Lakes Superior and ~1ichigan­
Huron and on a quarter-monthly basis for Lakes Erie 
and Ontario. Monthly data are also used for Lake St . 
Clair . 

The quarter-monthly periods consist of seven or 
eight days sub-divided as: 

Months of Months of 
Quarter Month 28 or 29 days 30 or 31 days 

First 1-7 1-8 

Second 8-14 9-15 

Third 15-21 16-23 

Fourth 22-28 or 29 24-30 or 31 

The data used for obtaining net basin water sup­
plies and winter and weed retardations are: beginning­
of-period lake levels, recorded outflows , and recorded 
diversions. 

2. 4 llet Basin Supplies . The net basin supply is a term 
used to describe the water which a lake receives from 
precipitation on both its surface and its drainage basin 
less the net evaporation and condensation on the lake 
surface. Some of these factors cannot be determined 
accurately . The net basin supplies were computed by 
employing reliable lake l evel and flow records for the 
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required monthly and quarter-monthly periods. The re­
lationship used is 

aS • P + R + U - E + I - 0 ± D (2-1) 

where aS " the change in amount of water stored in the 
lake (positive if supplies exceed outflows; negative 
if outflows exceed supplies), P; the precipitation 
on the lake's surface, R 2 the runoff from the lake's 
land drainage area, U = the ground-water contribution 
(considered positive i n the aggregate), E =the evapo­
ration from the lake ' s surface (net of evaporation and 
condensation), I = the inflow from the lake above, 0 = 
the outflow from the lake through its natural outlet, 
and D " the diversion (positive if into lake; negative 
if out of lake). 

The changes in storage, inflow, outflow and diver­
sion are determinable directly from reliable lake level 
and flow records, while the precipitation, runoff, 
ground-water contribution and evaporation cannot be de­
termined accurately with presently available data and 
techniques. The first four terms of the right -hand side 
of the equation are combined i n a single term which is 
called the net basin supply to the lake, Q, and the 
equation written as: 

Q;liS+O - I+D, (2-2) 

with all t erms expressed in units of cubic feet 
second for the period. The sum of as and 0 
eluding any outflow diversion) represents the 
total supply to the lake. 

per 
(in­
net 

The distribution of average water supply to lake 
in percent of average outflow is giv-en in Table 2-2. 
The values for changes in storage, outflows and inflows 
are determined directly from the recorded values of 
lake levels, river f lows and diversions. 

TABLE 2-2 
DISTRIBUTION OF AVERAGE WATER SUPPLY TO LAKE 

IN PERCENT OF AVERAGE OUTFLOW 

Lake 
Lake Michigan- Lake Lake 

Superior Huron Erie Ontario 

Inflow from 
upstream lake (I) 0 46 86 86 

Precipitation on 
lake surface (P) 88 59 12 8 

Evaporation from 
lake surface (E) -55 -57 -13 -7 

Net (P-E) +33 +2 -1 +1 

Runoff from 
land basin 62 49 12 13 

Percent of total 
outflow accounted 
for 95 97 97 100 

2. 5 Wintsr and Weed Retardations. The freezing over 
and weed retardations for connecting channel s are de­
termined as follows . The level of Lake Superior and 
the outflow through the St. Marys River are regulated 
by the International Lake Superior Board of Control by 
a dam at the head of the St. Mary Rapids. Under pre­
sent regulation conditions , the winter effect on the 
discharges is virtually zero for all months. 



Lake St. Clair normally freezes over in the early 
winter . Subsequently, heavy runs of Lake Huron ice in 
the St . Clair River jam in the channels through the St. 
Clair Flats and upstream, to the extent that the river 
flow is reduced. Ice jams seldom occur in the Detroit 
River, although the river is frequently frozen over in 
its lower reaches. Winter retardation in the St. Clair 
River was estimated by subtracting the coordinated re­
corded flow from the corresponding discharge based on 
the two-gauge open-water stage-discharge relationship 
for t he Harbour Beach-Gr osse Pte. reach . 

In order to avoid ice problems i n the Niagara River, 
an ice boom has been placed across the head of the Ni­
agara River by the Power Entities for each winter season 
commencing in 1964. The presence of this ice boom has 
reduced the retardation of Niagara River flow by ice to 
a very small amount which can be considered insignif­
icant . However, since the outlet conditions of 1953 
were adopted as the basis to be used for comparing reg­
ulation plans, average winter retardation was assumed 
for the Niagara River over the period of record. 

Lake Ontario is at present regulated by the Inter­
national St. Lawrence River Board of Control. There­
fore , direct estimates of winter retardation could be 
made only for the period prior to commencement of the 
St. Lawrence project in 1955. For the period 1900-1955 
retardation values were calculated as the difference 
between the outflows resulting from the open-water Os­
wego stage-discharge relationship, and the recorded 
outflows. 

Reduction in the winter flow at the outlet of Lake 
St. Louis was calculated directly as the difference be­
tween the discharge derived from the appropriate open­
water stage-discharge curves and the recorded discharge. 

The determination of winter flow retardation val­
ues are based on the following relationshi p: 

(2-3) 

where I = the wi nter flow retardation in cfs-months, 
QA = the adopted flow through connecting channel in 

cfs-months and QC = the flow computed from the open 

water stage-discharge relationship in cfs-months. In 
the aforementioned relationship QA represents the mu-

tually accepted values among the agencies of both U. S. 

and Canadian Governments and are tabulated in the report 
on coordinated basic data. 

2.6. Generation of Samples of Net Basin SUpplies and 
Fl-ow Retardations . The U. S. Army Corps of Engineers, 
North Central Division, Chicago, Illinois, and the 
writer of this paper concluded an agreement for the 
writer to analyze data and to generate 20 samples each 
50 years long of : 

(1) Monthly net basin supplies of five lakes; 

(2) Quarter-monthly net basin supplies of two 
lakes; and 

(3) Winter flow retardations of the outflows at 
four connecting channels. 

These three items are covered in Parts II , III and IV 
of this paper , respectively. The two reports, sub­
mitted to North Central Division of U. S. Army Corps 
of Engineers, Chicago, Illinois, namely in August 1972 
and September 1972, respectively, have served as the 
basic material in shaping this paper, with modifications. 

The following data, in the form of punched cards 
have been supplied by the Corps of Engineers for the 
generation of the new samples: 

1. Lake Superior monthly mean net basin supply 

2. Lake Michigan/Huron monthly mean net basin 
supply 

3. Lake St. Clair monthly mean net basin supply 

4. Lake Erie quarter-monthly mea.n net basin supply 

5. Lake Erie monthly mean net basin supply 

6. Lake Ontario quarter-monthly mean net basin 
supply 

7. Lake Ontario monthly mean net basin supply 

8. Winter retardation of the outflow from Lake 
Michigan/Huron 

9. Winter retardation of the outflow from La.ke 
St. Clair 

10. Winter retardation of the outflow from Lake 
Ontario 

11. Winter retardation of the outflow from Lake 
St. Louis 

4 

Dr. Jose Salas-La Cruz assisted the writer in all com­
putations of sample generations; this help is appreciated 
and acknowledged. 



PART II 
GENERATION OF SAMPLES OF MEAN MONTHLY NET 

BASIN SUPPLIES OF GREAT LAKES 

This part refers to t he structura l anal ysis of 
historic data, made available by the U. S. Army Corps 
of Engineers, North Central Division, Chicago , of the 
five mean monthly net basin supplies--in f urther text 
abbreviated as NBS- -of Lake Ontario , Lake Erie, Lakes 
Michigan/Huron, Lake Superior and Lake St. Clair, and 
the generation by the experimental (Monte Carlo) method 
o"f 20 samples each 50 years long of each of these f ive 
mean monthly net basin supplies. It contains the fo l ­
lowing: tests of homogeneity of the above five NBS 
t i me series, structural analys is of these series found 
or made homogeneous with their mathematical descrip­
tion , generation of samples for four series (all ex­
cept NBS of Lake St . Clair) , analysis of generated 
samples, development of a multiple linear regression 
for Lake St. Clair NBS series t o the other four series, 
generation of samples for NBS series of Lake St. Clair, 
and analysis of these generated samples . 

Chapter 3 

TESTS OF HO~IOGENE ITY OF NBS SERIES 

3. 1 Selection of Test Statistics. Tests of homogeneity 
are carried out by the sp l i t-sample approach in ascer­
t aining whether di fferences between the means of the 
two unequal subsamples (36 and 33 years in the case of 
four series) are or are not significantl y different 
from zero on t he 95 percent probability l evel of sig­
nif icance . Only i f the probability is less than 5 per­
cent t hat a difference is greater than the critical 
value of these differences are the two subsample means 
considered not to be from the same population, or the 
series considered to be nonhomegeneous. 

The t-st at istic is used for testing whether the 
difference of the two means, x l and x2 is signi-

f icant with 

t (2 -l) 

and 

s = (2-2) 

where n1 and n2 are subsample sizes, xi are val­

ues of t he series in the n1 subsample and xj in the 

n2 subs ample . This t has the Student t-dist ribution .. 

The critical value , tc for the signif icance proba­

bility level of 95 percent was then taken from the 
Student t-distribution tables . 

Similar equations to Eqs. 2- 1 and 2-2 are al so 
used for testing whether the diff erences of stand­
ard deviations s1 and s2 of two subsampl es are si g-

nif i cantly different, with x
1 

and x2 in Eq. 2-1 

replaced by s1 and s 2 , and s of I::q. 2-1 is the 

value of s of Eq . 2-2 . These s
1 

and 52 are the 
averages of s of each year for the two subsamples. 
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3. 2 Results of Homogeneity tests . Table 2-1 gives the 
resul ts of tests of homogeneity i n the subsample means, 
with only the series of monthly mean NBS of Lake St. 
Clair found to be nonhomogeneous . The monthly mean NBS 
series for Lake St . Clair is then corrected wi th x 
5.24 of the last 26 years of records also being the 
mean for the first 43 years. In fact all values of the 
first subsample are increased by the difference x

2 
-

x1 . The new series of NBS for Lake St. Clair is t hen 

further analyzed as a homogeneous series. 

TABLE 2-1 
ANALYSIS OF DIFFERENCE IN TWO SUBSAMPLE MEANS 

Subsample Sizes St atistic t(95%) 

· Lake nll n2 
From t -
Tabl es 

Change in 
ComEuted the ~tean 

Ontario 36 33 2.0 0.299 No 
Erie 36 33 2.0 0.635 No 

Superior 36 33 2.0 1.525 No 

Michigan 36 33 2.0 0.866 No 

St . Clair 43 26 2.0 4.477 Yes 

The tests of homogeneity i n the standard devia­
t ion of the NBS series are present ed in Table 2-2 in a 
similar manner to the presentation of results of tests 
of the two subsample meaJ'.S of Table 2-l. All five ser­
ies are found t o be homogeneous in the standard devia­
tion. 

Usually and under the natural conditions , when a 
hydrologic series has no significant trend or slippage 
(positive or negative jump) in the mean and the stand­
ard deviation, the entire series may be safely infer red 
as being homogeneous. No tests were considered neces­
sary to det ermine whether the difference of two sub­
sample ~tatistics of other parameters are or are not 
signif icantly different from zeros ,or for such periodic 
parameters as monthly means m, , monthly standar d devi -

ations s, , mont hly autocorrelation coefficients rk, ·r 

of t he stochastic dependent component , or monthly skew­
ness coefficient ,cs of the independent s tochastic 
component. 

TABLE 2-2 
ANALYSIS OF DIFFERENCE IN TWO SUBSAMPLE STANDARD 

DEVIATIONS 

Sub sample Sizes Statistic t(95%) 

From t- Change i n 
nl n2 Tables Computed the St . 

Lake Deviation 

Ontario 36 33 2.0 0.598 No 

Erie 36 33 2. 0 0.992 No 

Superior 36 33 2.0 1. 748 No 

Michigan 36 33 2.0 0. 269 No 

St. Cl air 43 26 2.0 1.056 No 

The four major historic series of mean monthly NBS 
(Ontario, Erie, Superior, Michi gan) are used in the 



further investigations as made available by the Corps 
of Engineers, while the Lake St. Clair NBS series is 
used with a mean of the second subsample of the last 
26 years of data, with the monthly average x • 5 . 24 . 

Figures 2-1 through 2-5 give the series of the 
mean annual NBS at the lake outlet flow gauging sta­
tions (Fi g. 2-1 - Ontario , Fig. 2-2 - Erie , Fig. 2-3 -
Superior, Fig. 2-4 Michigan, and Fig . 2-5 - St . 
Clair) . These figures also show the two selected sub­
sampl es in testing whether the difference of their two 
means or the difference of their two standard devia­
tions are or are not significantly different from :e­
ros . A visual inspect ion also shows that the first 
four lakes, Figs. 2-1 through 2-4, either do not show 
a trend in mean annual NBS, or that the trend is so 
mild that it can be safely attribut ed to !:iampling 
fluctuations. 
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Fig . ~-1 Annual mean net basin supply for Lake Ontario. 
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Fig. 2-2 Annual mean net basin supply for Lake Erie. 
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Fig. 2- 3 Annual mean net basin supply for Lake 
Superior 
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Fig. 2-4 Annual mean net basin supply for Lake 
Michigan. 

Fig. 2-5 Annual mean net basin supply for Lake St . 
Clair . 

Chapter 4 

STRUCTURAL ANALYSIS AND MATHE~~TICAL OESCRIPTlON OF 
~!ONTHLY ~IE.A.N NET BASIN SUPPLY 

4. 1 Genera~ :StruaturoZ Analysis and Description. The 
structural analysis and mathematical description are 
based on the fo llowing four concepts: 

(1) A relationship is established between thepe­
riodic parameters of the monthly means and monthly 
stanuarJ deviations, and the dependent stochastic com­
ponent in the form 

E p,r 
(2-3) 

in which x is the observed mean monthly NBS; ~. 
p, T ' 

is the fitted periodic function to the estimated 12 
average monthly values, mT; aT is the fitted perio-

dic function to the 12 monthly standard deviation, s,; 

p is the year of the NBS series with p • 1,2, ... ,n , 
and n the sampl e size in years ; ' is the month of 



the year with T = 1,2 , ... , 12 , and£ is an approx-p,t 
imately standardized but dependent stochasticcomponent. 

(2) The mathemat ical description of mt and s, 

by the periodic functions ~, and o, is achieved by 

selecting a given number of harmonics out of maximum 
six harmonics of the monthly series, with 

m 

X + L 
j =l 

(A. cos 2rrj f r + B. sin 2rrj f t) , 
J J 

(2-4) 

-where x is the mean of m , A. and B. are Fourier 
T J J 

coefficients for the j-th harmonic, and f = 1/12 is 
t he ordinary frequency of t he 12-month harmonic . A 
similar equation is obt ained for o, , with x repl a­
ced by the mean of t he twelve estimated monthly stan­
dard deviations s, , and the corresponding Aj and 

B. are Fourier coefficients. The Fourier coefficients 
J 

for ~, are estimated by 

1 12 
6 Z: 

r =l 

and 

em -x) cos ll'jt/6 
T 

(2-5) 

I2 
B. = i L (m -x) sin rrjt/6 (2-6) 

J t=l T 

For j = 6, the Fourier coefficients are A6 = Aj/2 , 
and B

6 
= 0 

(3) The dependence model of the dependent sto-
chastic component £ is found in the analysis to p, T 
be well approximated by the second-order linear auto­
regressive (~1arkov) model of the type 

e: =aE +a E + E; p,T 1 p,t-1 1 p,t-2 p,T (2-7) 

where <; p,T i s the independent,assumed a l so to be the 

second- order stationary stochastic component, a
1 

and 

a 2 are the population autoregressive coefficients (es­

timated by the sample values a
1 

and a2), related to 

the first two ~pulation autocorrelation coefficients 
P1 and P2 (estimated by the sample first two serial 

correl ation coefficient s , r 1 and r 2), or 

By repl acing pl and p2 
and a 1 and a 2 by a

1 
are comput ed from Eq. 2-8. 

in Eq. 2- 8 by 

and then 

( 2- 8) 

(4) A probability distribution function is fi t­
ted to the empirical frequency distr ibuti on function of 
~ , either separately for each ~ of the NBS p,T p,T 
series, or when shown feasible for all series . In this 
later case a probability distribution function is fit­
ted to the fr equency distribution of <; of all NBS p,t 
series put together, representing now a unique sampl e. 

7 

4. 2 Periodic Component s . Fourier coefficients are 
computed from the 12 values of mT , and the 12 values 

of s,, and for all six harmonics, j = 1,2, ... ,6 (or 

12-month, 6-month, 4-month, 3-month, 2.4-month, a~d 2 
-month harmonic) . The amplitudes of these six harmon­
ics are computed by 

C. = (A~+ B~)l/2 
J J J 

(2 -9) 

The four harmonics with the highest c. values are 
J 

considered as having ampl itudes significantly differ-
ent from the amp l itude values which series of m, and 

s, would have if they would not be periodic . 

