# UCSU5/47.10/22 <br>  <br> A Procedure for Public Involvement Pamela J. Case, Terry D. Edgmon, and Donald A. Renton 



Range Science Series No. 22
June 1976

Return to
State Publications Library
201 East Colfax Avenue, Room \#314
Denver, CO 80203


Range Science Department Colorado State University

# " PUBLIC - A PROCEDURE FOR PUBLIC INVOLVEMENT 

Pamela J. Case, Terry D. Edgmon, and Donald A. Renton


#### Abstract

This report is a concept paper and user's guide for PUBLIC, a collection of quantitative procedures designed primarily for use by public agencies who are attempting to heighten and improve the public input into their decision processes.

Recent changes in public attitudes concerning administration of publicly owned resources have considerably altered the decision environment of resource administration agencies. This report reviews some basic relationships between administrative agencies and communities in the goal setting process of public land planning, and survey research techniques by which economic and social values can be better expressed with regard to land management alternatives.

Although professional public agency administrators recognize that public input into the decision processes of the agency is necessary and even desirable, there is general concern over how to utilize public input in a clear and straightforward fashion, and also a concern about how to maintain competent professional input simultaneously with public input. The PUBLIC procedure outlined here attempts to clarify the collection and analysis of public opinion data, and also shows how such data can be utilized to examine the correspondence between agency staff specialists and various public opinions in such a way that professional advice and public opinion can be more harmoniously meshed.

This report also includes a description of how to utilize the various computer programs, which are primarily multivariate statistical techniques, included in the PUBLIC package, and a listing of the computer programs and example problems. The programs have been developed in American National Standards Institute FORTRAN IV and should be operable on any computer with a FORTRAN IV compiler.


## TABLE OF CONTENTS

Page
Concepts ..... 1
The Problem of Goal Identification: Organization and Community ..... 3
Hierarchical Approaches to Goal Identification ..... 3
Consensual Approaches to Goal Identification. ..... 4
Community Goal Identification ..... 5
Conflict Issues. ..... 7
Configuration of Interest. ..... 8
Distribution of Power Resources ..... 9
Distribution of Formal Authority ..... 9
Administrative Systems ..... 10
The Role of Staff Specialists ..... 11
Methodology ..... 13
Sampling Procedures ..... 14
Information Exchange Behavior. ..... 15
Identification of Land Use Preference Orders ..... 15
Social Choice Patterns. ..... 17
The Preference Measurement Model and Development of a Least Disliked Social Order. ..... 20
Survey Instrument for Preference Orders ..... 24
Preference Levels ..... 25
Further Analyses ..... 27
Statistical Analyses. ..... 27
Kendall's Concordance Coefficient ..... 27
Factor Analysis. ..... 28
Sample Data From Surveys. ..... 36
Computer Programs ..... 45
Overview of PUBLIC ..... 45
Tape Assignments in PUBLIC ..... 47
Data Input for PUBLIC. ..... 48
TITLE ..... 48
DATA. ..... 49
LEVEL ..... 50
KENDAL ..... 50
ORDER ..... 51
FACTOR. ..... 51
COMPARE ..... 52
STOP. ..... 53
Comments on Data Input ..... 53
Data Analysis Sequence ..... 54
Output from PUBLIC ..... 55
TITLE ..... 55
DATA. ..... 55
Exclusion of Invalid Data ..... 55
LEVEL ..... 56
KENDAL. ..... 56
ORDER ..... 56
FACTOR ..... 56
COMPARE ..... 58
Diagnostics ..... 60
Sample Problem ..... 62
Data Input for Sample Problem ..... 62
Sample Problem Output ..... 68
Literature Cited ..... 89
Appendix A ..... 91
Appendix B ..... 93
Appendix C ..... 99

## CONCEPTS

Since their creation, natural resource management agencies such as the Forest Service, the Bureau of Land Management, and some state agencies have often included grass roots participation in resource planning and decision making. Although there have been times of conflict, these agencies have often enjoyed close and supportive relations with significant interest groups and the general public (Fairfax, 1975).

One major reason for such close relations lies with the fact that the clientele of these resource agencies have been groups whose economic livelihood coincided with the viewpoints of managers of the public lands. Within a common framework of production orientation (with the exception of management practices within wilderness areas and national parks), conflicts among user groups and agencies have tended to be about management procedures rather than about goals. For example, the fact that grazing fees exist has not been a significant and overriding issue; the amount of the grazing fees and by whom they are set have been more the focus of conflict.

A common set of goals or preferences concerning administration of natural resources and communications networks which link private enterprises to public agencies has led to the integration of public and private resource decision making. User group (or community) advisory boards have served to legitimize agency action on the local level. This atmosphere has allowed a decision environment which apparently met the test of grass roots administration of publicly owned land, while at the same time it allowed the manager to meet agency objectives and to use techniques which have promoted economic efficiency in development and utilization of natural resources.

However, recent changes in public attitudes concerning administration of publicly owned resources and the creation of new and powerful environmental interest groups have considerably altered the decision environment of resource administration agencies. For example, during the latter $1960^{\prime}$ s and early 1970's, the word "ecology" entered the public's vocabulary, and committed individuals have organized to pressure the resource agencies to modify their established
policies and decision making procedures. A manifestation of the impact of these environmental groups is the National Environmental Policy Act (NEPA) which authorized creation of the Environmental Protection Agency to safeguard significant environmental preferences, and required an "environmental impact assessment" for projects with federal sponsorship. Environmental groups have gained access to decision making processes of resource agencies and brought court action for decisions alleged to be in conflict with the NEPA legislation (Ingram, 1973).

These trends have drastically altered the public land manager's decision environment and created the following problems:
(i) Reliance upon advisory boards composed of traditional user group representatives has led to some administrative decisions which have not gained support of the community as a whole.
(ii) The demand for non-economic uses of public land has been difficult to identify and reconcile with economic land uses.
(iii) Decisions found to be politically unacceptable have led to costly court proceedings and disruption in orderly public land planning and resource allocation decision making.