Table 2-3 presents Fourier coefficients of ~, and 

o, for the five NBS series,and for the four harmonics 

for each series (given as j in Tabl e 2-3) found sig­
nificant by the approximate procedure of testing this 
significance . The harmonics j are sorted in the de­
creasi ng order of their amplitudes. 

Figures 2-6 throunh 2-10 give graphs for each of 
t he f ive NBS series and each graph has four lines : (1) 
the estimated monthl y means, m, , (2) the fitted peri-

odic function ~T , with four significant harmonics; 

(3) the estimated monthly standard deviations , sr, and 

(4) the fitted p·eriodic function crT, with four signi­

ficant harmonics. The study of these five figures. 
leads to the following conclusions: 

(1) Periodic components ~T and o, have simi­

lar patterns but do not seem proportional for these 
five series of the mean monthly NBS; 

(2) Though a parallelism of o, and ~, are 

expected for each NBS series, the :;amp ling fluctuations 
(and maybe some other factors) produce this non­
proportionality; 

100 

T 

Fig. 2-6 Per iodic mean fitted (1) and computed (2} 
and periodic standard deviation fitted ( 3) 
and computed (4) for monthly net basin sup­
ply of Lake Ontario. 
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Fig. 2-7 Periodic mean fitted (1) and computed (2) 
and periodic s t andard deviation fitted (3) 
and computed (4) for monthly net basin sup­
ply of Lake Erie. 

200 

Fig . 2-8 Periodic mean fitted ( 1) and computed (2) 
and periodic standard deviation fitted (3) 
and computed (4) for monthly net basin sup­
ply of Lake Superior. 

TABLE 2-3 

FOURIER COEFF ICIENTS OF FITTED HARMONICS TO MEANS AND STANDARD DEVIATIONS 
OF MONTHLY MEAN NET BASIN SUPPLIES 

Mean IJT St. Deviation (J 
T 

harmonic A. B. harmonic A. B. 
Lake J J J ) 

1 - 13.162 32 .586 1 - 0. 166 6.608 

Ontario 2 -3 .048 - 10.522 2 0.024 - 2.987 

3 6.398 -3 . 169 4 -0.312 1 . 238 

4 0.398 5.079 3 1.213 0.160 

1 -11.062 41.503 1 3.732 7.761 

Erie 3 4.780 -2 .611 3 0 . 721 2.681 

2 -1.371 -5.022 4 0.023 2.329 

4 4 . 250 2.751 5 -0.829 0 .259 

1 - 94.327 -0.243 - 11.270 - 2.557 

Superior 2 5 . 407 -23.493 2 -2.006 -9 . 090 

3 2.930 10.799 4 2.404 -0 .912 

4 -8.776 - 1. 776 3 -0.343 2.487 

1 -93 . 848 84.036 2 -2.364 -14.685 

Michigan 2 8.191 -34.842 1 -6.062 3.574 

5 -8.567 -9.185 3 3.638 1.990 

3 9.792 -0 .353 5 0.656 2.590 

1 -0.415 3 . 148 1 0. 408 2.361 

4 0.068 0.276 3 0.514 0.437 
St. Cl air 3 0 . 251 0 . 043 4 -0.330 0 . 319 

2 -0.227 0.050 5 0.210 -0.056 
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Fig. 2-9 
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Fig. 2-10 

T 

Periodic mean fitted (1) and computed (2) 
and periodic standard deviation fitted (3) 
and computed ( 4) for monthly net basin sup­
ply of Lake mchigan. 

T 

3 4 5 6 8 9 10 I I 12 
Periodic mean f itt ed ( 1 ) and computed (2) 
and periodic standard deviation fitt ed (3) 
and computed (4) for monthly net basin sup­
ply of Lake St . Cl a ir. 

(3) Excel l ent fit s of ur to mT and of at to 

s
1 

point out t hat for ~1 1 practical purposes 

case there is no si1,rn ificant difference 1;hether 

of Eq . 2-3 has been computed by using mT and 

stead of the fitted u
1 

and o
1

; and 

i n 

s 

this 

c p, T 

T i n-

(4) The use of \JT and '\ in Eq. 2-3 should 

remove the major periodicity in the monthly mean NBS, 
so that i t i s only necessary to check whether t he auto­
regressive coefficients a1 and a2 are periodic or 

not by testing whether the serial corre lation coeffi­
cients r

1 
and r

2 
are periodic or not , as well as 

whether the skewness coefficient of the t p,T series 

is periodic or not . 

4. 3 Dependence 17(0del for the Dependent Stochastic Com­
ponents . The computed dependent s t ochast ic components 
t by Eq. 2-3 are first tested for periodicit ies by 
p,1 

determining whether their first three serial correla­
tion coefficient s rl,T' r 2,, and r 3 ,, are or are 
not periodic . Figures 2-11 through 2-15 show the mon­
thly values of these coefficients,with T o 1,2, .•. ,12, 
for c of the five NBS series, together with the p,T 

9 

means of these 12 monthly values. They are column ser­
ial correlation aoeffiaients ,which means they are com­
puted for each month by using the appropriate autoco­
variances for n years of data. The serial correla­
t ion coefficient s of c for the Lake St. Clair NBS p,T 
series are computed with the nonhomogeneity removed. 
Shapes of 15 gxaphs in Figs . 2-11 through 2-15 show 
that--for all practical purposes--no periodicity or 
systematic changes in the column serial correlationco­
efficients could be detected. There is neither a par­
allel ism of r 1 , r 2 , and r 3 of Figs.2- l l through 

JT , T , T 

2-15 with the m, and sT of Figs. 2-6 through 2-10 , 

respectively for each mean monthly NBS series, nor 
there is an opposite pattern, namely that r 1,,, r 2,, 

and r 3 are small when m and s are l arge or 
, T t T 

vice versa. Taking i nto account a high sampling vari­
ation of r 1 , r 2 , and r 3 , particularly when the 

, T , T , T 

c series is dependent , so that rk 's are also 
.P • t ,t 

dependent i n sequence, it can be safely assumed that 
t he column serial correlation coefficients are not 
periodic . Because the average r 1, T is greater than 

r 2 , , , and this latter is greater than r 3,, for all 

series , the autoregressive models (~1arkov models) of 
t i me dependence in c are indicated. Besides, r 3 p ,T , T 
is very close 
rk ' s , with 

,T 

to·zero for all series, so the study of 
k > 3, was not considered necessary. 
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Fig . 2-11 Variation of the monthly first ( 1) , second 
( 2), and third (3) autocorrelation coeffi-
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Fig. 2-12 Variation of the monthly first (1), second 
(2), and third (3) autocorrelation coeffi-
cients of the standardized series E for 
Lake Erie . p,T 
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Fig. 2-13 Variation of the monthly first (1), second 
( 2) , and third (3) autocorrelation coeffi­
cients of the standardized series t for 
Lake Superior . P • T 
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Fig. 2-14 Variation of the monthly first (1), second 
(2), and third (3) autocorrelation coeffi­
cients of the standardized series t for 
Lake Michigan p , T 
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Variation of the monthly first (1), second 
(2) , and third (3) autocorrelation coeffi­
cients of the standardized series t for 
Lake St. Clair. p,T 

Table 2-4 presents a comparison of r1 ~ r 2 , and 

r 3 , or of the first three serial correlation coeffici-

ents of the entire t series , and r
1 

, r
2 

, and _ p,T ,T ,T 
r 3 , or the averages of column serial correlation co-

,T 
efficients of Figs. 2-11 through 2-15 . The correspon­
ding differences between these coefficients are rel a­
tively small. Therefore, there is no practical dif­
ference whether the dependence model of the c ser-

P,T 
ies is based on r 1 , r 2 , and r 3 or on the co-

,T I T "T 

efficients r1 ,r, , and r
3 

of the entire c 
- p,T 

series. 

Because the c series is found to be the second p,T 
-order stationary process (after ~T and o 

T 
are re-

moved, and after r 1 , r 2 , and r 3 , T , 'T ,L 
are found not 

to be periodic) , and because there are no significant 
differences between the mean col umn serial correlation 
coefficients and the serial correlation coefficients 
of the entir e t series, the~e l at t er coefficients p,T 
rk, k = 1,2,3, are used in estimating the autoregres-

sive coefficients of the inferred order of the autore­
gressive or Markov linear dependence models. 

Figures 2-16 through 2-20, upper graphs, give 
correlograms of the c series for the five mean p,T 
monthly NBS . They all show a dampening effect with the 
absolute value of rk decreasing with an increase of 

the lag k . All these graphs for their first S-6 val­
ues of rk show the fitted first-order autor egressive 

linear model of the type 

cp, T = P1 t p, T-1 + l;p, T (2 -10) 

with 

pk 
k = pl (2-11) 

and the second-order autoregressive linear model, as 
given by Eq . 2-7 , with the correlogram 

(2-12) 

where a 1 , a 2 , p1 , pk-l' pk-~ ' and pk are the popu­
lation parameters estimated by the sample values a1 , 

TABLE 2-4 

C0~1PARISON OF FIRST THREE SERIAL CORRELATIONS COEFFICIENTS OF c SERIES p,T 
FOR THE FIVE LAKE NET BASIN SUPPLIES: (1) MEANS rl,T' r 2,T AND r 3,T OF 

COLUMN VALUES, AND (2) r 1, r 2 , AND r 3 OF ENTIRE t ,, SERIES . 

Ontario Erie Superior Michigan St. Clair 

0. 273 0.205 0. 247 0 . 140 0.317 

0 . 256 0 .196 0.229 0.134 0.308 

0.129 0.108 0 .133 0 .121 0.201 

0.134 0.111 0.135 0.130 0.199 

0 .064 - 0.001 0.066 0.021 0.110 

0.065 -0 .001 0.061 0.038 0.108 

10 



a2, r 1, rk-l, rk-Z, and rk . The visual comparison 

of the fitted f irst-order and second-ord.er linear mo­
dels with the estimated correlograrns show that the 
second-order model fit'S better the estimated correlo­
grams. When the independent and second-order station­
ary component ; is computed either by Eq. 2-10 as p,T 

F; = £ - r e: p,T p , T 1 p ,T-1 (2-13) 

for the first-order model, or by Eq . 2-7 as 

r. 

0.1 

Fig. 

'• 

F; =e: -a e: 1 a~: p,T p,T 1 p,T-1 2 p,T-2 (2-14) 

-- For Series f p, r 
0 For First Order Markov 

-for Second Order Markov 

/\. ,, 
I'/\ 

, .. _J \ ," , ' 

I b l 

2-16. (a) Correlogram of the standardized series 
E and expected correlograms for t he 
p,T 

1st and 2nd order Markov model s . (b). 
Correlograms of the independent series 
F; after fitting the lst (1) and 2nd p,T 

(2) order ~mrkov models, Lake Ontario. 

-For Series f •· t" 

0 For Firat Order Markov 

- For Second Order Markov 

I a ) 

(b) 

K 

Fig. 2-18. (a) Correlogram of the standardized series 
e: and expected correlograms for the p,T 
1st and 2nd order Harkov models. (b). 
Corr e1ograms of the independent series 
F; after fitting the 1st (1) and 2nd 
p, T 

( 2) order Markov models, Lake Superior 
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.. · 
for the second-order model, the correlograms of tp,T 
of Eqs. 2- 13 and 2-14 are pl otted in Figs . 2-16 through 
2-20 as the lower graphs . The 95 percent tolerance 
l i mits for the correlograms of independent series show 
that about 95 percent of r k values are· confined 

within t hese tolerance limits for the second-order mo­
del,while this is less true for the f irst-or der model . 
In general, the second-order model shows a better fit, 
so that it is sel ect ed for all five E series of 
the monthly mean NBS . P ' T 

Table 2-5 gives the autor egressive coeffi cients a1 
and a2, computed by Eq . 2-8 in using t he first t1~0 

serial correlation coefficients , r 1 and r 2 , alsogiv­
en i n Table 2-5. 
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---For Series f p,T 
0 For First Order Markov 

-For Second Ordor Morkov 
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Fig . 2-17 (a) Correlogram of the standardized series 

'• 

0.2 

0.1 

0 

E and expected corr elograms for the lst p,T 
and 2nd order Markov models. (b) . Correl o­
grams of t he i ndependent series F; after p,T 
fitting the 1st (1) and 2nd (2) order Markov 
models, Lake Erie . 
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---For Serlea f p, T 
o For Flrtt Ordtr Markov 

- For Soeond Ordor Marko. 
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Fig . 2-19 (a) Correlogram of the standardized series 
e: and expected correlograms for the 1st p,T 
and 2nd order ~mrkov models. (b) . Corr el o­
grarns of the independent series F; after p,T 
f itting the l st ( 1) and 2nd (2) order Markov 
models, Lake Michigan. 
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Fig. 2-20 (a) Correlogram of the standardized series 
€ and expected correlograms for the lst p,t 
and 2nd order Markov model s , (b) Correlo-
grams of the independent series ~ after p,T 
fitting the 1st (1) and 2nd (2) order ~larkov 
models , Lake St . Clair. 

TABLE 2-5 
AUTOREGRESSIVE COEFFICIENTS OF THE SECOND-ORDER LINEAR 
MARKOV MODEL, FOR THE € DEPENDENT STOCHASTIC 
COMPONENT p,T 

Serial Correlation Coeff. Autore~ressive Coeff. 

Lake rl r 2 al a2 

Ontario 0 . 256 0.134 0 . 2375 0. 0732 

Erie 0.196 0 .111 0.1809 0.0756 

Superior 0.134 0.130 0. 1183 0.1142 

Michigan 0.229 0.135 0.2091 0 .0870 

St . Clair 0.308 0.199 0 . 2726 0.1150 

4. 4 AnaZysis of Skewness Coefficient s of Independent 
Stochastic Components. Figure 2-21 represents the 
monthly skewness coefficients, ,cs , of t he independent 

second-order stationary stochastic components, t p, t I 

with T = 1,2, ... , 12, for the five series of the mean 
monthly NBS. The fluctuations of t cs around their 

average values seem not to have any clear periodici ty, 
though this coefficient should fluctuate in arelative­
ly large range because of sampling variation.The large 
fluctuation of tcs for Lake St . Clair may be explained 

by a relatively nonhomogeneous sample size of this 
seri es . 

The entire x , e and t series, neglect-p,t p,t p, T 
ing in which month of the year they occur, have the 
skewness coefficients as given in Table 2-6. The av­
erages of 12 values of monthly C of the ~ series 

"C s p,t 
are also given in Table 2-6. The differences of these 
averages and the Cs values of ent ire t p series 

,T 
are rel atively small . 

12 
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~-L2--~3~-4L-~5--~6~~7--~8~~9~~10~~~~~--~12~-

Fig. 2-21 ~lonthly skewness coefficients , c T S 
of 

t p.-r series of monthly mean net basin of 

Lake Ontario (1) 
' 

Lake Erie (2)' Lake 
Superior (3) 

' Lake ~lichigan (4) 
' and 

Lake St. Clair (5). 

TABLE 2-6 

SKEw~ESS COEFFICIENTS FOR x , € and t SERIES p,t p,t p,r 
OF MEAN MONTHLY NET BASIN SUPPLIES FOR FIVE LAKES 

c s 
for Series Average C Average c s of 12 Cs 

for 20 s i inu-Lake X t p, T 
for E; T s E lated p,T p,T p,T X 

1 

Ontario 1.005 o. 776 0. 765 0.760 0 .882 

Erie 0.648 0 .785 0. 728 0.730 0 .563 

Superior 0.489 0 .341 0.312 o.:no 0.496 

Michigan 0.597 0.413 0.443 0.450 0.594 

St. Clair 1. 052 0 .461 0. 408 0.405 0.817 

The average values of .cs • are computed for tit(" 

purpose of analysis whether C 
5 

is or is not a per i.o ­

die parameter. Because Cs is concluded not to ho 

periodic, it can be assumed for all practical pur ­
poses that the ( s eries are also approximatt'l) p, T 
the third-order stationary independent stochasti ~ 
variables . 

The skewness coefficients of the entire l;p T 

series of five mean monthly NBS vary between o .. q .' 
(Lake Superior) and 0. 765 (Lake Ontario). It is .til' 
ficult to conclude whether these five values of C' 

0.765, 0.728 , 0.312, 0.443 and 0 . 408 are only the s:rm 
piing var iati ons, or whether they represent the tl'" " 
differences because of different populations. Bec:1u-.n 
the f ive t series are mutually highly correla~nd p,'t . 
their sample skewness coefficients are also mutu:&l t,. 
dependent statisti cs . It is then not simple to t ., .• , 



whether all five Cs values are or are not from the 

same population, though this assumption mav be . justi­
fied. Namely, C represents mainly the independent p,t 
c~imatic noise introduced into the NBS series. There 
is not a sufficient justification for the general cli­
matic patte~s to differ significantly over the five 
basins for which the monthly mean NBS are obtained, 
though the periodic patterns, the time dependent para­
meters, the general mean (X) and the generalstandard 
deviation (s) change from one basin to another be­
cause of differences in basin factors. 

Table 2-6 shows that Cs of Cp,t series is 

smaller for large lake basins (Superior , ~1ichigan) and 
large·r for small lake basins (Ontario, Erie) ,while Cs 

value of Lake St. Clair can not be compared with the 
other four lakes because of built-in nonhomogeneity in 
data of the St. Clair mean monthly NBS. 

A hypothesis is advanced here, namel y that the 
method of computing NBS may be partly responsible for 
the differences in C of the ~ series of the 

s p,t 
four major lakes. The greater a lake surface the l ess 
accurate is expected to be the mean monthly NBS, espe­
cially their extreme values, because of errors in de­
termining the mean lake levels. Also, the ratio of the 
lake to land s urfaces of each basin may affect the ex­
treme values of NBS, because of evaporation part in the 
water balance producing each value of NBS. The lack 
of a small number of extreme high values of ~ in p, t 
NBS of Lakes Superior and Michigan would reduce signi­
ficantly the values of C of their C series, S p, T 
while the opposite is true for Lakes Ontario and Erie, 
for which a couple of extreme high values in NBSseries 
would increase significantly the Cs values of their 

tp,t series. Therefore, it is difficult to definite­

ly conclude whether Cs values of the Cp, t series 

in Table 2-6 are siginficantly different or not among 
themselves. 

4.5 Pittirlfj of LognormaL ProbabiUty Density Function 
to Frequency DistributionB of C Because of an p,t 
easy transformation of generated independent standard 
(0, 1) normal random numbers into the independent ran­
dom numbers which follow a lognormal distribution, the 
lognormal probability density function is used for au 
t series of the five lake NBS. Because all ~ p,t p,t 
series have negative values, a lognormal probability 
density function with three parameters is considered 
as the most feasible to use, or 

1 -[ln(C-g)-rn ] 2/2s2 
e n n (2-15) 

(t-g)s l2n n 

where g is the lower boundary, mn is the mean of 

ln(C-g) and sn is the standard deviation of ln(C-g). 

The estimates of mn, sn, and g of Eq. 2-15 are given 

in Table 2-7. First, values of estimates of parameters 
of Eq. 2-15 are given for the C series of the four p,t 
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major lakes. Figures 2-22 through 2-25 give the fre­
quency density curves of t and the fitted three-p,t 
parameter lognormal probability density curves. Be­
cause frequency density curves look much less smooth 
than their corresponding cumulative frequency distri­
bution curves, the fit looks excellent for all four 
~ variables. Only for Lake Superior is the cri-p,t 
tical chi-square value (35.20) approximately equal to 
computed chi-square values of a fitted lognormal func­
tion. The other three ~ variables pass well the 

p,T 
chi-square test of the goodness of fit . 

The fit of three-parameters lognormal prob­
ability density function (smooth sol id line) 
to the frequency density curve (broken line) 
of ~ variable of monthly mean NBS of 

p,T 
Lake Ontario. 

Fig. 2-23 The fit of three-parameters lognormal prob­
ability density function (smooth solid line) 
to the frequency density curve (broken line) 
of ~ variable of monthly mean NBS of p,T 
Lake Erie. 
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Fig. 2-24 The fit of three-parameters l ognormal prob-
ability density function (smooth solid line) 
to the frequency density curve (broken line) 
of ~p, T variabl e of monthly mean NBS of 

Lake Superior . 
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2-25 The fit of three-parameters lognormal prob­
ability density function (smooth sol id line) 
to the frequency den5ity curve (broken line) 
of ~ variable of monthly mean NBS of p,T 
Lake Michigan . 

CHARACTERISTICS OF TiiE FITTED LOGNORMAL DISTRIBUTION FUNCTIONS TO 
FREQUENCY DISTRI BUTIONS OF THE INDEPENDENT STOCHASTIC COMPONENT ~ 

,1: 

Chi-sg,uare (95%) 
Fro111 

Fitted Tables 
Lake Funct ion {critical) 

Ontar i o Lognormal-3 35 . 20 

Erie Lognormal - 3 35 . 20 

Superior Lognormal-3 35.20 

Michigan Lognormal -3 35.20 

Four 
Series 
Combined Lognormal-3 35 . 20 

St. Clair Lognormal-3 35 . 20 

Because the paramet ers of Table 2-7 are rel a-
tively close, it was feasible to consider all four 
~p.r series as belonging t o the same population . By 

putti ng together in one sample all four ' series , p,T 
a new f r equency densi t y curve is obtained and pl otted 
in Fig . 2-26 and a lognormal function is fitted . A 
visual inspection gives the conclusion of a very good 
fit . Est imated parameter s are given in Table 2-7. 
Though the chi-square test shows the computed value 
(39 . 196) to be gr eater than the critical chi-square 
val ue (35. 20), t his t est may be somewhat i n quest i on 
because all four ~ series are highly mutual ly p,t 
correl ated . This fi t, however, passes well t he Smirnov­
Kolmogorov test . The parameter s of fitted function 
are very close to those of t for the Lake Mich-
igan NBS. p' T 

Figure 2-27 gives the frequency density curves 
for ~p , t series of NBS of the four major lakes (the 

lines of Figs . 2-22 through 2-25) and the fitted l og­
normal -3 pr obabil i ty density funct ion of Fig. 2-26 
(fitted to all t he ~ var i ables put t ogether ) . This p , t 
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ComEuted 

25. 840 

24.402 

36.366 

24.859 

39.195 

~2 . 960 

f( ( J 
0.5 

Fig. 2-26 

Estimates of Parameters 

m sn g n 

1. 5969 0.1883 -5.0272 

1.7454 0.1655 -5.8079 

2 .1801 0.1102 -8.9020 

1.7787 0.1608 -6.0000 

1. 8016 0.1572 -6.1354 

1. 7791 0 .1584 -6.000 

The f i t of three-parameters lognormal prob­
ability density function (smooth solid line) 
to t he frequency density curve (broken sol id 
line) of four ~ series put together in 

p,T 
one sampl e (of NBS series of Lakes Ontario , 
Erie, Superior and Michigan}. 



visual test also shows a relatively good fit, and the 
fluct uations of four frequency density curves around 
the fitted probability density curve may be assigned 
mainly to sampling variations . 

Figure 2-28 gives the f it of 
to the frequency density curve of 

lognormal function 
( series of the p,T 

H!) 
0.~ 

0.4 

0.3 

o.z 

0 .1 

0 
( 

- 3 

Fig. 2-27 The comparison of the fitted three-parameter 
l ognormal probability density funct ion of 
Fig. 2-26 with the four individual frequency 
density curves of Figs. 2-26 - 2-29 of ( . p,T 
series (NBS series of Lakes Ontario, Erie, 
Superior and ~lichigan). 

Lake St . Clair NBS, while Table 2-7, last row, gives 
the estimated parameters . The chi-square test is sat­
isfactory, while the three parameters show their esti­
mates to be very close to the parameters of the over­
all fitted lognormal-function to the frequency curves 
of four ; series put t ogether . p,T 

f(() 

o.s 

Fig. 2-28 The fit of t hree-parameters lognormal prob­
ability density f unction (smooth sol id line) 
to the frequency density curve (broken line) 
of ~ variable of monthly mean NSB of p,T 
Lake St. Clair . 

Chapter 5 

GE~ERATION OF NEW SA1-1PLES OF MONTHLY MEAN NET BASIN SUPPLIES 

5. 1 Gsneration of SampZes j'or Pour Major Lakes . The 
method of multivariate nor mal distribution of four 
random variables is used in generating the new samples. 
Because the three-parameter lognormal probability den­
sity function has been shown to fit well both the four 
mutually dependent ( series, or their joint sample p,r 
(all four series put together as a ne1~ sampl e), it is 
easy to transform a lognormal fourvariate probability 
distribution into a normal fourvariate distribution . 
For that purpose the parameters mn, sn, and g of 

lognormal probability function,fitted to the frequency 
density curve of the four combi~ed ( series, are p , T 
used. Furthermore, the transformation of each of the 
four t series is made by p,T 

{2-16) 

with mn, sn' and g given in Table 2-6 for tbe fit 

of four combined series,estimat ed for use in Eq . 2-15 . 
The new four t series are approximately normal, p,T 
uncorrelated in sequence; however, their means and 
standard deviations are not exactly zero and unity, 
respectively, though they are cl ose to these values . 
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The standardization is t hen made by 

l;p,T- l; 

Yp,T • s l; 
(2-17) 

with t and st the mean and the standard deviation 

for each of the four z;p,, series . The four Y p,, 

series are normal, standardized independent component s 
but mutually dependent (correlated) r andom variables. 
The normalization and standardization of the three­
parameter lognormal independent stochastic components 
( i nto t he four y series enable t he use o f the 
p, T p,T 

classical normal multivariate metho~ of principal com­
ponents in· generating the new samples . The generat ion 
of samples in this report follows the procedure whjch 
is described in the paper by G.K. Young and W.C. Pi­
sano [8]. 

The standard normal independent Yp , T components 

mutually correlated are further transformed into the 
new standard normal independent ~ components which p,T 
are mutually uncorrelated random variables . The n p,T 
series are then the four principal components of the 
Yp,t normal fourvariate distribution . To obtain np,t 



components, the transformation is made by 

in which i 1 '2' 3' 4' (y ) . p,t 1 

components of Eq. 2-17 as a 4 x 

(2- 18) 

represent the four 

matrix, (n ) . are p,T 1 
the four transformed normal standard components both 
serially and mutually uncorrelated, also as a 4 x 1 
matrix, and B is a 4 x 4 matrix to be estimated from 
Eq. 2-18 . The matrix B is obtained by post-multiplying 
[ 8 1 both sides of Eq. 2- 18 by the transpose matrix of 

(y ). , given as (yp )~. and by taking the expected 
p,tl ,1:1 

values of both sides. This leads to 

(2-19) 

where BT is the transpose of B and M
0 

is the lag­

zero cross-correlation matrix of the four standard nor­
mal Yp,t component s , and given in Table 2-8. The 

values of the matrix in Table 2-8 are the pairwise 
correlation coefficients betw~::en the y components . 

p ,T 
Then Eq. 2-19 and Table 2-8 permit the estimate of 
matrix B (the lower triangular matrix) , which is 
given in Table 2-9. 

The generation of new samples of mean monthly NBS 
for Lakes Ontario, Erie, Superior and Michigan then 
follows the procedure, which is the inverse operation of 
all above structural analysis and mathematical 
description: 

{1) The standard, normal and independent random 
numbers are first generated for each of the four n p,T 
series. A total of 20 samples, each sample 50 years 
long (or 20 x 600 monthly values), of each component 
are generated. This represents a total of 4 x 20 x 
600 • 48,000 standard normal random numbers divided 
into 20 samples each consisting of four series, and 
each series containing 600 random numbers. 

TABLE 2-8 
CROSS CORRELATION ~~TRIX ( M

0
) OF FOUR STru~DARD NORMAL 

INDEPENDENT Yp,t SERIES OF NBS SERIES OF FOUR LAKES 

Lake 

Ontario 

Erie 

Superior 

~lichigan 

Ontario 

1.000 

0.608 

0.246 

0.541 

Erie 

0.608 

1.000 

0.191 

0.487 

Superior Michigan 

0. 246 0.541 

0.191 0.487 

1.000 0.444 

0.444 1.000 

(2) Using the matrix B of Table 2-9 and Eq. 
2-18, 20 samples each 600 long for each of four series 
Yp,t are then obtained from the above np, t series . 

(3) Using Eq. 2-17, the yp, T series, and for 

each of the four y series the corresponding ~ and p,T 
st, the 20 samples (each 600 l ong) of the four series 

of t p,r are obtained by 

(2-20) 
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TABLE 2-9 
ESTIMATED B MATRIX (LOWER TRiru~GULAR MATRIX) BY EQ. 
2- 19 IN USING M

0 
~~TRIX OF TABLE 2- 8 

Lake Ontario Erie Superior Michigan 

Ontario 1.000 0 .000 0.000 0.000 
Erie 0 . 608 0. 794 0.000 0.000 

Superior 0.246 0.051 0.968 0.000 

~1ichigan 0.541 0. 199 0.310 0.756 

(4) The 20 samples of each of the four ~p , t 

series are then transformed by using Eq. 2-16 int o the 
20 samples of the four t series (each 600 values 
long) by p,t 

(2-21) 

with mn, sn' and g 
of each of the four 

the same values for all 20 samples 

f;p,r series. 

(5) Using the 
model, with proper 
cients a1 and a2 

second-order autoregressive linear 
values of autoregressive coeffi­

for each of the monthly mean NBS 

(Ontario, Erie, Superior and ~1ichigan), the 20 s 8.1!1ples 
(each 600 long) of each of the four dependent stochas-
tic € series are produced. p,T 

(6) 
and 

Adding the corresponding periodic components 
a, for each of the four series by 

x •IJ + a c p,1 t' T p, t (2- 22) 

the 20 samples of each of the four !: p, t series arc 

transformed into the 20 samples of generated mean mon­
thly net basin supplies of Lakes Ontario, Erie, Super­
ior and ~lichi gan, with each series 600 months long (or 
50 years of data in monthly values). 

These generated samples of NBS for each of the 
four lakes are then printed and reproduced in the form 
of punched cards for further use. The size of samples 
of 50 years for monthly values is selected by assuming 
that the life of any lake regulation project shoul d be 
SO years. Any 50-year regulation plan will then pro­
duce 20 results, one for each of the 20 generated sam­
ples , so that a frequency distribution of the 20 regu­
lation values may be determined . The resulting20-value 
frequency curves will then enable statements on proba­
bil ities oi exceedences of lake l evels during a given 
time period. 

5. 2 Analysis of Genel'ated Samples for Four Major Lakes. 
The basic approach in this generation of new samples 
is the preservation, in the limits of sampling varia­
tion, of the basic parameters of historic samples. Some 
statistics, as sample properties, have very large var­
iation from one sample to another. Attempting to re­
produce all these properties as exactly the samevalues 
as in the historic samples would run against the basic 
object ive, namely the obtaining of potential future 
samples of rel atively sufficient probability to occur. 
The future will produce some extremes and new proper­
ties in samples, which have not been experienced inthe 
observed data. The approach used here is based on the 
concept of producing the new samples which preserve 



the most reliable properties and parameters, namely: 
the general mean, the general standard deviation, the 
periodic monthly averages and standard deviations, the 
autoregressive coefficients of selected dependence mo­
del, and the basic parameters of se l ected probability 
distribution of i ndependent stochastic components. 

Tables 2-10 through 2-13 give the threeparameters 
of 20 generated samples of the mean monthly NBS of the 
four lakes: the mean x, the standard deviation s 

X 
and the skewness coefficient C 

X S 
At the top of each 

table these three parameters are given for the histo­
ric data. At the bottom of each table the means of the 
20 values of each parameter are also given. The best 
preservation is in the mean x , the second best is in 
the standard deviation sx , and the skewness coeffi-

xcs is least well reproduced. This should be expected. 

5.3 Generation of New Samples of Monthly Mean NBS of 
Lake St. Clair. Because Lake St. Clair is a small lake, 
its monthly mean net basin supplies may be more in er­
ror than for other lakes. Already i t is shown that 
its ~BS series is nonhomogeneous, and this nonhomoge­
neity was corrected by adding to the first part of 43 

TABLE 2-10 
GENERAL STATISTICAL PROPERTIES OF ORIGINAL AND GENERA­
TED ~lEAN ~IONTHLY NET BASIN SUPPLY FOR LAKE ONTARIO 

~lean, x St. Deviation, sx 

Historic 
Sam le 33.960 

33.986 

2 34.048 

3 34.306 

4 34.239 

5 33.488 

6 34.016 

7 33.744 

8 34.101 

9 34.065 

10 34.046 

11 33.784 

12 34.225 

13 33.900 

14 34.140 

15 33.967 

16 33 . 633 

17 33.504 

18 33 . 616 

19 33.960 

20 33.940 

Mean of 
20 values 33 . 935 

33.741 

Generated Samples 

33.563 

34.055 

35.568 

34 . 571 

32.043 

32.819 

32.563 

33.639 

33.879 

33.349 

33.095 

35.584 

34.077 

34 . 359 

32.719 

32.548 

32.441 

32.262 

33.201 

33.911 

33.512 

Skewness, xes 
Coeff. 