Helpful procedures for public land use managers who find themselves in the above situation include:
(i) understanding the varieties of public land use preferences held by various elements of the public,
(ii) developing an administrative system by which citizen conflicts over public land use values can be interpreted and goal consensus can be achieved, and
(iii) developing an analytical technique which considers non-economic preferences along with economic ones in determining public land management strategies.

This report reviews some basic relationships between administrative agencies and communities in the goal setting process of public land planning, administrative procedures which can help to develop goal or value consensus among competing groups, and survey research techniques by which predominant economic and social land use values can be utilized in acceptable land management strategies.

THE PROBLEM OF GOAL IDENTIFICATION: ORGANIZATION AND COMMUNITY

The most difficult part of a land management plan always seems to be: "What are the goals for this plan?"

There are several ways that an agency can resolve this question, and the manner in which it does is usually determined as much or more by organizational structure and forces outside the organization as by the nature of resources being allocated. For example, a land area which is generally inaccessible to the general public can be managed on the basis of internal organizational criteria, i.e., attaining goals in line with national policy and exploiting or husbanding resources in accordance with the prevailing expertise of the professional staff. The agency is generally free to establish almost any pattern of land use, consistent with national guidelines, that it wishes.

A more common and more complex situation is that where the land may possess many significant resources. For a multiplicity of uses, there may be organized groups which have a vested interest in the way that the public land is managed, in the productivity of that land, and in the consequences of its development and exploitation. In this situation, the land manager's goal formulation problem is more complex, and diverse interests and preferences must be reconciled before more technical aspects of land and resource planning and implementation can get under way.

## Hierarchical Approaches to Goal Identification

Classical theories of bureaucratic organization, such as those developed by Weber (Gerth and Mills, 1946) and Gulick and Urwick (1937), state that the agency goal setting process occurs outside the organization in political institutions such as legislatures, the offices of the chief executive, and advisory boards or commissions. Goals or statements of purpose are then transmitted to the agency or department in the form of enabling and authorizing legislation and executive orders. Top level agency personnel then take such mandates and devise rules which, if followed by personnel lower in the agency's hierarchy, will optimize the values embodied in the goal statements.

The basic assumption behind classical organization theory is that authority is delegated to the organization from political or policy-making bodies. Personnel at the bottom of the pyramid base their decisions upon formal rules, and a structure of incentives and disciplinary procedures insure the accountability of agency personnel to formally stated goals.

This theory of organization is reflected in the formal hierarchical structure of many agencies and bureaus in the United States. Formal agency accountability is supposedly insured by executive and congressional control. However, this system of authority may break down if the policy-making or goal formulation body, such as the Congress, either articulates very general or inconsistent goal statements.

Formally stated goals may follow from the function of the organization, i.e., to justify the organization to important elements in the organization's environment. These statements are usually very general and can be used to legitimize categories of organizational behavior and contribute to flexibility of the organization. For example, an agency's claim to be the protector of public resources for use by future generations may be seen as a justification for granting it the autonomy to determine current resource management practices.

## Consensual Approaches to Goal Identification

Other organizational viewpoints recognize the deficiency of top-down mechanisms of goal formation. Formal organizational goals run the risk of being displaced or substituted if they do not meet the needs of the participants or if they do not contribute to organizational growth or survival. Alternatively, a bottom-up organization requires consent of personnel or constituents at the bottom of the organizational pyramid. This distinction is critical in that it allows claims by organizational personnel in the goal setting process. Authority through consent is reflected in the utilization of participatory programs and granting of decisional autonomy to organizational units operating in the field.

In both the hierarchical and consensual procedures, organizational goals are statements of desired future states or preferences to be achieved by organizations. In the consensual procedure, however, there is general internal agreement that these goals are both legitimate and attainable. Consensual organizations also recognize that different goals are pursued by different participants in the organization.

A principal character of consensual organizations is the interdependence of individual participants with different goals, each working toward the attainment of some portion of his goal set. Organizational goals therefore can be viewed as an amalgam of particular goals, but no formal weighting process exists and everyone does not have an equal voice. The effectiveness of different participants in the goal setting process depends on the resources each participant brings to that organization. We can view the organization thus as a coalition, with the various participants making contributions through their personal resources and those which they can mobilize outside of the organization. Organizational goals therefore are determined through a bargaining process which establishes the dominant organizational coalition.

In practice both top-down and bottom-up activities take place and successful organizations utilize both approaches in a process which allows vertical iterations between levels of a hierarchy to arrive at a mutually agreeable course of action (Mesarovic, Macko and Takahara, 1970).

## Community Goal Identification

The coalition approach to goal setting is particularly important in complex organizations and the public land planning process, especially in resource areas where the price system cannot be relied on to indicate the public's (or consumer's) land use preferences. Several differences between public and private organizations which make the coalition-bargaining process in goal setting imperative are:
(i) Private organizations in a market economy usually receive resources from clients or customers who can choose to provide the organization with resources (or inputs) in exchange for its outputs. Public organizations, however, may serve customers in legislative bodies who "purchase" through budget allocations services and products for clients in the social system. Thus, the input of fiscal resources is separated from the service or product output function; the evaluation function is divorced from the market process and is conducted through a political process.
(ii) Public organizations usually deal with complex technologies and outputs that cannot be subject to precise quantifiable evaluation. Subjective but important environmental resources such as scenic beauty and the quality of outdoor experiences may be subjects of concern, but are difficult to evaluate in conjunction with quantities of timber cut or ore mined.
(iii) Public organizations must mobilize critical organizational resources from many points in the social system (Table 1). On the other hand, private organizations must look primarily within themselves for resource mobilization.
If each of these different constituencies--the subcommittees of legislative bodies, interest groups, advisory boards, professionals, and career civil ser-vants--possessed similar expectations for the agency, then the goal identification process would be a simple affair and resource mobilization would soon become routine. However, these different constituencies usually possess different expectations and establish conflicting demands for agency action in return for resources needed by the agency.

Since the community decision process is diffused among many units of government and organizations, communities generally experience a greater level of conflict over formulation and execution of common goals than do bureaucratic organizations composed of individuals who share similar preferences and educational experiences, and who have consented to accept subordinate roles in an organizational hierarchy.