1 . 005 

1.005 

0.817 

l. 041 

0.957 

0.874 

0.642 

0.820 

0 . 752 

0.940 

0.867 

0 .897 

1.012 

1.024 

0. 776 

0.896 

0 . 912 

0.962 

0.767 

0.789 

0,895 

0.882 
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years of series data (x series) the difference p,T 
between the means of the second part (26 years) and the 
first par t (43 years). 

It was concluded from the analysis that in the 
eventual use of Lake St. Clair data in a fivevariate 
normal distribution of the y series, the effect 

p,T 
of these data would decrease the reliability of the 20 
generated sampl es of the mean monthly NBS series of the 
four major lakes. Therefore, a different procedure is 
used to generate the 20 new samples of NBS for Lake St. 
Clair. 

A linear multiple regression equation is develop-
ed for the independent stochastic component f;p,r of 

the NBS of Lake St. Clair to the four series F,p ' T 
of 

NBS of Lakes Ontario, Erie, 
the form: 

Superior 

+ v 
p,T 

and ~1ichigan, in 

(2-23) 

In this equation v is a new independent p,t stochastic 

TABLE 2-11 
GENERAL STATISTICAL PROPERTIES OF ORIGINAL AND GENERA­
TED MEAN ~NTHLY NET BASIN SUPPLY FOR LAKE ERIE 

Mean, x St. Deviation, sx 

Historic 
Sam 1e 16 .797 

1 16.898 

2 16.417 

3 17.268 

4 17.157 

5 16.558 

6 17.090 

7 16.557 

8 16.994 

9 17 .019 

10 17.060 

11 16.842 

12 16.932 

13 16.994 

14 16.692 

15 16.818 

16 16 . 924 

17 16.305 

18 16.690 

19 17.027 

20 16.731 

Mean of 
20 values 16.849 

40. 122 

Generated Samples 

41.875 

40.398 

42.357 

41.401 

39.237 

40 .467 

39.598 

39.979 

40.175 

42.238 

40.100 

40.849 

41. 152 

39.771 

39 .750 

39.048 

38.920 

39.460 

40 . 701 

39.721 

40.360 

Skewness, C 
Coeff. x s 

0.648 

0.546 

0.652 

0 .647 

0 .414 

0. 721 

0.473 

0.490 

0 . 541 

0.604 

0.670 

0.628 

0 . 558 

0.464 

0.469 

0.553 

0. 511 

0.614 

0.614 

0.465 

0 .631 

0.563 



TABLE 2-12 
GENERAL STATISTICAL PROPERTIES OF ORIGINAL AND GENERA-
TED MEAN MONTHLY NET BASIN SUPPLY FOR LAKE SUPERIOR 

~lean, x St . Deviation, Skewness, c s 
X Coeff. X S 

Historic 71.932 82. 160 0 .489 Sam le 

Generated Samples 

71.861 82 . 534 0 .523 

2 71.429 80.368 0 .465 

3 71.912 83.005 0.482 

4 72 .828 84.521 0.602 

5 72.181 82 . 933 0. 466 

6 71 . 546 79.440 0.483 

7 72 . 481 82.042 0.416 

8 71.800 81.416 0.496 

9 71.511 80 .457 0 .419 

10 72.357 82.478 0.436 

11 71.560 81.160 0 . 451 

12 71.922 83.157 0 .484 

13 72.029 83.011 0 . 544 

14 72.406 83.493 0.403 

15 72 .519 85.262 0.649 

16 72.343 84.889 0 . 599 

17 71. 711 78 .496 0 .431 

18 71.973 83.051 0 .589 

19 72 .212 82. 151 0 . 482 

20 i' l. 243 80 . 263 0 . 507 

~lean of 
20 values 71.991 82.206 0.496 

component for Lake St . Cl air, which is independent of 
the independent stochastic components of the otherfour 
lakes, 1•hile a

0
, a 1, a

2
, a3 and a4 are the multi-

ple regression coefficients to be estimated from data. 
They are obtained from the five ( series, and they p,T 
are: a

0 
• - 0 .00065, a1 • 0 .1 2580 , a2 • 0 .16721, a3 • 

- 0.04994 and a4 = 0.19315 . 

The historic sample variable v is then com-p,t 
put ed from the five ~p, t series and the above coef-

ficients by using cq . 2-23. The frequency density 
curve of the v variable is plotted in Fig. 2-29 

p, T 
together with the fitted three-parameter lognormal 
probability density function of Eq. 2-IS ,with t he fol­
lowing parameters: mn = 2.4821, sn = 0.07197, and g • 

- 12.00. The critical value of chi-square, on the 95 
percent probability leve1,for this fit is 35 . 20, while 
the computed chi-square is 31.04, showing the goodness 
of fit to be sufficient and to be accepted. 

The generation of the 20 new samples was as fo'1-
lows: 

(1) The 20 samples, each 600 values long, are 
generated for the v series by first generating t he p, t 
s tandard, normal and independent random numbers tp, t ' 
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TABLE 2-13 
GENERAL STATISTICAL PROPERTIES OF ORIGINAL AND GENERA-
TED MEAN ~IONTIIL Y NET BAS IN SUPPLY FOR LAKE MICHIGAN 

~lean, 
- St. Deviation, Skewness, c X 5 

X Coeff . X S 

Hi stori.c 109.787 114.599 0.597 
Sam 1e 

Generated Samples 

110.230 117.066 0.694 

2 109.521 114.763 0.689 

3 110.371 122.401 0 .501 

4 109.733 111.494 0.532 

5 109.683 113.540 0.608 

6 109 . 813 110 . 261 0.499 

7 110 . 052 116. 044 0 . 540 

.a 109.872 116.196 0.753 

9 109 .912 116.199 0.488 

10 llO. 130 115.777 0.546 

11 109 .071 111. .t06· 0.596 

12 110. 149 118.418 o. 726 

13 110 . 090 118.049 0.622 

14 111. 083 116.636 0.627 

15 109.812 116.544 0.630 

16 109.003 111.569 0 . 586 

17 109 . 692 114.247 0 .451 

18 109 . 535 lll.767 0 .499 

19 109 . 884 114.081 0 .623 

20 110. 564 117 . 055 0.664 

~lean of 
20 values 109.900 115.176 0.594 

f( v) 
0.6 

o.s 

0 .4 

0.3 

0 .2 

Fig. 2-29 Frequency density curve (broken line) of the 
independent stochastic variabl e v of ~BS p,r 
series of Lake St . Clair , and the fitted 
three-parameter lognormal probability densi­
ty curve (smooth l ine) . 



and by transforming them to \) 

p,r by 

\) 

p,T 

2.4821 + 0. 07197 tp,T 
-12 . 00 + e (2-24) 

(2) Using Eq. 2-23 and the four generated series 
~p,r (Ontario, Erie, Superior and Michigan) for each 

of the 20 samples, together with v of each of the p,r 
20 samples, the new ~p, r series of NBS for Lake St. 
Clair are generated. 

(3) Following then the same procedure as it was 
done for the other four lakes, namely performing the 
transformation of the second-or der autoregressive lin­
ear model to the e series, and adding periodici-p,r 
ties to obtain the x series, the 20 new samples of p,T 
the mean monthly NBS of Lake St . Clair are produced. 

Table 2-14 gives the comparison for Lake St. Cl air 
of the three parameters (x, s , and C ) of histor-x X S 

ic sample and of the means of these parameters for the 
20 generated samples. The same conclusion can be drawn 
for the generated mean monthly NBS of this lake as 
for t he other four lakes . 

A much better way of testing how well the estimated 
parameters of generated samples reproduce the parameters 
estimated from the historic series, is by using the 
sampl ing distributions of these estimated par ameters . 
Then the chi-square test may be used to find how well 
the twenty estimates of generated samples conform with 
the expected sampling distr ibutions. Difficulti es arise 
because the determination of exact or good-approxima­
tion distributions of parameter estimates of periodic­
stochastic processes is not simple . Reasons ar e that 
several parameters are periodic, while the stochastic 
component is only approximately stationary and is highly 
time dependent process . 
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TABLE 2-14 
GENERAL STATISTICAL PROPERTIES OF ORIGINAL AND GENERA­
TED MEAN ~!ONTHLY NET BASIN SUPPLY FOR LAKE ST . CLAIR 

Historic 
Sa le 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Mean of 
20 values 

Mean, x St . Deviation, sx 

5.245 

5.273 

5.273 

5.357 

5.281 

5.215 

5.162 

5.212 

5. 256 

5.101 

5.197 

5.275 

5. 258 

5.248 

5. 288 

5.246 

5. 134 

5.318 

5. 215 

5 .464 

5.275 

5 . 252 

5.190 

Generated Samples 

5.273 

5.306 

5.308 

5.317 

5.233 

4.967 

5.191 

5. 271 

4.980 

5 . 282 

5.136 

5 .413 

5.292 

5 . 016 

5.238 

5 . 059 

5.260 

5 .169 

5.557 

5 . 451 

5. 236 

Skewness, C 
Coeff . x s 

1.052 

0.877 

0.707 

0.816 

0.731 

0 . 791 

0.544 

0 .943 

0.887 

0 . 730 

1.070 

0. 774 

0. 891 

0.935 

o. 725 

0.685 

0.757 

0 .603 

0 . 842 

0 . 867 

1.155 

0 . 817 



PART Ill 
GENERATION OF SAMPLES OF MEAN QUARTER-MONTHLY 

NET BASIN SUPPLIES OF LAKES ONTARIO AND ERIE 

This part refers to the structural analysis of 
historic data, made available by the U.S . Corps of 
Engineers, Chicago Division, of the mean quarter-monthly 
net basin supplies--in further text abbreviated as NBS 
--of the Lakes Ontario and Erie, and also the genera­
tion by the experimental (Monte Carlo) method of 20 
samples each SO years long of each of the two mean 
quarter-monthly NBS. It contains the following: tests 
of homogeneity of the t~<~•o discrete NBS time series , 
structural analysis and mathematical. description of 
these two series found homogeneous, generation of 20 
samples each 50 years long for the t~>•o series, and anal­
ysis of the generated samples . 

Chapter 6 

BASIC APPROACH IN GENERATING SAMPLF.S 

6. l Tests of Homogeneity of f$S Series . Tests of ho­
mogeneity of mean quarter-monthly NBS series of Lakes 
Ontario and Erie are made by using the split- sample 
approach and by ascertaining whether differences be­
tween the means of the two unequal subsamples (36 and 
33 years) are or are not significantly different from 
zero at the 95 percent probability level of signifi­
cance. The t statistics of Eq. 2-1 is also used in 
this test, namely now as Eq. 3-1 , 

t (3-1) 

As is true for the mean monthly NBS, it is also 
found for the mean quarter-monthly NBS series of Lakes 
Ontario and Erie, that these two series are homoge­
neous, so that the original data are used for the struc­
tural analysis ~nd mathematical description of these 
two series. 

6. 2 Two Procedures for Generating Samples of Mean 
Quarter- Monthly Net Basin Supplies . Two procedures are 
considered in generating sampl es of mean quarter­
monthly net basin suppl ies: 

(1) l.enerating the sampl es of the monthly NBS 
series , and then superimposing the generated samples of 
four values for each month, which four values repre­
sent the differences between the mean quarter-monthly 
NBS values and the mean monthly NBS value, these lat­
ter means being the averages of the four mean quarter­
monthly NBS values; and 

(2) Generating the mean quarter-monthly NBS val­
ues, and then by averaging the four consecutive values 
produce the corresponding mean monthly NBS series . 

The first approach permits the use of the pre­
viously generated mean monthly NBS series (20 series 
each 50 years long) of Lakes Ontario and Erie, and by 
superimposing the generated four differences for each 
month between the mean quarter-monthly NBS and the 
mean monthly NBS values for each month, the new sam­
ples of mean quarter-monthly NBS series are obtained . 
This approach assumes simple characteristics of dif­
ferences to be superimposed on the mean monthly NBS 
values. However, it was found that the structure of 
the four differences, and for each month of the year, 
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is not so simple as to promise their reliable genera­
tion. This difficulty is demonstrated later i.n this 
text, as support for the decision why this first pro­
cedure should not be used and should be replaced by 
the second procedure. 

The second procedure of directly generating the 
mean quarter-monthly NBS samples is based on the fol­
lowing two factors : 

(1) The Ontario and Erie Lakes are relatively 
small tore-regulate outflows from the upstream lakes; 
it can be assumed that they are assigned only to regu­
late their own mean quarter-monthly NBS, or the com­
bined Ontario-Erie supplies . In other words, the out­
flow from the upstream lakes is passing through these 
two lakes without being re-regulated. 

(2) The generation of the mean quarter-monthly 
NBS series and the computation of corresponding mean 
monthly NBS series are intended basically to determine 
whether the use of mean quarter-monthly series is more 
appropriate for the regulation of these two lakes than 
the use of the mean monthly NBS series. Therefore, it 
is not necessary to use the same monthly series for 
this objective as for the monthly series generated for 
regulating all five lakes jointly, in preserving the 
mutual correlation between the independent stochastic 
components of the mean monthly NBS of these five lakes. 

The first procedure should be used if the mean 
quarter-monthly NBS series of Lakes Ontario and Erie 
would be used in conjunction with the mean monthly NBS 
series of the other three lakes (Superior, Michigan­
liuron and St . Clair). l~hen the study of selecting the 
quarter-monthly or the monthly time interval of NBS 
series for the regulations of Lakes Ontario and Erie is 
a primary objective, as postulated in this anal ysis, 
then the generation of samples by the second procedure 
is appropriate, as a more accurate procedure. Namely, 
in generating the mean quarter-monthly NBS series (20 
samples each 50 years long) and from them by summing 
the four consecutive values, the corresponding mean 
monthly NBS series are obtained. Therefore, by select­
ing the second procedure , the problem of the Great 
Lakes regulations are divided into two: 

(1) The study of the selection of the time in­
terval of a discrete time series, which is mainly a 
problem of flow regulation by Lakes Ontario and Erie; 
and 

(2) The general study of the Great Lakes regul a­
tions by using the mean monthl y NBS series of all five 
lakes. 

If the selection of the mean monthly NBS series 
for Lakes Ontario and Erie comes out to be a suffi­
ciently accurate alternative, then the use of the mean 
monthly NBS series, as generated, may be used for al~ 
lakes. If, however, the comparison of regulations of 
Lakes Ontario and Erie with quarter-monthly and monthly 
series shows significant differences in the extreme 
l evel s of these lakes, t hen these results must be com­
pared and taken into account. Namely, the five lakes 
can be studied in their water regulations by using the 
monthly series, and t hen the above differences should 
be added in a proper way for results of regulations of 
Lakes Ontario and Erie . The third alternative, namely 
to use in regulation studies the monthly series for the 
three lakes (Superior, ~lichigan-Huron, and St. Clair), 
and the quarter-monthly series for Lakes Ontario and 
Erie, though possible, would be less convenient. 



First, the second procedure as used in the final 
analysis is described in Chapter 7 . Here, the proper­
ties of the first procedure are discussed to show the 
reason for not using it. 

6.3 Use of Differences between Mean Quarter-MOnth~y 
and Mean Monthly Net Basin Supplies to Generate New 
Samples of Uean Quarter-Monthly Series . . t>.. method, often 
suggested or sometimes used in generating new samples 
of discrete series with the time intervals less than a 
month, is as follows . First, the monthly series is 
analyled and the new samples are generated . From his­
torical data the differences are computed between the 
series for the interval or the intervals less than a 
month and the corresponding monthly series . These dif­
ferences are then separately analyzed and then their new 
samples are generated. By superimposing t he generated 
differences to generated new sampl es of monthly series, 
the new samples of discrete series with intervals less 
than a month are obtained. 

This method of superimposing the differences, namely 

AX • (X ) - (xp,t)d' p,t p,T m (3-2) 

with t 1,2, ... , 12 and T = 1,2, .. . ,48, and where 
(xp,t)m is the monthly series , and (xp,t)d the series 
with an interval less than a month, ha s difficulties 
which are briefly shown here. Only the mean quarter ­
monthly NBS and the mean monthly NBS of the Lake Ontario 
are used to demonstrate these difficulties. The NBS 
series of the Lake Erie gives the same results as ob­
tained for the NBS series of the Lake Ontario. 

Figure 3-1 gives the 48 means m of the Ax T p,T 
series of Eq. 3-2 with (x ) d being the mean quarter­p,t 
monthly NBS values. 
properties of m

1
: 

This figure shows the following 

(1) There is no evident periodicity in mt of 

fiX , leading to the conclusion that the periodic com-p,t 
ponent of the mean monthly NBS, described either by the 
computed mT or by the fitted periodic function ~T 

of mean monthly and mean quarter-monthly values, takes 
care also of the periodicity . 