It is important for public land managers to understand the social and political processes related to community goal setting, not only because laws dictate that local citizens and groups must participate in planning decisions, but also because local citizens and groups may possess resources critical to the success of the public land management agency. Agency decisions may have significant impact on the social and economic order of the community; economic and political interests of local communities may in turn be able to exert considerable influence over the management of public resources available to their community. Either by challenging the legitimacy of a particular agency decision, or withdrawing political support for a particular policy, organized groups in local communities may have the potential to block or negate even the most meticulously prepared public resource plan.

Table 1. Organizational resources, utilization and sources for a land management agency.

| Resource | Utilization | Source |
| :--- | :--- | :--- |
| Authority | Legal basis for action | Legislative sub- <br> committees, the <br> executive office |
| Legitimacy | Participation and client's <br> consent to exercise <br> authority | Citizen advisory <br> board or advisory <br> groups. |
| Political support | Mobilization of attentive <br> public to facilitate the <br> organization's goal <br> attainments | Environmental user <br> groups |
| Fiscal resources | Revenues to sustain the <br> organization | Congressional sub- <br> committees, Office <br> of Management and <br> Budget |
| Technology, knowledge, | Application of knowledge <br> to produce organizational | Professionals, pro- <br> fessional societies, <br> universities |
| Administrative systems | Coordination, control and <br> maintenance activities | Administrative staff |

To examine the community goal setting process in more detail we will look at aspects of (i) conflict issues, (ii) configurations of interests, (iii) distribution of power resources, and (iv) distribution of formal authority.

Conflict Issues. Whenever a community becomes engaged in goal formation and implementation, three basic types of conflict issue may emerge: (i) statements of outputs to be achieved, (ii) the means to implement certain goals, and (iii) the structural relationship of interest groups and agencies in the decision process.

Conflicts over output preferences are exemplified by struggles between environmental protectionists and those who directly depend on the development or utilization of natural resources for an economic livelihood. Each group prefers different outputs from the system. In this case compromise over the alternative means of resource management will be very difficult. A group will not feel that it has "won" until it perceives that the goals of the agency have been modified so that they are more consistent with the group's preferences. The win-lose character of this sort of conflict over agency or community goals implies that "political" solutions must be implemented before the more technical planning processes can be meaningful.

Conflict over the means to implement goals may be addressed after a basic consensus on preferences is reached, thus allowing conflicting parties to interact to achieve agreement on an appropriate course of action. An example of this type of issue is one where differences of opinion exist over the amount of land and kinds of treatments applied to the land in a wildlife management program. The resource manager may engage in a series of negotiations until many alternatives are examined and a mutually acceptable strategy is agreed upon. Negotiations over alternatives are not very meaningful, however, unless a basic consensus on goal statements has been achieved.

Conflict involving changes in structural relationships of organized groups to agency decision making is involved in the change in interest groupagency relations created by the Environmental Impact Assessment process. Environmental interest groups marshalled sufficient power and influence on the national level to pass legislation which required comprehensive review and evaluation of federally sponsored actions that have implications for environmental change. This legislation gave citizen groups, through court action, the ability to veto or raise the costs of resource development decisions not initially included in the decision and planning process. Again, this type of conflict usually renders analytical or planning solutions useless, as the real issue involved is not the allocation of resources but who will determine how resources are allocated.

Configuration of Interests. The second important factor which may affect the community goal setting process is configuration of interests or preferences in the community. In some communities, there may be small differences and a
relatively high level of agreement among citizens on resource preferences. An example of a community with a high level of consensus would be a small rural community with most of its work force dependent on utilization of publicly held resources. In other communities, however, there may be a fragmentation of interests and a relatively low level of agreement among citizens or groups on resource preferences. These communities tend to be metropolitan areas with more diversified economic bases and subpopulations pursuing divergent life styles.

Distribution of Power Resources. The third important variable in community goal setting is the distribution of power resources among commity interests. This refers to the level of organization of interests within a community. In American society, power resources which can be utilized to affect political and administrative decisions can be most efficiently mobilized by organizing individuals who share some preference order or are pursuing a common goal. In this sense, organized groups are continually working to get elements of the unorganized public either to implicitly support their causes or to participate in their achievement.

In communities there can be varying degrees of organization for different interests. Some communities may have only a few organized groups or leaders, while in other communities many may be competing with each other to influence public decision outcomes. In communities with populations holding broad agreement on a wide variety of preferences, only a few individuals are needed to determine public policy. However, in communities where broad agreement on many preferences is lacking, many organized groups will be competing with each other for dominance in the public decision process. In this case many more leaders will be needed to determine public policy.

Distribution of Formal Authority. The last significant variable that affects the community goal identification process involves the distribution of authority in implementing planning goals. In some cases, the legal authority to plan and then execute that plan resides largely in one organization or branch of an organization. More commonly, however, resource allocation authority is shared by a number of governmental agencies or their branches and among levels of governments. This is particularly true in region-wide environmental planning that requires coordination among federal, state and
local governments. Success of regional planning, therefore, lies in the identification of the roles that various agencies or their branches play in implementing the regional plan.

## ADMINISTRATIVE SYSTEMS

The level of effective planning and management is related to the roles which the administrative system plays in the community goal setting process. A role is defined as a set of behaviors initiated by an individual or social actor in response to a set of expectations in the individual's organizational environment. These roles, in turn, can be aided or hindered by the formal organization within which the planner works.

The individual who occupies a formal organizational office has two basic criteria for determining what he shall do in that office. The first criterion is established by a formal delegation of authority assigned by the organization or other institutions. The second criterion for defining organizational roles lies in expectations of other individuals. Simply stated, whenever an individual assumes a new organizational office, he must learn more than the formal job description if he is to be effective. He must also learn the unwritten job description as it is defined by his colleagues.

In the community goal setting process, the planner or manager may not be able to significantly alter expectations of those within the community, because he may not possess the power, influence, or authority to do so. Moreover, these conflicts in expectations by others may be based upon different groups' expectations of the organization itself. For example, user groups may expect the organization to develop plans to help them solve problems of resource development or utilization, while environmentalist groups may expect the organization to develop plans to safeguard those same resources. They then would expect the planner to act accordingly.