(2) The variance of fix changes p,t l~ith the 

position t, as is shown in Fig. 3-2 . 

(3) The constraint is imposed t hat the four val-
ues of fix of each month must sum to zero , or p,t 

p,t+4 r 
p,t+l 

fix " 0 , p,t ( 3-3) 

with (p,T +l) and (p,T+4} designating the first and 
the fourth quarters of each month. If the first three 
values of each month follow a given structure of depen­
dence, the constraint of Eq. 3- 3 requires the fourth 
quarter to disrupt the dependence pattern. By using 
the fourth quarter value of the previous month, the 
first quarter value fix 

1 
of the next month may be p,T+ 

developed to follow the dependence structure. For a 
more complex structure depending on several previous 
values, the constraint of Eq . 3-3 introduces still fur­
ther biases. 

(4) On the average , every fourth value is either 
the peak or the trough i n the sequence of mT, with an 

artificially bui 1 t-in four -'Value (monthLy) ·cycle, as 
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Fig. 3-1 The 48 means mT for the 48 quarter-monthly 

intervals of the differences bett.•een the mean 
quarter-monthly and the mean monthly net 
basin supplies of Lake Ontario. 
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Fig. 3-2 The 48 standard deviations, Sr (broken line) 
for the 48 quarter-monthly intervals of the 
differences between the mean quarter -monthly 
and the mean monthly net basin supplies of 
Lake Ontario, with an approximate fit of 
periodic function, oT (smooth line) . 



shown by Fig. 3-1. This cycle does not existinnaturc, 
and is basically due to the constraint of Eq . 3-3. 

Figure 3-2 gives the 48 standard deviations sT of 

the ~x series of Eq . 3-2. This figure shows the p,T 
followi ng properties of s : 

T 

(1) There is a clear 12-month cycle inside the 
s series, which leads to the conclusion that the 
m6nthly and quarter-monthly series did not take into 
account the complete periodicity in the standard devia­
tion. 

(2) The artificial cycl icity of one month (four 
values of the quarter-monthly series), created by the 
constraint of Eq. 3-3, is also present--on the average, 
but less clearly evident for sT than for m

1
--in the 

48 standard deviations s of the Ax series of T p,T 
Fig . 3-2 . 

(3) For any generat ion of new samples of the mean 
quarter-monthly NBS series, a periodic function should 
be fitted to the 48 values of s of the ~x series . 

T p,T 

Figure 3-3 gives 

series of Eq. 3-3 and 
of the residual £ 

-p,T 

the correlogram of the 6x p,T 
the first parts of correlograms 
series when the first-order and 

second-order linear autoregressive models are fitted to 
the Ax series (the remaining parts of correlograms p,T 
are nearly the same as the computed correlogram ) . These 
correlograms show the significant negative values for 
r 1 through r 5 in case of both the ~x series and p, T 
tho two f;p,t series of the two autoregressive models. 

It may be safe to postulate that the constraint of Eq. 
3- 3 has made a significant influence on the Ax 

p , T 
series . The derived f;p,T seriesbythe autoregressive 
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models are not the independent stochastic series. The 
correlograms of cP.t' (1) in Fig . 3-3, and the cor -

relogram of the f; series, (2) and (3) of Fig. 3-3--p,T 
(not shown in Fig . 3-3), are relatively wel l confined 
within the tolerance limits of the 95 percent probabi l ­
ity level of an independent series ; however , only from 
the serial correlation coefficient r

6 
on . 

Figure 3-4 gives the skewness coefficients of the 
~x series for the 48 quarter-monthly intervals. p,T 
This figure shows the following properties: 

(1) There is a very large variation in the skew­
ness coefficient along the 48 positions of T; and 

(2) There is no evidence of annual cyclicity in 
C of the Ax series of Eq. 3-2 . s p,t 

For all the reasons discussed, the procedure of 
generating t he new samples of the mean quarter-monthly 
NBS by first generating the new samples of mean monthly 
NBS and then by superimposing on them the generated 
differences Ax of Eq. 3-2, should not be used until p,T 
further investigations show how to avoid the built-in 
bias in using the constraint of Eq. 3-3. 

Chapter 7 

STRUCTURAL ANALYSIS AND MATHE~~TICAL DESCRIPTION OF 
MEAN QUARTER-MONTHLY NET BASIN SUPPLIES OF LAKES ONTARIO 

AND ERIE 

7. 1 The Approach to Str>UcturaZ Ana 'Lysis . The four 
c0ncepts for scructural analysis and mathematical de­
scription of monthly mean NBS as given in Part II are 
also used for che analysis of the mean quarter-monthly 
NBS series of the two lakes . 

-~ 
95% T.L. 

k 

50 60 70 80 

Fig. 3-3 The correlogram (1) of differences between mean quarter-monthly net basin supply and mean monthly E;p , 
1

, 

net basin supply of Lake Ontario (solid line), with the correlograms of residuals, when the first two 
autoregressive linear models are applied to above differences: (2) first-order model: (3) second-order 
model. 
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1.50 
Cs 

7. 2 StruoturaZ AnaZysis and Mathematioal DesoPiption. 
The mean values of the mean quarter-monthly NBS series 
are : Lake Ontario x = 33.93, Lake Erie x = 16.89, 
in units as given by the U.S. Corps of Engineers for 
the original historic series. 
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The Fourier coefficients for the four to six har­
monics of the quarter -monthly means (48 values of m,). 

found significant, and of six harmonics of quarter­
monthly standard deviations (48 values of s,), found 

significant, out of the possible 24 harmonics for the 
fit of periodic functions to w • 48 values of m and 

T 

s , by using the functions of the type of Eq. 2-4, are 
ptesented in Table 3-1 for Lakes Ontario and Erie. 

The 
functions 

means and 
IJ and 

T 

For Lake Ontario: 

For Lake Erie: 

variances of the 
a are: 

fitted periodic 

T 

33 .93, 2 784 .13 ll, S (IJT) 

a T 28.65, s2(0' ) 
T 52.60 

16.89, 2 " 1087.03 IJ .. s (ll,) T 

0 T 40.02, 2 
s (oT) 137.59 

Figures 3-5 and 3-6 give the 48 computed quarter­
monthly moans mT (1), the fitted periodic mean IJT 

Fig. 3-4 The 48 skewness coefficients, C
5

, for the 48 

quarter-monthly intervals of the differences 
between the mean quarter-mont hly and the mean' 
monthly net basin supplies of Lake Ontario . 

(2) , the computed quarter-monthly standard deviations 
sT (3), and the fitted periodic standard deviation oT 

(4), with the first figure referring to the Lake 
Ontario, and the second figure to the Lake Erie. These 
figures lead to the following conclus ions: 

Lake 

Ontario 

Erie 

TABLE 3-1 
FOURIER COEFFICIENTS OF FITTED HARMONICS TO MEANS AND STANDARD DEVIATIONS 

OF ~lEAN QUARTER-~iONTIILY NET BASIN SUPPLIES OF LAKES ONTARIO AND ERIE 

Mean liT St. Deviation 

Harmonic A. B. Harmonic Aj 
j J J j 

1 -6 . 72912 35.10671 1 2.80829 

2 -7 . 28315 - 8.67878 2 -2.73167 

3 3 . 72747 - 7.46954 s 1.82896 

4 5 . 29405 3.22931 3 1.20795 

5 - 2.01569 3.28203 6 -1.59427 

6 -2.81477 - 0.47560 4 -1.56599 

1 -3.59848 43. 55893 1 8.18817 

3 3 . 65264 - 6.79597 4 4.44852 

4 7.35812 - 1.03199 3 2.92948 

2 -3 . 92515 - 4.76208 5 0.97925 

2 -2.20833 

6 -1.27545 
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7.58073 

-1.34601 

2.38898 

-1.43560 

0.78324 

-0.24596 

9. 88355 

1.21878 

-0.25768 

2 .10916 

0. 13688 

l. 06196 
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Fig. 3-5 Periodic mean, computed m, (1) and fitted 

vt (2), and periodic standard deviat ion, 

computed s, (3) and fitted a, (4) , for 

the quarter-monthly net basin supplies of 
Lake Ontario. 
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Fig. 3-6 Periodic mean, computed m (1) and fitted 
' 

VT (2), and periodic standard deviation, 

computed s 
' 

(3) and fitted a 
T 

(4), for 

the quarter-monthly net basin supplies of 
Lake Erie . 

(1) Fitted periodic components \l't and at have 

a general parallelism but seem not to be proportional 
for t hese two quarter-monthly net basin supplies; 

(2) Samplin~ fluctuations may be the reason for 
the nonparallelism between \lt and ot. but some other 

factors may be also responsible (such as combined snow, 
rain, evaporation and evapotranspiration effects on the 
net basin supplies); 

(3) Only 4-6 harmonics out of the 24 possible 
harmonics, in case the periodic funct i ons would pass 
through every point of mt and s, series, are suf-

ficient to fit well the periodic movements in the mean 
and the standard deviation; this is a l arge saving 
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(parsimony} in the number of parameters in compar ison 
with the use of all m_ and st values (96 values}; 

of Figs. 3-5 and (4) The use of 11, and a1 
3-6 is expected to remove the major 
mean quarter-monthly NBS series ; 

periodicity in the 

(5) Because it was found 
autoregressive coefficients a

1 

in Part II that the 
and a

2 
of c of p,-r 

the monthly series of five lakes are not periodic, it 
is implicitly concluded that a

1
, a

2
, . . . autoregressive 

coefficients of c of the mean quarter-monthly NBS p, t 
series of Lakes Ontario and Erie also are not periodic; 
and 

(6) Because the skewness coefficient of the i nde­
pendent stochastic series f;p,t of the mean monthly 

NBS series for five lakes is found in Part II not to 
be periodic, it is assumed implicitly that the skewness 
coefficient of the t series of the mean quarter-

p,< 
monthly NBS of Lakes Ontario and Erie also is not 
periodic. 

The dependence model of the c component, p , < 
obtained by Eq. 2-3 is found to be well approximated by 
the second-order linear autoregressive {~1arkov 1 in ear} 
model of Eq. 2-7. The cp,t ser ies is first standard-

ized before Eq. 2-7 is used, as applied to c series p , t 
in Part II. 

The autoregressive coefficients a1 and a 2 of 

Eq. 2-8 are estimated by 

and (3-4) 

in using the historic data of the c component of p,t 
the mean quarter-monthly NBS series of Lakes Ontario 
and Erie. Tabl e 3-2 gives the estimates of the first 
three serial correlation coefficients, r 1 , r 2, and r 3, 

with r 1 and r 2 used in Eq . 3-4 to compute a1 and 

a2 as the estimates of a1 and a 2. 

TABLE 3-2 
ESTIMATES OF FIRST THREE SERIAL CORRELATION 

COEFFICIENTS OF THE cp,t COMPONENT 

Lake 

Ontario 0.283 0.098 0.050 

Erie 0.353 0.226 0.141 

By using a 1 and a2 in Eq .. 2-8, the independent 

second-order stationary stochastic component ~ is p,< 
obtained. It was also shown that the first-order linear 
autoregressive model of dependence, Eq. 2-10 , and the 
third-order linear autoregressive model, in the form 

(3-5) 

with a1 estimated by r 1 of Table 3-2, and a1, a2, 



and ~3 estimated by using r 1, r 2, and r
3 

of Table 

3-2 in the appropriate equations connecting a1, a
2

, 

and a 3 to r 1 , r 2, and r
3

, did produce a less good 

fit for the dependence of E than the second-order p, T 
linear autoregressive model. 

Figures 3-7 and 3-8, respectively for t he Lake 
Ontario and the Lake Erie, give the comparison of the 
results of these two models in fitting the time depen­
dence of the E component of the mean quarter-p,T 
monthly NBS series . Lines (1) i n Figs. 3-7 and 3-8 are 
correlograms of e , while the lines (2) and (3) p,T 
give correlograms of ~ of the two models of Eqs. p, T 
2-3 and 2-10 . The tolerance limits for the var iation 
of serial correlation coefficients rk on the 95 per-

cent tolerance level, are drawn in Figs . 3-7 and 3-8 
for the case of independent time series, enabling the 
comparison of the two linear models to ascert ain which 
of them produces the stochastic component ~ which p,T 
is best confined within the tolerance int erval . 

. 4 

.2 

0 

For all practical purposes, the dependent sto-
chastic components E of the mean quarter-monthly 

p,T 
NBS series of the Lakes Ontario and Erie fol low well 
the second-order l inear autoregressive model of depen­
dence. This model was used in the form of Eq. 2-7 in 
computing the independent stochastic component, ~ . 

p,T 

The three-paramet er 
function of Eq. 2- 15 is 
tributions of the ; p , T 

lognormal probability density 
fitted to the frequency dis­
series of mean quarter-monthly 

NBS of Lakes On·tario and Erie, as was done previously 
for the ~p,T series of the mean monthly NBS series 

of five lakes. The main reasons for using t he three­
parameter lognormal probability function are: 

(1) The f;p ,T variable, byitsdefinition and by 

the way of its computation, has a negative lower bound­
are , so that only the three-parameter lognormal or the 
three-parameter gamma (Pearson Type III) probability 
functions, as simple functions with a minimum number of 
parameters to estimate, can meet this requirement . 

---~----

95% T.L. 

-.2 
0 10 20 30 40 

k 

50 60 70 80 
Fig. 3- 7 Correlograms of stochastic components of mean quarter-monthly net basin supplies of Lake Ontario: 

(1) computed for ep,t series of Eq. 2-10; (2) for the tp,T series of the fitted first-order auto-

regressive model; and (3) for the ~p,T series of the fitted second-order autoregressive model . 
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Fig. 3-8 Correlograms of stochastic components of mean quarter-monthly net basin supplies of Lake Erie: 

(1) computed for Ep,T series of Eq . 2-10; (2) for the ~p, T series of the fitted first-order auto-

regressive model; and (3) for the f; series of the fitted second-order autoregressive model. 
p,T 
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(2) To preserve the dependence among the ~p.• 

series of these lakes, it is easy to transform the 
three-parameter lognormal distribution into a normal 
distribution in cases when the multivariate normal ap­
proach to generating new samples is used. 

(3) The generated independent standard normal 
random numbers are easily transformed into the indepen­
dent three-parameter lognormal random numbers, with 
given parameters . 

. The parameters of the three-parameter lognormal 
probability function, estimated from historic data on 
the !; series of the mean quarter-monthly NBS series 

p,T 
of Lakes Ontario and Erie, are given in Table 3-3. 

TABLE 3-3 
PARAMETERS OF THREE-PARAMETER LOGNORMAL PROBABILITY 

DISTRIBUTION FUNCTION OF INDEPENDENT STO(}~STIC 
COMPONENTS OF MEAN QUARTER-MONTHLY NET BASIN SUPPLIES 

OF LAKES ONTARIO AND ERIE 

Mean of Standard Deviation Lower 
Logarithms of Logarithms Boundary 

Lake m n sn g 

Ontario 1.7974 0 . 1529 -6.1046 

Erie 1. 6271 0.1766 -5 .1695 

Figure 3-9 for the Lake Ontario, and Fig. 3-10 for 
the Lake Erie, give the frequency dens.ity curve, the 
fitted three- parameter lognormal probability density 
function, the cumulative frequency distribution and 
the fitted lognormal probability distribution for the 
independent stochastic components !; of the mean p,t 
quarter-monthly NBS series. The reasons for presenting 
the fits of probability functions not only as the den­
sity curves, similar to the method used in Part II, but 
also as the cumulative distribution curves are two: 

(1) By a visual inspection the goodness of fit is 
usual ly assessed from the cumulative curves rather 
than from the density curves; and 

1.0 

0.8 

0.6 

0.4 

0.2 

(~) 

o.o L--..... ~~---'----'----'----=:x=,_.­
-3.5 

Fig . 3-9 

-2.5 -1.5 -.5 0.5 1.5 2.5 3.:1 

Frequency density curve (1), the fitted 
three-parameter lognormal probability density 
function (2), the cumulative frequency dis­
tribution curve (3) and the fitted three 
parameter lognormal distribution function 
(4), for the independent stochast ic component 
of the mean quarter-monthly net basin series 
of Lake Ontario. 

26 

1.0 

0.8 

0.6 

0.4 

0.2 

Fig . 3-10 
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Frequency density curve (1}, the fitted 
three-parameter lognormal probability density 
function (2), the cumulative frequency dis­
tribution curve (3) and the fitted three 
parameter lognormal distribution function 
(4), for the independent stochastic component 
of the mean quarter-monthly net bas in series 
of Lake Erie. 

(2) The cumulative curves enable the use of the 
simple Smirnov-Kolmogorov statistic for the test of 
goodness of fit. 