An administrative system in which roles as defined by the formal organizational structure are consistent with roles as defined by community expectation naturally has the best chance of achieving consensus and effective managerial action. Thus an appropriate balance between the needs and preferences identified by agencies or agency branches and the community is a great asset in achieving a widely acceptable plan of action. An efficient administrative system recognizes
that goal identification in the public land management planning process is based on the interdependencies and interaction of the agency and specific reference publics.

The goal identification process has to be more than a way to aggregate individual citizen preferences. The process also has to develop commity legitimacy and group support for the goals that finally emerge if the agency hopes to implement the plan with a minimum of agency-community conflict after the planning process is completed. Therefore, goal identification can proceed only if elements of the public become mobilized and organized in such a fashion that they may address themselves to the issues contained in the plan.

The basic problem for the public land manager is that different community groups or reference publics may possess different expectations about what specific natural resource values shall be emphasized in any given plan. If the level of group influence is proportional to the number of citizens who agree with the interest group's goals, then the goals selected would be those preferred by a majority of the citizenry. In most cases, however, the interest or capacity of any given organized group to alter or change agency planning goals is not proportional to the sheer number of citizens who possess preferences similar to the organized group but also depends on the activity level of the group.

Public administrators must seek objectives which tend to maximize the general welfare rather than the interests of specific organized groups. The planning and goal identification process should combine interest group activity or potential activity and analysis of citizen preferences in a way that allows for trade-offs among interest group, agency, and individual preferences.

The Role of Staff Specialists
Land management alternatives can be identified in many ways. Initially a planner or manager may identify a large number of alternative management options. This list can then be subjected to evaluation by landowners, users, and managers for deletion and addition of alternatives. For analytical purposes the number of alternatives must be reduced to the smallest practical number. Special interest advocates must also be able to add or delete some management alternatives.

The functional staff of large agencies may create biases toward particular resource uses. As resource professionals are technically trained in specific fields and focus attention on technical management problems, they gradually become less aware of the social changes occurring in their constituency groups. A technical group may therefore have a well defined set of opinions concerning how public lands should be managed. A preference or interest configuration refers to a particular combination of preferences desired by a given set of individuals; in the special case of a line staff organization such as a National Forest or Bureau of Land Management district, the functional areas of professional staff members reflect preference configurations. For example, if the policy of a given land management agency is to be more concerned with timber harvesting than with wildife management, this policy will be reflected in a greater number of timber specialists than wildlife biologists on the staff of the agency.

The presence of groups of specialists in functional areas in the organization helps to create a stable, long term bias toward specific sets of preferences in day-to-day decision processes. By contrast the interest configuration of the public constituency may change more rapidly. The constituency may be more sensitive than the agency organization to changes in social values brought about through urbanization or rapid alteration of consumer or labor markets.

Therefore, over a period of time, differences undoubtedly arise between the interest configuration of various constituencies and agency personnel. If the conflict of interest between the agency and its constituencies becomes great enough, special interest groups may begin to form and seek ways to force the agency to alter its decision process and to make decisions which are more responsive to articulated constituency demands.

The differing rates of change between the attitudes of the agency personnel and the public constituency have created the arena of conflict. It is therefore essential to develop some mechanisms to allow inclusion of identified management options which are preferred by special interest and staff advocates as well. The Delphi and Delebecq techniques are just two of many procedures which have potential application to this type of problem. These tools could aid
in identifying, evaluating and reducing the list of possible management alternatives to the most important land use options to be considered in the management needed.

## METHODOLOGY

In the previous section we discussed organizational and community planning goal identification and formation viewed as a political process. By this we mean that individuals and groups usually attempt to promote or defend different interests which may be in conflict with any particular plan. Thus, some mechanism needs to be employed whereby this conflict is resolved or managed so that decisions are reached on issues. Alternatively, representatives may be selected; these representatives then must decide among themselves what shall be the goals of either an organization or a community.

Goal identification for plans must be an integral part of the citizen involvement process. Land use goals created on the basis of preference information must be legitimized by the community, and the planning agency must develop broad-based political support for these goals if they are to be implemented successfully. Appropriate configurations and structures for various interests must also be established. Only when these questions are satisfactorily answered can further details of the planning process proceed with any real meaning.

The purpose of this section is to describe a set of procedures which will assist the land use planner in developing goals which have the potential for acquiring broad political support from the community. In order to accomplish this, the procedures described in this section will provide:
(i) a simple and efficient survey procedure for gathering information about preferences of individuals in a community or region for alternative land uses;
(ii) a procedure for identifying and describing the level of community organization and the types of active interest groups which exist or may emerge;
(iii) an analytical procedure for determining the distribution or configuration of land use preferences within a given population or community;
(iv) an analytical procedure for aggregating conflicting individual preferences into a single agenda or meaningful set of agendas of land use levels and priorities; and
(v) a means of determining the desired level for each land use or suitable range of levels.

In order to incorporate citizen needs and preferences into land use planning, the decision-maker requires the following basic information: (i) identification of a variety of land use items which are salient to the population of the regional social system, (ii) knowledge of the existing or potential activity related to each of these items, (iii) an order of preferences of the land use items, and (iv) knowledge of desired use levels or desired amounts of each land use item.

## SAMPLING PROCEDURES

It is assumed here that the only systematic method of gathering information about preferential choices of citizens of the regional social system is by conducting a survey. Questions include: (i) whether to conduct a complete survey of the population or to make use of a sample, and (ii) whether to gather information by means of a mail questionnaire or by interviewing. Two kinds of criteria are commonly used to select among these options: (i) informational adequacy, meaning accuracy, precision and completeness of data; and (ii) efficiency (cost per added unit of information).

The most important characteristics of a well-designed sample survey are that they give a precise picture of the population from which it is drawn, that they be as small as precision considerations permit, and that they be gathered as swiftly as measurement techniques permit. Techniques for designing a sample which meets these objectives can be found in any social science methodology text.

Ordinarily, an investigator chooses between mail questionnaires and interviewing on the basis of both economic efficiency and his anticipated response rate. Mail questionnaires are usually less expensive in comparison with interviews. An interview may cost approximately $5-10$ times as much as a mail questionnaire when the population is centralized and 10-50 times as much as
a questionnaire where the study population is widely dispersed. A mail survey is appropriate when the questions are few and simple, but interviewing is necessary when the survey topic is complicated, when the questions are unavoidably lengthy, or when the questions require probing. If any of these conditions occurs, the mailed response rate will be extremely low and the economic efficiency of the interview will be superior. In our suggested procedure, we include preliminary interviews to determine preference items and information exchange behavior, a large mail survey to determine preference orders, and a final interview series to determine preference levels.

INFORMATION EXCHANGE BEHAVIOR

To develop a sociometric profile of a community, interviews are conducted with respondents who are asked to nominate other individuals who are influential or frequently communicated with in the community. Emphasis on influence or communication may vary with the purpose of the study. The nominated persons are in turn contacted for their nominees. The process continues until an adequate set of frequently nominated individuals is obtained.

These frequently nominated individuals can be very helpful in determining preference items and definition of preference items to be included in the survey instrument. Because of their knowledge of community affairs, they are often able to identify salient items much more readily than a respondent selected at random.

If a population is sufficiently small that it can be completely interviewed, the questions about preferences can be included in the interview schedule. This provides a much better determination of preference than a sample, but, of course, is limited to small populations.

IDENTIFICATION OF LAND USE PREFERENCE ORDERS

The criteria for identification of the preference set are the following:
(i) these items must be important to members of the population,
(ii) they must be defined in terms of output units rather than management procedures, and
(iii) they must be as few in number as possible.

Because of certain ecological or social properties of the environment in which individuals live, some discriminations are more important to them than others. We define the importance of preference items as salience. Individuals usually form preferences only for items which are functionally salient to them. However, the survey may include items which require individuals to state preferences on choices which are of little importance to them. In order to include only preference sets where respondents have explicit preferences, a procedure for evaluating the salience of each land output to the population must be applied before it is included in the set.

Normally, in preferential choice problems, it is necessary that the set be mutually exclusive. Due to the nature of land use problems, however, several types of uses (such as bird watching, rock hunting and cultivation) may occur in the same time and space. It is necessary to determine which of the preferences require mutually exclusive management practices (single-use alternatives) and which require inclusive ones (multiple-use alternatives). Multiple-use alternatives may be expressed in output units, but mutually exclusive uses must be expressed by the amount of land designated for the use.

Although it seems intuitively correct that the rank order an individual gives to a set of three items would remain the same when the same three items are presented to him within a set of five items; in fact, the number of items which must be considered by an individual affects the preference order he gives to them. The probability that an individual will encounter items to which he is indifferent and that he will resort to several interacting selection criteria increases greatly as the number of items in a set increases. In order to simplify the analytical process as much as possible, the system should include the smallest set of items that is reasonable for the nature of the planning problem.

We suggest a three-step process be used for the identification of land use preferences. In the first step the resource manager who initially defines the land use management problem will suggest a fairly large set of items to be included. These items are then pilot-tested for salience and for expansion or reduction with a group of resource managers who occupy administrative or other influential posts. The second step is to pilot-test the list of land use items with a citizen group or panel of knowledgeable community members.

A common test of salience in this context is to require that the new item be important enough to replace one listed in the original set. The first and second steps can be incorporated with the study of information exchange behavior described in the preceding section. In the third step the reduced and refined list of items is used in a community survey procedure. The survey procedure will consider:
(i) the design of response categories for determination of preference order and desired use levels, and
(ii) the design of an efficient sampling method.

## Social Choice Patterns

Ideally, the individual responsible for land use planning or decision making would like to know what decision would satisfy all or most individuals in the regional social system. Within ecological constraints dictated by biological systems, a resource manager often strives to satisfy the needs and preferences of resource users. If information about preferences of individuals in the population can be made available through a survey, the resource manager would be able to total the preferences of all the individuals in the social system into a single preference configuration which he could then attempt to satisfy. When the resource manager enlists the aid of an analytical device to help reach decisions, it is even more important that the preferences be in a form easily digested by the analytical procedures. The problem considered here is the aggregation of preference patterns of all individuals into a single pattern which appears to satisfy the majority of the individuals in the population.

Development of a procedure for combining conflicting individual preferences into a single social choice pattern constitutes a major theoretical problem. To give the reader some knowledge of the problems involved and the conditions which must be satisfied by the procedure, a brief review will be made of the major developments in the search for a social welfare function.

In a classic study, Arrow (1951) demonstrates that, given a number of reasonable criteria for the choice structure where there are at least two person's and three or more alternatives to choose from, it is not possible to construct a general social welfare function from knowledge of individual
preference orders. According to further work by Arrow (1951) and Luce and Raiffa (1957), this difficulty persists even when the welfare function is restricted so the criterion for an acceptable decision is one which satisfies only the majority of the population.

One of the major difficulties in these procedures is that they restrict consideration of individual preferences to information about the order of preferences among alternatives. When a common mechanism, such as averaging of rank orders, is used to aggregate individual preference orders, the result often is an intransitive majority decision. Consequently, social scientists in several disciplines have felt that construction of a social welfare mechanism might be possible if additional information about the structure of individual preferences could be gathered. One simple way of aggregating individual preferences is to assign weights to each preferential vote which reflect the strength of the individual's desire for each alternative. Thus, if $P^{\prime}$ s preference for alternative $A$ is twice as strong as 0 's preference for alternative $B$, alternative $A$ may be allowed to take precedence over $B$ without violating our criteria for a "fair" decision.

As a result of the work of Arrow and others, it appears that construction of a social welfare function always involves two normative judgments. The investigator must make judgments about: (i) the relative weight to be assigned to individuals in the society, and (ii) the relative weight to be assigned to each preferential vote. However, the criteria for the social choice mechanism we are attempting to design here are that normative judgments by the analyst or planner be reduced as much as possible so that a pure expression of community preferences can be attained.

Where strength of preference is used in calculating a social choice pattern, some means of comparing strengths between individuals are required. Until very recently, it was assumed that comparisons of preference could be made only in arithmetic fashion; i.e., an interval or ratio scale must be used. Arithmetically, averaging strengths of preferences over individuals requires the existence of a common unit of measurement for "preference" and an actual numerical estimate of it.