The Smirnov- Kolmogorov tests show that the fit is 
acceptable because the test st atistics are as follows: 
0.0238 from the table and 0.0175 from Fig . 3- 9 for 
the ~p,T series of the Lake Ontario, and 0.0243 from 

the table and 0 . 020 from the graph of Fig. 3-10 for 
the ~ series of the Lake Erie . In both cases the .p,T 
critical values for the 95 percent probability level of 
the test statistic are larger than the maximum dif­
ference between the two cumulative distribution curves 
of Figs. 3-9 and 3-10 . The fits are acceptable , al­
though the test statistics are c lose to critical values. 

By using the chi-square statistic the results of 
the tests are as follows: for the Lake Ontario, the 
chi-square from the tables and for the 95 percent prob­
ability level is 35 . 20, while the computed value is 
40 . 26; and for the Lake Erie the tables give 35 . 20 while 
the computed value is 66.82 . Regardless that the 
critical values are smaller , Figs. 3-9 and 3-10 show a 
relatively acceptable fit of the three-parameter log­
normal probability function to the frequency distribu­
tion curves . It is likely t hat t he three-parameter 
lognormal probability function does not give a very 
good fit at the extremes, thus making the chi-square 
statistic relatively large. 

Table 3-4 gives the skewness coefficients Cs 

for the three variables, x , c and ~ of the p,T p,T p,T 
historic mean quarter-monthly NBS of Lakes Ontario and 
Erie . This table shows that the skewness coefficient 
decreases from x to e: and from e: to ~ p,'T p,T p,T p;T 
When the periodic components u, and a, are removed 

from xp,t' the dependent stochastic component cp,T 

has a lower skewness coefficient than x When the 
p,l 

second-order linear autoregressive model is used to 
compute the ~p . • series from the e:p ,T series, the 

skewness coefficient of ~p,, becomes smaller than the 

skewness coefficient of 



TABLE 3-4 
SKEWNESS COEFFICIENTS OF THREE TYPES OF SERIES OF 

HISTORIC ~fEAN QUARTER-MONTHLY NET BASIN SUPPLIES OF THE 
LAKES ONTARIO ~~0 ERIE 

Lake 

Ontario 

Erie 

Skewness Coefficient 

X p,t 

1.122 

1.269 

e: p,t 

0.862 

1.031 

Chapter 8 

f,;p,t 

0.768 

0.936 

GENERATION OF SAMPLES OF ME~~ QUARTER-MONTHLY 
NET BASIN SUPPLIES 

8.1 Regional Dependanae of TWo Series. In the 
generation of new samples of the mean quarter-monthly 
NBS of Lakes Ontario and Erie, the dependence among 
their two independent stochastic components f; must 

p,T 
be preserved. When there are only two regional random 
variables for which new samples must be generated by 
preserving the dependence between their series, a simple 
regression analysis is sufficient . The new samples of 
the independent stochastic component of one variable 
may be first generated independently of the other vari­
able. Then t he residual term of the regression equa­
tion of the second variable f; against the first p,T 
variable f,;p, T is generated for computing the stochas-

tic independent component of the second variable. The 
use of the regression equation produces the new samples 
of the independent stochastic component of the second 
variable. The first variable is selected to be f;ont 

of the Lake Ontario, so that its new samples are inde­
pendently generated . The second variable, f;er of the 

Lake Erie, is obtained by 

(3-6) 

The estimated regression coefficients are: a : 0 and 
b : 0.4784, while the correlation coefficient between 
!;er and l;ont is r : 0.467. With a and b given, 

the n series of Eq. 3-6 is computed from the al-p,T 
ready available f;er and l;ont series. 

Figure 3-11 gives the frequency density curve, and 
the fitt ed three-parametet· lognormal probability dis­
tribution of n . The critica l value of the Smirnov-p,t 
Kolmogorov test statistic is 0.0243, as obtained from 
the table and for the 95 percent probabil ity l evel, 
while it is 0 . 0180 in Fig. 3- 11, showing an acceptable 
fit . However, the crit ical value of the chi-square 
statistic for the 95 percent probability l evel is 35 . 20, 
while the computed val ue from data is 54 .19 . Regardless 
of the fact that the computed chi-square statistic is 
greater than the critical value, Fig . 3-11 shows a 
relat ively acceptable fit of the lognormal probability 
function, at least for the central part of the function 
(say from 1-99 percent of probability) . The deviations 
at extremes are the main reason for the difference in 
the two values of the chi-square statistic. 
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Fig . 3-11 The frequency density curve (1), the fitted 
three-parameter 1 ognormal probabi 1 i tv density 
fu~cti~n (2), the cumulative freque~cy dis­
trlbUtlOn curve (3), and the fitted three­
parameter l ognormal probability distribution 
function (4), for the np,T series of Lake 
Erie, computed by Eq. 3-6. 

8. 2 Gene~ation of New SampZes. The generation of the 
new 20 samples, each 50 years long (a total of 20 x 50 
x 48 = 48,000 values) of the mean quarter-monthly NBS 
has followed the same procedure of generation as was 
described in Part II for the mean monthly NBS . First, 
t1~0 series, each 48,000 values long, of the normal 
standard, independent random numbers are generated . 
One series is transformed into the lognormal distribu­
tion with the three parameters (m , s , g) of the ~ 

n n ont 
series of the Lake Ontario. The other series is trans­
formed into the lognormal distribution with the three 
parameters of the np, T series of Eq. 3-6 for the Lake 

Erie. By using Eq. 3-6 and the two generated series, 
f,;ont and n , the 48,000 numbers of the ~ series p,T er 
are obtained. By further applying the corresponding 
autoregressive linear model of Eq. 2-7 to both ~,; 

. p,T 
series, and then by us1ng Eq. 2-4, and taking into 
account the standardization of e:p, T, the 48,000 numbers 

of xp,t' the mean quarter-monthly NBS series are ob­

tained for Lakes Ontario and Erie . Dividing the 48,000 
numbers into 20 consecutive groups, each of 2400 values 
of x , the 20 new samples, each SO years long are p,T ' 
obtained. 

8. 3 AnaZysis of Generated SampZes. The basic param­
eters: the mean, the standard deviation and the 
skewness coefficient of each sample of the x series 

p,t 
for the Lake Ontario are given in Table 3-5, and for 
the Lake Erie in Table 3-6. The average of means of the 
20 samples is 33 . 92 for the Lake Ontario, the same as 
the mean of t he historic sample . Similarly, the aver­
age of means of the 20 samples is 16.94 for the Lake 
Erie, while the mean of the historic sample is 16.89. 
This shows a good preservation of the mean . Tables 3-5 
and 3-6 give the average of standard deviations as 
40.42 and 52.39, respectively. They ~annot be compared 
with the mean standard deviations crT of 48 quarter-

monthly because of different definitions of standard 
deviations, and built-in differences between these two 
parameters. The average skewness coefficients in 



Tables 3-5 and 3-6 are 0.912 and 0.660 while the orig­
inal samples of x had the corresponding values p,'t' 
1.122 and 1.269. This is a decrease in the skewness 
coefficients of generated samples in comparison with 
the original data. The relatively smaller value of the 
average skewness coefficient for generated samples in 
case of the Lake Erie may be the result of the use of 
Eq . 3-6. Summing the two lognormal variables, tont 

and n , produces a variable, t , with a lesser p,T er 
ske~~ess coefficient than if tont and ~er were 

first transformed to normal variables, and the two 
transformed normal variables t hen correlated. However, 
it is considered that the above differences in skewness 
coeffici ents are not crucial. The sampling errors in 
the skewness coefficients are very high. The second 
reason for the deviations between the skewness coeffi­
cients of the generated samples and the historic sample 
likely comes from the fact that the lognormal probabil­
ity function may not be the best function to fit the 
extreme tails of frequency distribution curves. The 
differences in chi-square statistics, as shown above, 
also support this assertion. 

TABLE 3-5 
PARAMETERS OF 20 GENERATED S~WLES, EACH SO YEARS 

LONG, OF MEAN QUARTER-MONTHLY NET BASIN SUPPLIES OF 
LAKE ONTARIO 

Standard Skewness 
Sample Mean Deviation Coefficient 

1 33.90588 40.43557 .89378 
2 33.51754 38.36393 . 94793 
3 34.07477 41.12573 1.00206 
4 33.71370 39.98800 .84853 
5 34.20152 41.13454 .97354 
6 33.96379 40.37421 0 91199 
7 33 0 72621 40.48558 .93618 
8 33.78266 40.40658 .81592 
9 34 . 21029 42.04338 . 97776 

10 33.34848 38.43994 .86102 
11 33.94721 41.63354 .89228 
12 34.03116 39.31787 .76881 
13 33.94093 40.94372 1. 02243 
14 34 0 00472 40.35714 .85794 
15 33.95356 40 . 76450 . 94466 
16 34.14399 40.96988 .94850 
17 33.89417 39.72068 .80185 
18 33.91233 40.31172 .84379 
19 34.17697 41.05916 .97847 
20 33.90994 40.63312 1. 00667 

Average 33.917491 40.425439 0 911706 
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8.4 Cono~usion and Recommendation. The following 
conclusion and recommendation can be drawn for the use 
of the new generated samples of the mean quarter-monthly 
NBS of Lakes Ontario and Erie. If the lake regula­
tions--carried out by using both the new generated sam­
ples of the mean quarter-monthly and the corresponding 
mean monthly NBS series, as analyzed in Part II and as 
generated--show substantial differences in extremes of 
lake levels, with the somewhat larger probabilities for 
a high lake level to be exceeded or for a low lake level 
not to be exceeded in the use of the mean quarter­
monthly series than in the use of the mean monthly 
series, a refinement of generating technique then would 
be warranted. Namely, the fit of probability density 
functions to the C series, or to the 11 series p,t p,T 
of the Lake Erie, as defined above, should be refined. 
It may be shown by additional attempts, that some other 
functions may fit better the tails of frequency distri-
butions of ; and 11 than does the three-param-p,t p,'t' 
eter lognormal function. Repeating the regulation 
procedures with a new set of 20 generated samples of 
the quarter-monthly and the monthly NBS series by this 
refined technique, the differences in properties of 
extreme levels of the two lakes, in using the quart er­
monthly and the monthly NBS series, may then be more 
accurately determined. 

TABLE 3-6 
PARAMETERS OF 20 GENERATED SAMPLES, EACH SO YEARS 

LONG, OF MEAN QUARTER-~IONTHLY NET BASIN SUPPLIES OF 
LAKE ERIE 

Standard Skewness 
Sample Mean Deviation Coefficient 

1 16.91320 52.59721 0 5860 2 
2 16.82120 52.07000 0 64685 
3 17.08726 52.98467 0 66651 
4 16.58983 52.21053 .69666 
5 17.31193 53.81653 . 73299 
6 16.95504 53.04667 0 71606 
7 17. 14300 52.87276 0 64686 
8 16.57884 51.59427 .70001 
9 16.95450 51.66996 .65689 

10 16.85595 50.65117 0 49309 
11 16.99510 53.66775 . 62276 
12 16.85785 51.65828 .63080 
13 17 0 03101 52.51445 .66985 
14 16.85268 51.98974 .66893 
15 17.08246 52.94295 .68316 
16 17.28940 52.11988 .69848 
17 16.75696 51.76269 .70377 
18 16.62019 52.30916 .64904 
19 17.12422 52.45803 0 71294 
20 17.06847 52.87705 .62630 

Average 16.944455 52.390688 .660398 



PART IV 
GENERATION OF SAMPLES OF MONTHLY WINTER FLOW RETARDATIONS 

IN THE CO NNECTING CHANNELS OF GREAT LAKES 

This part refers to the structural analysis of 
historic data, made available by the U.S. Corps of 
Engineers, Chicago Division, of the monthly winter flow 
retardations in the connecting channels of the Great 
Lakes (the St. Mary's River, the St . Clair-Detroit 
River, the Niagara River, and the St . Lawrence River), 
and the generation by the experimental (Monte Carlo) 
method of 20 samples each SO years long of each of the 
four series of water flow retardations. It contains 
the following: tests of homogeneity in the mean and 
standard deviat i on of the four series, removing trends 
in the mean and the standard deviation when they are 
found to be nonhomogeneous, structural analysis and 
mathematical description of the four series found or 
made homogeneous, generation of 20 samples each SO years 
long for the four flow retardation series, and anal ysis 
of generated samples . 

Chapter 9 

CORRECTIONS FOR NONHQI.10GENEITY 

9.1 Tes t s of Homogeneity of Winter FZow Ret ardation 
Series. Tests of homogeneity are made in monthly series 
of winter flow retardation in the connecting channels 
of ·the Great Lakes. The names of channels in this text 
are used interchangeably as : the St. Mary's River or 
Michigan-Huron, the St. Clair- Detroit Rivers or St. 
Clair, the Niagara River or Ontario, and the St . Law­
rence River or St. Louis. The tests are made by using 
the split-sample approach and by ascertaining whether 
differences between the means of the two subsamples are 
or are not significantly different from zero at the 95 
percent probability level of s ignificance. The t-st a­
tistic of Eq. 2-1 is used. 

Figur e 4-1 presents the series of the total annual 
retardations X (obtained by summing all monthly val­
ues of winter retardation i n any given year) for the 
connecting channel of the St. ~1ary ' s River; it shows a 
clear downward trend . The split-sample test shows the 
difference between the means of two subsample to be 
significantly different from zero. Al so, the test shows 
that the slope of the trend line is significantly dif­
ferent from zero on the 95 percent probability level. 
Similarl y, Fig. 4-2 gives the change with time for every 
consecutive two-year period of the standard deviation 
of monthly winter retardation in the St. Mary's River. 
This series of s2 values is obtained by finding the 

mean of nonzero values of monthly series for each two 
years in sequence, and then the standard deviation is 
computed. Two years are used instead of one year, be­
cause any year has only 4-5 nonzero values. The s2 
series is, therefore, a measure whether there is also 
a trend in the standard deviation, when i t is found to 
be present in the mean of annual retardation series. 
Figure 4-2, and tests , part icularly that the trend s l ope 
is significantly different from zero, confirm that the 
trend is also significant in the standard deviation for 
the connecting channel of the St. Mary's River. 

Figures 4-3 and 4-4 show the same graphs as Figs. 
4-1 and 4- 2, only in t his case the winter retardations 
are for the connecting channel of St . Clair-Detroit 
Rivers. The linear trends in both series, the annual 
retardation series and the series of consecutive two­
year standard deviation of monthly winter retardations, 
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have the slopes which are significant ly different f rom 
zeros on the 95 percent probability level of significance . 
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Fig. 4-3 

40 50 60 70 

Series of annual retardations in the con­
necting channel , St. Mary's River (~1ichigan­
Huron), with fitted downward significant lin­
ear trend . 

40 50 60 

Series of consecutive values of two-year 
standard deviation of monthly winter retar­
dations in the lakes connecting channel of 
St. ~lary' s River (Michigan-Huron) . 

10 20 30 40 60 60 70 

Series of annual retardations R in the con­
nect ing channel, St. Clair-Detroit Rivers, 
with fitted downward significant linear trend. 
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Fig. 4-4 Series of consecutive values of two-year 
standard deviation of monthly winter retar-
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Fig . 4-6 

~ ~ ~ ~ ~ ~ ro 
Series of consecutive values of two-year 
standard deviation of monthly winter retar­
dat ions in the Niagara River (Ontario , in 
t his paper) , wi th no significant trend. 

dations i n the lakes connecting channel of x 
St. Clair- Detroit Rivers . 

Figures 4-5 through 4-8 give the sarne series as 
Figs. 4-1 and 4-2 except that they refer, :respectivel y , 
to the Niagara River (Ontario) and the St . Lawrence 
River (St . Louis). These four figures do not show the 
significant trends i n the series analyzed. 
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Series of annual retardations in the con­
.ecting channel of the Niagara River (Ontario, 
i n this paper), with no significant trend 
in the series. 

Two cases out of four show the significant down­
ward trends in monthly series of winter flow retarda­
tions in connecting channels of Great Lakes . The most 
attractive expl anation--without a special study of this 
phenomenon--is the heat release by man-made uses, ei­
ther into the air or i nto the water, or both. The anal­
ysis of factors which have produced a steady decrease 
in flow retardations may show a different cause (say 
the decrease of the average water l evels during the 
wint er by the way lakes were operated), or the combi­
nation of several factors . This analysis is outside 
the scope of this text. 
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Series of annua 1 retardations i n the con­
necting channel of the St. Lawrence River (St. 
Louis , in this paper) , with no significant 
trend in the series. 
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Fig. 4-8 
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Series of consecutive values of two-year 
standard deviation of monthly winter retar­
dations in the St. Lawrence River (St. Louis, 
in this paper), with no significant trend. 