A procedure developed by Coombs (1958) attempts to meet the theoretical requirements for a social welfare function. The primary purpose in outlining

Coombs' work is that it demonstrates problems in psychological choice behavior which inhibit the development and application of a social choice procedure even if the theoretical problems are overcome.

Coombs has shown that a social choice function using the strength of preference notion can be developed within an ordinal measurement model. The technique assumes a common preference measure but does not require that a numerical estimate be made of the preference interval. Assuming that most of the individuals in the population use a single common perception to generate their preferences among the values, each individual and each value may be represented by a point on a common dimension called a J Scale. The J Scale is equivalent to the social choice pattern. Each individual's preference ordering of values, called an I Scale, corresponds to the rank order of the absolute distances of the value stimulus points from the ideal point (the nearest being the most preferred). The analytical problem in constructing the social choice pattern is how to "unfold" these I Scales in such a way as to determine the J Scale. A detailed example of the procedures is given in Coombs (1964, pp. 96-102).

Cases which do not fit into the Coombs' model occur when: (i) individuals have intransitive preferences, (ii) individuals use some single attribute other than that defined by the test J Scale, (iii) individuals make judgmental errors (including indifferences), (iv) individuals are using several interacting attributes to rank the values, and (v) the items in the test are not mutually exclusive. If the majority of cases fit the J Scale model, the J Scale describes a social choice order acceptable to the majority of the population.

The possibilities for creating a social preference order for a given population rest on the assumption that a single common perception underlies the preference orderings, regardless of the amount of variance among individuals on the actual ranks. The probabilities of a single common J Scale occurring by chance in a population are very small.

Experience with applying unfolding analysis to experimental or survey data indicates that individuals employ several interacting selection criteria (perceptions) to choice problems much more frequently than they respond to
a common perception, and, as the choice problem grows in complexity and the number of items to be considered increases, individuals will be more likely to use several interacting criteria to put their preferences in an order. The unfolding technique in one dimension is most useful for determining if a single perception is in use by the majority of the population, but cannot provide a means of aggregating multiple perceptions into a single social order. A survey of multidimensional techniques and studies of preferential choice data indicate that the best results such analytical techniques can produce are sets of solutions, i.e., sets of social orders, rather than a single solution.

In summary, the selection of measurement models used to collect and interpret information about preferential choices must be based on consideration of the following characteristics of human choice behavior.
(i) Rather than select among items on the basis of common perception, different individuals often make use of different criteria to generate a preference order among items.
(ii) The successive choices of individuals constructing an ordinal ranking of items may reflect an assumption that the first choice is achieved or satisfied. If the individual suspected that his first choice might not be satisfied, he might have specified an alternative order for the remaining items.
(iii) Individuals may be indifferent as to which order several items assume.
(iv) Individuals can be expected to make errors in judgment.

The Preference Measurement Model and Development of a Least Disliked Social Order

A key point in the collection and analysis of data lies in the selection of a measurement model. Measurement models must be selected which are consistent with assumptions made about preference formulation and are amenable to aggregation into a social order. The measurement process is the systematic assignment of numbers to a set of observations to reflect the status of each member of the set in terms of the property under investigation. A scale can be defined as a set of elements, each consisting of three components: (i) an observation or individual, (ii) a number, and (iii) a rule or set of rules
linking the individual and the number. These rules are often called mapping mules because they serve to represent non-numeric properties of the individual in terms of numbers. The system of mapping rules constitutes the measurement model. The preference order among a set of items, the activity related to the items, and the desired use level for the items, each requires a different measurement model because each is a different expression.

Before selecting a measurement model for preference order, two characteristics of human choice must be considered. These are judgment error and intransitivity. In selecting among an array of alternatives, individuals occasionally choose alternatives which do not reflect their real preferences. Generally, these errors are caused by: (i) misperception, (ii) unwillingness to make choices on certain sets of alternatives, and (iii) indifference. In land use problems, we assume individuals are being confronted with both a novel set of alternatives (i.e., the average individual citizen does not normally experience, in his day-to-day living, the set of land uses presented to him by the resource manager as a set of interrelated alternatives), and a novel selection criterion (i.e., individual citizens are rarely required to make land use decisions for either a community or region). Because of the novelty, we may anticipate judgment error occurring with greater frequency than in a choice problem with which people have a great deal of practice.

Transitivity assumes that individuals are consistent in their preference ordering in the sense that if $A$ is preferred over $B$ and $B$ over C, A is preferred over C. However, human thought processes are not always consistent; indifference, for example, is not generally assumed to be a transitive relationship (e.g., if an individual were adding pepper to soup, one grain at a time, he might be indifferent between the first and second grains, between the second and third grains, between the third and fourth grains, but still prefer the first to the fourth grain). Accordingly, a scale must be used which prevents an intransitive order from occurring.

Because an individual will probably use several interacting criteria to order a set of items, human preference must be assumed to be a non-monotonic function. If preferences of a population are not based on a monotonic measure, they cannot be reconciled with a monotonic scale (i.e., a single social order).

If, instead of attempting to fit individual non-monotonic data into a monotonic scale, we concern ourselves only with measuring a monotonic population property, we can easily develop a variety of social orders. Any time a set of data is scaled through some, technique, such an order is produced.

Although the manager is faced with the problem that a single social order is usually not possible, it is still possible to select an order such that no other order would be preferred. Thus, the social order we wish to develop for the resource manager or for entry into a decision model, such as goal programming, has some special requirements. The procedure used to construct this order must: (i) weight all individuals equally, (ii) satisfy the preferences of the majority (51\%) of the population, (iii) weight individual preference choices according to strength of preference, (iv) observe dependence of values in the individual orders, and (v) develop a social order from among a set of values containing several underlying perceptions on which the majority is indifferent.

The following procedure has been devised to satisfy these requirements. The preferential choices of the population are arrayed so that the set of items describes columns and order of preference describes rows. This is called a preference measurement model. The number in the cells represents the number of individuals who assigned a given item a given preference. The data array for a case study is illustrated in Fig. 1.