9. 2 Removing Trends in Mean and Standa:t'd Deviation of 
Winter PLow Rstardation Series . The generat ion of new 
samples of monthly ser ies of winter f low retardation 
of the St. ~tary' s and the St. Cl air-Detroit Rivers by 
using the properties of historic data would over-esti­
mate the future winter flow retardations . The trend in 
a hydrologic time series must be r emoved if it is not 
expected either to be repeated, or if it will not occur 
at all in the future . Three practical solutions seem 



attractive in this case: 

(1) To ext rapolate the t r end int o tile futur e , and 
when it hits the zero value, to consider that there is 
not a winter flow retardation from that time on; 

(2) To neglect completely the future winter flow 
ret ardat ions, particularly for the connecting channels 
of the St. Clair-Detroi t Rivers; and 

(3) To remove the trend from both series (from 
the mean of the annual series and from the series of 
the two-year standard deviation), and to use the general 
mean and the standard deviation of historic monthly 
series of winter flow retardation of the last 20 years 
or so, as the expected values of t hese t wo paramet ers 
in the future samples of SO years. 

This t hird alternative has been suggest ed to t he 
u.s. Corps of Engineers , Chicago Division. It is used 
i n t he followi ng procedure of removing trends and maki ng 
t he t ime series homogeneous . 

Only the linear trends are used , because any non­
linear t rend t hough easy t o fi t may have small just ifi­
cat ion, and because t he difference between the non­
linear and linear trends may be part ly or fully the 
result of sampl i ng variations . 

The trend in the monthly means of the St. Mary's 
River is 

X= 27.049- 0.234 t , 

with the correlation coefficient 
being r = -0. 474 . 

between 

( 4-1) 

X and t 

Similarly the trend in the two-year standard devi­
ation series is 

52 z 25.878 - 0.308 t • (4-2) 

with t he correlation coefficient between and t 

being r = -0.555 . For t his case , and as an example , 
the computed t-stat istic of Eq. 2-1 is t = 5.458 , while 
t he t-cri tical value for t he nonsignificant difference 
of the t wo standard deviat ions is t cr = 2. 000 . 

The general mean and t he general st andard devi a­
tion of the monthl y series of wi nter fl ow retardations 
of the St . ~lary ' s River for t he hist ori c period are: 
x = 19.108 and s = 21.156 . The l ast 20 years of data 
give t hese paramet ers as : ~ = 12. 741 and s = 15. 401 
in the uni t s of original data, suppl ied by U. S. Corps 
of Engineers, Chicago Division. The r emoval of the two 
trends and reducing the historic series to the new mean 
of 11 . 840 and the standard deviation at 16.196 is by 

xt - 27.049 + 0.234 t 
x* ".....::..,..,....,.,...,.-~-::-;:-;;--:-- x 15. 401 + 12. 741 , 

t 25.878 - 0.308 t 
(4-3) 

in which xt is the original historic series , t is 

the posit ion of each month wit h winter flow retardation, 
and x~ is t he new homogeneous historic ser ies, reduced 

to the mean and standard deviation of t he last 20 year s 
of historic data . 

Figures 4-9 and 4-10 give t he annual series of 
wi nter fl ow retardat ion and the series of two-year stan­
dard devi ation, of t he new x~ monthly series of wi nter 

flow r etardations of Eq. 4- 3, after the t wo t r ends are 
removed and the mean and st andard deviation of t he l ast 
20 years added. 
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Series of annual flow retardation for the new 
homogeneous historic monthly series of winter 
retardations of St. Mary' s River (trends r e ­
moved). 
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Fig . 4-10 Series of two-year standard deviation for 
the new homogeneous historic monthly values 
of winter retardations of St. ~~ry's River 
(trends removed). 

Similarly as for the St. ~1ary ' s River, the trends 
in t he monthly series of winter f l ow ret ardat ions of 
the St. Clair-Detroit Rivers are removed and the homo­
geneous series is adjusted to have t he mean and stan­
dar d deviation of the l ast 20 year s of hist oric dat a. 
The trend in the mean is 

x. 10. 849 - 0. 154 t , (4-4) 

with r = -0 . 493, and t he trend in t he standard devia­
t ion, s

2
, is 

52 . 12 .172 - 0. 329 t • ( 4 - 5 ) 

wi t h r = - 0.566 . The general mean and st andard devi ­
at ion for the histor ic series are: x = 5. 600 and s • 
9 .451 , while these values for the last 20 years are: 
x ~ 2.001 and s = 3.281. Then t he new homogeneous 
series is 

xt - 10.849 + 0.154 t 
x* • ~--,_,...-....,....,..,-=--- x 3.281 + 2.001 , 

t 12.172- 0.329 t 
(4-6) 

or i t is homogeneous with the trends removed and with 
the basic paramet ers c~. s) of the last 20 years of his­
toric data. Figures 4-11 and 4- 12 give the same graphs 
for St. Clair-Detroit Rivers as Figs. 4-9 and 4-10 give 
for St. Mary ' s River. 

The two monthl y series , xt' of winter flow retar­

dat ion for the St. Mary ' s and St. Cl a ir-Detr oit Rivers, 
as homogeneous, are used with t he two hist oric mont hly 
ser ies, xt , of winter f l ow ret ardat ion of the Niagara 

Ri ver and t he St . Lawrence River , i n the basic struc­
t ural analysis , mathemat ical description, and the gen­
er at i on of new samples of winter flow retardati ons . 
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Series of annual flow retardation for the 
new homogeneous historic monthly series of 
winter retardations of St. Clair-Detroit 
Rivers (trends removed) . 
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Fig. 4-12 Series of two-year standard deviation for 
the new homogeneous historic monthly values 
of winter retardations of St. Clair- Detroit 
Rivers (trends removed). 

Chapter 10 

STRUCTURAL ~~ALYSIS AND MATHEMATICAL DESCRIPTION OF 
~NntLY SERIES OF WINTER FLOW RETARDATION FOR FOUR CON: 

NECTING CHANNELS OF GREAT LAKES 

10.1 Analysis and Description. The structural analysis 
and mathematical description of the mont hly ser ies of 
winter flow retardations follow approximately the same 
procedure as was used for the monthly and quarter-month­
ly NBS se~ies of Great Lakes, as descr ibed i n Parts II 
and III. The only major modification is that the month­
ly series of winter f l ow retardations have only eit her 
four or five winter months wi t h t he mean flow ret arda­
tions greater than zero, the remaining eight or seven 
months being zero values. These series ar e intermit tent 
pr ocesses, with a run of nonzero mean val ues for 4- 5 
winter months, and a run of zero values for the next 
8- 7 months. Only the Niagara River has four nonzero 
mean monthly values, though in some of t he years there 
are zero flow retardations even during these four months. 
The other three monthly series (St . Mary's River, St . 
Clair-Detroit Rivers , St. Lawrence River) have five 
winter months with nonzero mean flow retardations. 

Figures 4- 13 and 4-14 givethemean monthly winter 
flow retardations, m, , and the monthly standard devia-

tions, s, , for five months of nonzero mean monthly val­

u~s for all the connecting channels except the Niagara 
R1ver, for which only the four winter months have non­
zero mean monthly flow retardations, and respectively 
for the Lakes ~lichigan-lluron, St. Clair , Ontario, and 
St . Louis. 

10. 2 Periodicity in Parameters. The m and s 
T T 

ues of Figs. 4-13 and 4-14 may be used directly 
nonparametric method to obtain the corresponding 
series by 

E p,t 
x - m p, t T 

s 
t 

val ­

in a 
E p, t 

( 4-7) 
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However, in order to be consistent with the previous 
work on the analysis of the mean monthl y and mean quar­
ter-monthly NBS series, the periodic functions IJT and 

o are fitted to 
T 

only 4 or 5 valu~s 

m and s 
T T 

series. Because of 

of m and s available for any 
T t 

one individual y~ar, only the two harmonics are suffi­
cient in fitting 11 and o to m and s . This 

T T t T 
is equivalent of the periodic functions passing through 
all points m and s . In other words, if Eq . 4-7 

T t 

is used with the standard computer program in fitting 
IJT to m, and oT to st , this is equivalent to using 

Eq. 4-7 from the beginning. 
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Means, m (1) and standard deviation s 
t T 

(2) for the St. ~1ary' s River (Michigan-Hu­
ron), and means, m (3) and standard devi­

T 
ation s 

T 
(4) for the St. Louis River, of 

the monthly series of winter flow retarda­
tions for these two connecting channels. 

10.3 Time Depandence of Stochastic Component. The 
serial correlation coefficients, r 1, r 2 , and r 3 of 

the tour t series, obtained by Eq . 4-7 are given p,T 
i n Table 4-1. Because of intermi t t ent series, the com­
putation of these three coefficients did use the pairs 
of the t values only inside each uninterrupted r un p,T 
of nonzero values of Ep . 

,T 
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Fig. 4-14 Means, mt {1) and standard deviation sT 

(2) for Niagara River (Ontario) and means, 
mt {3) and standard deviation st (4) for 

St. Clair-Detroit Rivers (St. Clair) , of the 
monthly series of winter flow retardations 
for these two connecting channels. 

TABLE 4-1 
FIRST THREE SERIAL CORRELATION COEFFICIENTS OF THE 
E SERIES OF FOUR MONTHLY WINTER FLOW RETARDATION 
p,t 

SERIES OF CONNECTING CHANNELS OF GREAT LAKES 

Connecting 
Channel 

St . Mary' s 
River 

St. Clair­
Detroit 
Rivers 

Niagara 
River 

St. Lawrence 
River 

Serial Correlation Coefficients 

0.286 0.085 0.030 

0.448 0.112 o. 043 

0.374 -0 .009 -0.073 

0.229 0.137 0.064 

The first-order and the second-order autoregressive 
linear models are tested for the t series of the p,t 
monthly winter flow retardation, using either r 1 of 

Table 4-1 and Eq. 2-10 with p1 estimated by r 1, or 

r
1 

and r
2 

of Table 4-1 and Eq. 2-7 with a 1 and a 2 
of Eq. 2- 8 estimated by replacing pl and P2 by r 1 
and r

2
. Both the first-order and the second- order 

models are used in order to compute the tp, t series , 

for each of the four monthly winter flow retardation 
series. The test whether the first-order or the second­
order model fits better cannot be performed by using a 
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long correlogram, because the truncated series has the 
correlogram also truncated, and makes i t unfeasible to 
study the correlogram with more than four rk values , 

with k " 1, 2, 3 , and 4. The corrclograms of the ~ p,t 
series, computed both by using the Markov I (first-or­
der autoregressive) model and the Markov II (second­
order autoregressive) model, for the four monthly win­
ter flow retardations show that only r_ of the ~ 

.) p, t 
series of both ~!odels I and IJofthe St . Mary's River 
is outside the tol erance limits . No other r

1
, r

2
• or 

r
3 

value exceods the tolerance limits on the 95 percent 

probability level of significance. The first-order lin­
ear autoregressive model is selected, and the four ~ p, t 
series are computed by using it, because no substantial 
improvement was shown in corre lograms of the t sc­

p,T 
ries when computed by using the second-order model in 
comparison with the computation by the f irst-order model. 

10. 4 ProbabiZity Distribution of Independent Stochastic 
Component. The next step in the analysis of monthly 
winter flow retardation series was the fit of probabil­
ity density functions to the four i ndependent stochastic 
components t of these series , computed by the p,T 
first-order autoregressive model from the £ series , p,T 
or by Eq. 2-13. 

Table 4-2 gives t he estimated parameters of the 
three probability functions: normal, three-parameter 
lognormal, and three-parameter gamma. The alpha (shape) 
parameter of the three-parameter gamma function of 
t , in the case of the first three connecting chan-p,t 
nels, is very high (~ = 295, 326, and 302). Therefore, 
.these values show that the distribution is normal. There 
was no point in testing the goodness of fit of the gam­
ma function. The t ests for the fit of the normal and 
the three-parameter l ognormal functions are then carried 
out by using the chi-square statistic . For these two 
probability functions the fits to the ~ series in p,T 
the cases of the first thr ee connecting channels are 
not especially good, because the computed chi-squares 
are much greater than the critical chi-square values 
on the 95 percent probability level of significance, 
with the computed chi-squares ranging from 142 through 
248, while the critical chi-squares values are either 
22.36 or 21.00 for these two functions. The fourth 
case , the St. Lawrence River, shows an acceptable fit, 
particularly for the three-parameter lognormal function. 

Figure 4-15 shows the cumulative frequency distri­
bution curves and the fitted normal probability distri­
bution functions for the t series of monthly winter p , t 
f low retardations, with parameters given in Table 4-2 . 
The fits are relatively acceptable by a visual inspec­
tion. The major reason for the large deviations of 
computed and critical chi- square values are not the 
skewness factors, but rather the high frequency densi­
ties in the cent er of distributions. As an example, 
Fig . 4-16 shows the absolute class frequencies for the 
13 unequal class intervals, but with these interval s 
having the same probability of 1/13 of the norma l prob­
abil ity distribution function, in case of the ~ p,T 
series of the Niagara River. For t he normal function 
to be a very good fit , the 13 absolute class frequency 
of the ~p,t series shoul d also be very close, fluc -

t uating about the average of the 13 val ues. The central 
class interval for the case of ~ for the Niagara p,t 
River shows a particular spike at ~ = - 0. 40 to t • 
- 0.50, which is nearly four times as large as the 
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TABLE 4-2 
PARAMETERS IN FITTING PROBABILITY FUNCTIONS TO FREQUENCY DISTRIBUTIONS OF THE ~p,T SERIES OF MONTHLY WINTER 

Function 

Normal 

Three­
Parameter 
Lognormal 

Three­
Parameter 
Gamma 

1.0 F<(l 

0.8 

0.6 

0.4 

0.2 

00 

FLOW RETARDAT10NS IN THE CONNECTING CHANNELS OF GREAT LAKES 

St. ~1ary' s St. Clair-Detroit Niagara St. Lawrence 
Parameter River Rivers River River 

Mean 0.000 0.000 0.000 0.000 
Standard Deviation 0.965 0.914 6.944 0.977 
Chi-square critical 22 . 362 22.362 22.362 22.362 
Chi-square computed 206.851 248 .785 232 . 179 23.352 

Lower Bound -15.997 -15 . 997 -4.212 -6.393 
Mean of Logarithms 2. 770 2. 771 1.415 1.844 
St. Dev. of Logs. 0.057 0.055 0. 211 0.152 
Chi- square critical 21.000 21. 000 21 . 000 21.000 
Chi-square computed 176.379 141. 704 213.313 13.227 

Lower Bound -15.988 -15 . 988 -4.529 
Alpha (shape) 294.895 325.500 301. 581 21. 494 
Beta (scale) 0.054 0.049 0.053 0. 211 

------

2.0 4.0 -2.0 o.o 2.0 4.0-2.0 2.0 4.0-2.0 0.0 2.0 

Fig. 4-15 Fitt ing the normal probability distribution function {1) to the cumulative frequency distribution 
(2) of the independent stochastic component , ~ of the monthly winter flow retardati on series of 

p,T 
the four connecting channels: (I) St. Mary's River; (II) St. Clair- Detroit Rivers; (III) Niagara 
River, and (IV) St . Louis River . 
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Fig. 4-16 Absolute frequencies , N, . for the thirteen 

class intervals of equal probabilities fol­
lowing the normal distribution function, of 
the independent stochastic component , t , p,t 

1.0 

0.8 

0.6 

0.4 

0.2 

of monthly winter flow retardations of ~i­
agara River (Ontario). 

0.0 ......... .___........_ __ ~ __ _...._ 

-0.2 0.0 2.0 4.0 -2.0 0.0 2 .0 

average of the other 12 values. Similarly, in other cases 
the absolute frequencies for the unequal class intervals 
of equal probabilities of the normal function, used in 
computing the chi- square statistic of f; , show large p,t 
variations. As for t he normal function, the results of 
fits of the three-parameter lognormal function are shown 
in Fig . 4-17, demonstrating to be close to those of 
the normal funct ion, though the lognormal function shows 
better fits than the normal function. 

The dilemma is then either to continue to search 
for the new probability distribution functions , such u 
the normal function transformed by using the orthogonal 
polynomials, which would fit better the four ( p,t 
series than the normal or the three-parameter 
function, or to accept the fits by this latter 
The reasons for accepting the fits by the 
function are : 

lognormal 
function. 
lognormal 

(1) Significant errors must exist in the estimates 
of monthly winter flow retardations, so that a high 
l evel of goodness of fit cannot be justified. 

(2) The goodness of fit is of the same order for 
many currently used hydrologic frequency distributions. 

(3) Uncertainties in future trends of ice effects 
on flow retardations in the connecting channels of the 
Great Lakes--as demonstrated by the trends in the mean 
and the standard deviation of monthly winter flow re­
tardations of t he St . Mary's River and the St. Clair­
Detroit Rivers--do not justify a close r eproduction of 
the four historic t series i n the generation of 

p,t 
new samples of monthl y winter f l ow retardat ions . 