If one of the items receives a majority of first place "votes," as "grazing" does in the example, it is given first priority in the social order scale. If no item receives a majority of first place "votes," the item with the most last-place votes is eliminated, and is given the lowest value in the social order scale (shown by the example of "all-terrain vehicles" in Fig. 1). If an individual's choice cannot be satisfied because it conflicts with the preference orders of most members of the population, the procedure attempts to compensate him by granting him an additional vote in the next choice.

This process continues until one item acquires a majority of firstplace votes; this item is eliminated from the set by assigning it the highest available value. The process begins again on the remaining set of items and continues until all the items are eliminated because they either receive a majority of "first-place votes" or "most disliked votes."
GRAZING, $\qquad$ , ALL-TERRAIN VEHICLES

Fig. 1. Preference measurement matrix: land management preference order.

This procedure clearly weights all individuals equally, weights individual preferences according to strength, prevents an intransitive order from occurring, and observes dependence among items within individual orders.

## Survey Instrument for Preference Orders

The final step in developing measures of preferential choice is to construct a set of response categories for a preference order which: (i) defines the problem clearly and completely and in such a way that the subject has the same understanding of the type of information desired as the investigator; (ii) is simple for the subject to complete; (iii) encourages the subject to be as accurate, precise and complete as possible within the context of the problem; (iv) avoids value implications and investigator bias (items are occasionally constructed which give the subject clues to the response desired by the investigator or the subject's reference group); and (v) is in a form which minimizes the amount of coding necessary.

The preference measurement model requires that the data on preferences for each item be given ordinal scale assignments. To indicate preferential choices among a set of items, the investigator may ask a respondent either to pick some of the items or to rank order some or all of the items. The method of rank order will be used since it carries the maximum amount of information, prevents the subject from making an intransitive response, and is most cost efficient.

Measurement of preference can be obtained by use of several techniques. A procedure adaptable to small scale mail surveys is the gummed label technique. One page of the survey instrument carries a set of gummed labels printed with a short notation for each of the items. A rectangular box (one label wide and m labels long) is printed on the second page. The box is labeled "most preferred" at the top and "least preferred" at the bottom. The subject is instructed to remove the labels from the first page, one at a time, and to place them in his desired order within the box. In coding the answers for data analysis, the items are treated as variables and assigned numbers to indicate priority ranking.

For individual interview techniques, a card and slot technique is useful. In this procedure each item is described briefly on a card. The cards are then placed in order in slots according to the preference order of the respondents. This procedure has the advantage that the respondent can rearrange the order, but clearly is not suitable for mail surveys.

For large scale mail surveys, a procedure which greatly reduces or eliminates hand coding is desirable. In these cases use of forms which can be tallied with an optical mark reader achieves these needs (see Appendix A for example).

## PREFERENCE LEVELS

We have assumed that preferences among a set of items are formed on the basis of their similarity to an ideal alternative. Research in several fields indicates that the process of identifying a desired use level for an item is a much more complex process. In addition to relative desire for the item, individuals are known to be influenced by a set of subjective expected utility factors. These are: (i) the expected probability of the item being obtained, (ii) the amount of uncertainty about the attainment of the item, (iii) the amount of background information available, (iv) the desire to conform to perceived social opinion, and (v) the cost of obtaining the item under various circumstances.

The most important influences are amount of available background information and expected probability of attainment. If a person is unfamiliar with essential elements of the problem (i.e., unfamiliar with present levels of consumption, potential limits to consumption, renewability rates of the resource, and costs attached to raising or lowering the use levels), he will have great difficulty in selecting a use level. If he perceives the item to be trivial, he will have greater difficulty selecting a use level than if he considers the item to be important. If he perceives the item to be controversial, he will select use levels appropriate to his stand on the issue.

Individuals also seem to adjust their aspirations to the attainable. What is perceived to be attainable is chiefly a function of past experience (expected probability), variable cost of attainment, and relative uncertainty.

Because of the problems in determining achievement levels for each preference item, we do not recommend determining use levels from a general survey procedure. Rather, we recommend that levels be determined by a subset of the population, especially including knowledgeable professionals and informed citizens in the area most relevant to the preference item.

On the other hand, we recommend that the preference order be determined from a broadly based, statistically reliable survey procedure. By utilizing both a survey procedure for preference orders and interviews with knowledgeable individuals to determine levels, both information utilization and legitimacy can be achieved.

Most quantitative planning procedures require that information about preference levels be in the form of interval or ratio scale assignments and that the scale assignments be in the form of common measurement units wherever possible. We assume that the psychological process of forming aspiration levels occurs in a fashion similar to that of forming preference orders; i.e., the subject assigns aspiration levels to items which reflect his relative preference for them as modified by subjective expected utility factors. If the subject were using a single unit of measurement in forming aspiration levels, he would in effect be assigning each item a percentage of the total number of units available in the planning area. Accordingly, the response item category which best reflects the psychological process is one which asks the subject to state his desired use level for each land use in the form of a ratio scale. The ratio scale model is very useful for mutually exclusive uses, but is not necessary for multiple use goals. The ratio information can be most easily converted to interval scale equivalents by the investigator in the coding process since a high incidence of error would result from having each subject perform these calculations during the data collection process.

Measurement of preference levels can be obtained by dividing the items into single-use and multiple-use sets and by asking the subject to state either output units or percentage of land area to be assigned to each item listed. In the interview schedule formats, the output units should be listed on a separate page from the land area percentage and should be accompanied by spaces for writing in responses. In mail surveys, it may be desirable to determine land area percentage and demand, but it generally is not useful to ask for output units (such as timber volume to be harvested) in such surveys.

## FURTHER ANALYSES

Other analyses are necessary to determine other aspects of the goal identification process. These include:
(i) a method for determining the general level of agreement or disagreement in a population,
(ii) a method for determining which of many possible levels of achievement to state for each item,
(iii) a method for determining which preference orderings are related to various social groups,
(iv) a method for determining the agreement of administrative structure and active interest groups with general public expectations, and
(v) a method for identifying individuals who are most likely to represent various viewpoints in successive iterations of the management planning procedure.
For question (i) we use Kendall's concordance coefficient and for question (ii) a histogram of all responses for each item is developed (see computer routines KENDAL and LEVEL, respectively). For questions (iii), (iv) and (v) we have developed some modifications of factor analysis which are discussed at greater length in the next section.