In conclusion, the three- parameter lognormal dis -
tribution function is used for the four ~ series, 

p,T 
with parameters as estimated and given in Table 4-2 , 
for monthly winter flow retardations in the connecting 
channels of the Great Lakes. 

4.0-2.0 0.0 2.0 

------

I 
I 

®-f 
I 
r 

( 
I 
I 

) 
( 

_a 
2.0-2.0 0.0 2.0 

Fig. 4-17 Fitting the three-parameter lognormal probability distribution function (1) to the cumulative frequen-
cy dist ribution (2) of the independent stochastic component , ~ ofthemonthly winter flow ret arda-

p,r 
tion series of the four connecting channels: (I) St. Mary ' s River; (II) St. Clair-Detroit Rivers; 
(Ill) Niagara River, and (IV) St . Louis River. 
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Chapter 11 

GENERATION OF NEW SAMPLES 

11.1 Basic Approach in Generating New Sc:mpZes of Winter 
FZow Retardations. The basic concept in taking into 
account the monthly winter flow retardat ions in the 
connecting channels of the Great Lakes and in gener­
ating their new samples is to use the historic series 
of f l ow retardations in these channels. These series 
are then structurally analyzed and mathematically de­
scribed to produce the four mutually dependent but se­
quentially independent stochastic components ~ of 

p , ; 
the series of the four connecting channels. In this 
concept the basic hypotheses are as follows: 

(1) That the sequentially independent stochastic 
components ~ of winter flow retardation series of p , ; 
the four channel s are mutually dependent r andom vari­
ables, similarly as they were sequentially independent 
stochastic components but mutually dependent random 
variables for the five mean monthly NBS series of the 
Great Lakes. 

(2) That the sequentially independent stochastic 
components of mont hly winter flow retardations are not 
dependent on the sequentially independent stochastic 
components of the mean monthly NBS series of adjacent 
lakes; and 

(3) That the winter flow retardation series in 
generating new samples are not dependent on the water 
levels of the Great Lakes, in other words, on regulation 
patterns. 

The approach used in this Part IV in generating 
the new 20 samples, each 50 years long, of the monthly 
series of winter flow retardations has followed the above 
three hypotheses. The first hypothesis is justified and 
is easy to prove, because the general freezing conditions 
usually occur all over the Great Lakes region, producing 
the mutually dependent random variables of winter flow 
retardations, in general, and of their independent sto­
chastic components, in particular. The second hypothesis 
might not be fulfilled rigorously, for the simple reason 
that l arge winter freezing conditions which produce 
icing and flow r etardations, may be associated with 
very l ow NBS values, with a negative correlation coef­
ficient. However, it might come out that the dependence 
between the sequentially independent stochastic compo­
nents of these two sets of random variables are rela­
t ively small to be of a practical importance . These 
eventual connections of negative correlation are not 
tested . The third hypothesis may be crucial in as­
sessing how good the use of the generated new samples 
of winter flow retardation series may be. It is safe 
to assume that the winter flow retardations are a func­
tion also of the total discharge which would flow through 
channels without ice. Therefore, the flow retardation 
series in a connecting channel must depend on the l evels 
of upstream and downstream lakes , if the upstream lakes 
are not controlled by regulating structures. This hy­
pothesis was not tested. 

If it is found that the independent stochastic 
components of winter flow retardation depend on: (1) 
the freezing conditions (climatic random variables), 
(2) the net basin supplies , and (3) the lake levels, 
then the generation of new samples of winter flow re­
tardations should follow a different approach. There­
fore, the results of Part IV in the generation of new 
sampl es of monthly winter f l ow retardations are based 
on the above three fundamental hypotheses, and cannot 
be better than the hypotheses. 
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11 . 2 Generation of New Samples . Because the indepen­
dent stochastic components ~ of winter flow retar-p,r 
dations of the four connecting channels of the Great 
Lakes are mutually dependent random variables, the gen­
eration of new samples must preser ve the regional de­
pendence in ~ . Table 4-3 gives the correlation 

P.•' 
matrix in the form of correlation coeff icients. This 
tabl e shows that the cross correlation coefficients at 
the lag zero between the pairs of the ~ series are 

p,; 
relatively small, ranging from 
The lag-one cross correlation 
smaller. 

0.072 through 0.220. 
coefficients are still 

TABLE 4-3 
CORRELATION ~lATRIX BETWEEN ~p', SERIES OF WINTER FLOW 

Connecting 
Channel 

St. Mary's 
River 

St. Clair-
Detroit 
Rivers 

Niagara 
River 

St. Lawrence 
River 

St. Mary's 
River 

1. 000 

0. 072 

0.220 

0.220 

RETARDATIONS 

St. Clair­
Detroit 
Rivers 

0.072 

1.000 

0.133 

0.160 

Niagara 
River 

0.220 

0.133 

1.000 

0.179 

St. Lawrence 
River 

0.220 

0.160 

0.179 

1.000 

Because the 
cients of ~ p , ; 

absolute values of skewness coeffi­
are relatively small, especially for 

the first three connecting channels of Table 4-3, it 
is not necessary to transfo·rm the three-parameter log­
normal functions of I; into normal, in order to use 

p,T 
t he simple multinormal distribution approach in gener­
ating new samples . 

The same procedure and the same equations are used 
in the generation of new samples of winter flow retar­
dations as they were used for generating the new samples 
of mean monthly and mean quarter-monthly net basin sup­
ply series . The differences, however, are as fo l lows: 

(1) Whenever a monthly value of winter flow re­
tardation comes out to be negative, it is replaced by 
zero value, because by definition the flow retardation 
cannot be negative, in contrasttothe NBS values which 
can be negative. The zero values of winter flow retar­
dations in months for which the mean winter flow retar­
dation is greater than zero are also a common occurrence 
in the historic series. 

(2) Because of intermittency of winter flow re­
tardations, the new generated samples do not carry the 
dependence between the values of one year to values of 
the next year. 

11 . 3 Analysis of Generated Samples. The basic param­
eters of the historic series of winter flow retardations 
for the four connecting channels of the Great Lakes are 
given i n Table 4-4. Table 4-5 gives ' the means and the 
standard deviations of the gener ated new samples of the 
independent stochastic components ~ for the four p,; 



TABLE 4-4 
BASIC PARAMETERS OF HISTORIC SAMPLES OF WINTER FLOW RETARDATIONS OF FOUR CONNECTING CHk~NELS OF GREAT LAKES 

St. Clair-
Parameters St. Mary ' s Octroi t Ni agar a St. Lawrence 

Ri ver Rivers River River 

Mean of ; 
p,T Series 0 . 000 0.000 0.000 0.000 

Standard Deviation 
of; p , T Series 0. 967 0.916 0.966 0.979 

Periodicity in the 1.174 2.126 0.493 11.403 
21.755 3.496 6.060 32.030 

~lonthly ~leans of \'linter 28 . 645 2.645 9.030 25.419 Flow Retardation 
10.524 1.230 4 . 791 8.134 

Sel'ics 1. 606 0.514 4. 940 

Periodicity in the 3 . 499 3. 545 1.386 9 . 081 
15. 684 4. 212 5. 404 12.262 

~bnth 1y St:!ndard 13. 647 3.468 5 . 737 7.913 Deviation of IH ntcr 10.136 2.194 3.578 5.030 
Flow Retardation Series 7.310 1.393 4.546 

TABLE 4-5 
BASIC PARAMETERS OF ; COMPONENTS OF GENERATED NEI~ SAMPLES OF WINTER FLOW RETARDATIONS IN CONNECTING CHANNELS 

p,T 
OF GREAT LAKES 

St. St. CJ air-
~1.'\l'y ' s Detroit Nia ga ra St. Lawrence 

Sam ph' River Rivers River River 

~IClln St.Dev . 1·1ean St.Dev. ~lean St.Dcv. ~lean St. Dev. 

1 -0.018 0 .967 -0.008 1. 015 0 . 058 0.947 -0.069 0. 998 

2 -0.01!3 0.977 -O.OS5 1. 047 -0.082 0.973 -0.090 0.982 

3 0.141 0. 966 0.093 0.924 0.050 1.014 0.053 0.9:18 

4 -0.023 1.007 -0 . 011 0.950 - 0 . 077 1.024 -0.016 1. 034 

5 0. 159 0.912 0. 143 1. 069 -0. 113 0 .94 2 0.053 0 . 981 

6 -0.056 1. 002 0. 011 0.976 - 0.001 0 . 952 -0.000 0.970 

7 0.083 0.978 -0 . 044 1. 021 0.057 0.956 -0.009 0.997 

8 0.064 0. 965 0.054 0.917 -0.076 1.022 0.008 0.964 

9 -0 .047 0.972 0.052 1.124 0.053 1. 036 -0.009 1. 025 

10 0.028 1.007 0.044 0.972 0 . 026 0 . 936 -0.093 0.984 

11 -0.064 0.953 -0.053 0.984 ·0.133 1.004 -0.149 0.983 

12 -0 . 052 1. 020 -0 . 054 1.060 0. 064 0.920 0.049 1. 014 

13 -0. 124 1. 038 0.156 1. 054 0. 124 1. 060 0.099 0.933 

14 -0 . 053 1. 058 - 0. 029 1.002 -0. 015 1. 056 -0 . 024 0. 984 

15 -0.016 1.059 0. 058 0.992 - 0.029 0.990 0.015 0.951 

16 -0 . 064 1. 034 - 0 . 020 1. 061 -0 . 227 0 . 955 -0.065 1.025 

17 0.051 0.972 -0.118 0.956 0.093 0.994 0.028 0 .961 

18 0 . 136 1.066 - 0.060 0 . 998 0.170 1. 027 0.069 1. 020 

19 -0.008 1.001 ·0 . 054 1.065 - 0.121 0.92B 0.041 0.916 

20 0 . 027 1.033 0 . 043 0 . 989 0.008 1.015 0.181 0.988 

-- -·---
Average 0.006 1. 003 0. 007 1.009 0. 000 0.988 0 . 003 0.98 3 
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winter flow retardation series . Their average values 
for 20 samples, each 600 monthl y values long (SO years) , 
also given, should be close to zero and unity, respec­
tively. The differences are small. The generated ( 

p,-r 
series with mean zero and standard deviat ion uni t y are 
used here to demonstrate the good reproduction of the 
( series. The standard deviations of historic se-p,t 
ries are smaller than unities , as Table 4-4 demonstrates. 
The multiplication of generated values of E; series 

p,t 
by these values makes the generated ( series com-

p,-r 
patible with the historic series. Performing the trans­
formation of E; by the autoregressi ve model and p,t 
adding the periodic components does not change the good-
ness of reproducti on of the E; series . 

p,T 

Table 4-6 gives the general mean and the general 
standard deviation for each generated. sample of the 

winter flow retardation series for the four connecting 
channels of t he Great Lakes, as wel l as their average 
values . The next row gives the mean and the standard 
deviation of the corresponding historic monthly series 
of winter flow retardations . In the l~st row are t he 
differences between the averages of parameters of gen­
erated samples and of the historic sample. Because of 
replacing the negative values by zeros in the generat ed 
samples , the averages of means of generated samples for 
all four series are somewhat greater than the means of 
historic samples. The average standard deviations of 
generated samples, for the same reason, are somewhat 
smaller than the standard deviation of historic samples. 
Regardless of these differences, it may be assuming that 
the reproduction of parameters of historic samples is 
sufficiently good, especially in light of several fac­
tors, but part icularly because of errors i n data of 
historic samples, and because of trends in the winter 
flow retardation series. 

TABLE 4-6 
CO~IPARISON OF MEANS AND STANDARD DEVIATION OF GENERATED SAMPLES A.'JD THE HISTORI C SAMPLE OF WINTER FLOW RETARDA­

TION SERlES 

St. St. Clair-

Sampl< ~lary ' s Detroit Niagara St. Lawrence 
River Rivers River River No. 

~lean St.Dcv . Mean St . Dev. Hcan St.Dcv. ~lean St.Dcv . 

1 13.469 14.222 2.317 2.S12 4 . 301 S.l93 16.477 12.976 
2 13.339 15.315 2.550 2.812 3. 974 4.841 16.499 13.418 
3 13. 4 59 13.980 2.537 2.983 4 . 173 4.940 16.659 13.298 
4 13.816 14.872 2. 549 2. 753 4 . 276 5.326 16.529 12.869 

5 13.998 I S. 304 2.580 2 . 745 4. 217 4. 944 16 . 491 13 . 083 

6 13. 34 3 13.8 23 2.4S4 2. 729 4.131 4.911 16.613 13.172 
7 13.198 13.694 2.S02 2 .822 4 . ISO 4 . 900 16.348 12.701 

8 14. 222 15.170 2.481 2.983 4. 200 4. 954 16.2S6 12.685 

9 14.087 15.946 2.466 2.830 4 . 269 5 . 200 16.607 l 3.6S4 

10 13.881 14.563 2.558 2 . 779 4 . 278 5 .102 16.642 13.974 

11 13.379 13.880 2.496 3 . 05S 4.1 26 5 . 063 16.710 13. 592 

12 13.190 13.8 39 2.482 2. B21 4 . 083 4 .848 16.305 13. 152 

13 13.922 14. 362 2.~76 2.833 4 . 008 4 . 696 16 . 369 12. 949 

14 12.875 13. 228 2.433 2.747 4.208 4.96<1 16.4 39 12.948 

I S 13 . 383 13.4:47 2 .463 2.844 4 . 101 5 . 051 16. 267 12.266 

16 13.601 13.!)04 2.416 2.78S 4 . 206 4.910 16.520 12.8BS 

17 13.362 13.137 2. 383 2. 719 4 . 219 4 . 944 16 . 376 13. 031 

18 13.704 14 .788 2.507 2.805 4. 303 41 . 957 16 . 380 13.348 

19 12.872 12.756 2.442 2.710 4 . 229 5 . 045 16.365 13. 188 

20 13.946 15.222 2 .434 2.671 4 . 245 5 . 082 16 . 574 13.527 

Average 13.553 14. 272 2. 471 2.797 4 .185 4.994 16.471 13.161 

llistoric 
Sample 12.'/41 1S.401 2.001 3.281 3.780 4.985 16.331 13.280 

Difference 0.812 - 1. 120 0 . 470 -0. 484 0 .405 0. 009 0 .140 - 0.119 
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t er-monthly net basin water supplies of two smaller l akes (Ontario and 
Erie); and (3) Flow retardations in connecting channels due to f r eezi ng 
and weed effects . For each of series of the above three variables, first 
tests of trends in data have been performed, The St. Clair Lake mean 
monthly net basin supplies had a trend , Also the St. Mary ' s River and t he 
St . Clair- Det:roit Rivers connectirlg cllannels had decreasing trends i n 
flow retardation. Series have been studied with trends in parameters 
removed . 

Periodic parameters in a ll thr ee var iables were t he mean and t he 
standard deviatl. n, while autocorrelation coefficients and skewness coef­
ficient were found not to be periodic. The stochastic components are found 
greatly autocorrelated, according to the second-order autoregressive 
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Applicat ion o f ~lonte 

of lake hydrologic 

ABSTRI\CT: Generation of 20 sampl es, each 50 years l ong, of three variables 
r e lated to water inputs into and retardation of flows in conHecting chan­
ne ls of the ·Gr eat Lakes is t he subject matter of this paper . They a re: 
(1) 1•1ean monthly net basin water supplies of five lakes; ( 2) ~1ean quar ­
ter-monthly net basin l•'ater supplies of two smaller l akes (Ontario and 
Erie); and (3) Flow retardations in connecting channels due to f r eezing 
and weed effects . For each of series of the above three variables, first 
tests of t r ends in data have been performed, The St . Cla ir Lake mean 
monthly net basin suppl ies had a trend , Also the St. Mar)''S Ri ver and t he 
St. Cl air- Detroit Rivers connect ing channels had decreasi•l~ trends i n 
flow retardation. Series have been studied with trends i n parameters 
removed . 

Periodic paramet er s i n all t hree variables 1~ere t he mean and the 
s tandard deviation, 1vhile autocorrelation coefficients and s kewness coef­
ficient were found not to be per iodic . The stochast ic components are found 
gr eatly autocorrelat ed , according to t he second -order autoregressive 



models. !'or the resulting independent, identically distributed stochastic 
component of all series, the three-parameter lognormal distributions was 
a ~;ood approximation. 

The principal component analysis has been used in generating the new 
samples of the mean monthly net basin supplies. The approach of generating 
first the monthly values, and then superimposing the generated four dif­
ferences of mean quarter-monthly values Nas difficult to apply , because 
both the sum of four differences to be zero and the autoregressive model 
could not be satisfied simultaneously. 
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