STATISTICAL ANALYSES

## KENDALL'S CONCORDANCE COEFFICIENT

Given a set of observations each containing ordinally ranked data, such as a set of responses from several individuals consisting of their priority rankings of preference items, it is of interest to determine the degree to which there is agreement or lack of agreement among the observations (the individual's responses).

A statistical procedure developed by Kendall calculates a single number, called Kendall's concordance coefficient, which indicates the level of agreement (concordance) in the data. This coefficient, usually denoted by $W$, is calculated by the formula

$$
\begin{equation*}
W=\frac{12}{k^{2}\left(N^{3}-N\right)} \quad \sum\left(R_{j}-\frac{\Sigma R_{j}}{N}\right)^{2} \tag{1}
\end{equation*}
$$

where $k$ is the number of observations, $N$ is the number of items being ranked and $R_{j}$ is the sum of the rankings of the $j$ th item.

The result of this calculation is always a number between 0 and 1 with values of $W$ close to 1 representing a high level of concordance and values of $W$ close to 0 , a low level of concordance.

In cases where the number of items being ranked is greater than seven ( $\mathrm{N}>7$ ), an additional test may be performed to determine the significance of Kendall's concordance coefficient. Called the "chi-square test," it determines whether the degree of concordance indicated by $W$ exceeds what we might expect to occur simply by chance. $\chi^{2}$ is calculated by

$$
\begin{equation*}
x^{2}=k(N-1) W \tag{2}
\end{equation*}
$$

and is compared with a table of the $\chi^{2}$ values one could expect if there were only a chance correspondence among the rankings. The table values are called " $\chi^{2}$ values for $N-1$ degrees of freedom at the .05 level of significance." If the $\chi^{2}$ which is calculated by Eq. 2 exceeds the value in the table, then this means that we may be $95 \%$ certain that the level of agreement among all the observations is higher than it would be by chance.

## FACTOR ANALYSIS

Scientists are frequently presented with a set of data representing scores or measures of the behavior of individuals with respect to each of several items or variables. For example, a psychologist may deal with the responses of a set of individuals to various test items on an intelligence test, or a political scientist may wish to analyze something as complex as the behavior of a set of nations with respect to such attributes as power, trade, and energy consumption. Given such data, the scientist seeks rules to explain his observations by means of certain unifying attributes which, in some sense, simplify the data. Especially helpful in those areas where scientific laws are unknown, and where even hypotheses are few, is the statistical technique known as factor analysis. Given a set of data of the type
described above, factor analysis provides a method for determining a set of underlying attributes or factors which can explain the intercorrelations among the variables. The general goal of factor analysis is the reduction of the number of variables to a smaller set of variables called factors with which the original data has a high degree of correlation.

In certain cases, each of the variables in the new (reduced) set is identified by a new name (such as "trade" and "energy consumption") which can be taken as having some theoretical significance. However, this is not always done, nor is it necessary. Frequently each new variable or factor may be identified simply as a combination of several of the old (more numerous) variables, for purposes of providing a better perspective on the available data. Using factor analysis to isolate factors of this type can be of great benefit for analyzing data in a visual or graphical format.

The procedures involved in factor analysis generally follow these major steps as outlined by Comrey (1973): (i) selecting the variables; (ii) computing the matrix of correlation coefficients among the variables; (iii) extracting the unrotated factors; (iv) rotating the factors; and (v) interpreting the rotated factor matrix.

Selecting the variables from which the factors are to be extracted rarely presents a problem, since the nature of the existing data usually dictates what the variables will be. Ordinarily these are the individual test or response items, although in some cases they may be condensed into sets such as sub-tests. In general, the variables are taken to be those items to which each individual has responded and thus have been assigned a numerical value or score. In our usage, the variables are defined as preference items for alternative land uses, while the scores are the rankings given these items by the responding individuals.

Once the variables have been selected, the next task of the investigator is to determine the correlations that exist between pairs of variables. The responses to each item are compared to the responses to each other item, and each pair of items thus compared is assigned a number (called Pearson's product-moment coefficient) between -1 and +1 indicating the degree of similarity between the responses. Coefficients close to +1 represent a strong
positive correlation or degree of agreement among responses, coefficients close to -1 represent a strong negative correlation or opposite responses, while coefficients near zero indicate little apparent relation between responses to the two items of the pair.

The equation used to calculate the correlation coefficient ( $r_{i j}$ ) between variable $i$ and variable $j$ is:

$$
\begin{equation*}
r_{i j}=\frac{\Sigma x y}{\sqrt{\left(\Sigma x^{2}\right)\left(\Sigma y^{2}\right)}} \tag{3}
\end{equation*}
$$

where the sums are taken over all the observations or individuals' scores on variables $i$ and $j$, and where each $x$ is the departure from the mean of variable $i$ and each $y$ is the departure from the mean of variable $f$.

Once all the coefficients have been calculated, they are entered into a matrix $R$ with rows and columns identified by the variables:


Observe that the matrix is symmetric, i.e., has the same numbers above and below the indicated diagonal. This is because $r_{i j}$, the correlation coefficient for items $i$ and $j$, is the same as $r_{j i}$. The diagonal entries ( $r_{i i}$ ) are ordinarily set equal to one, depending on the method being used to extract the factors.

The next task is to isolate the factors using the matrix R. In general, one needs to determine in advance how many factors are to be extracted. Often considered one of the most difficult aspects of factor analysis, fixing the number of factors can in certain cases be simplified by reference to previously completed analyses of similar data. In case the number of factors extracted is two, graphical representation becomes a viable possibility, since
each factor may be expressed as an axis in a two-dimensional space. The principle involved in extracting factors is to find those hypothetical variables which can account for as much of the correlation among the original variables as possible. For each factor that is extracted, a column of numbers is calculated which represents the correlation of each variable with that factor. These numbers are called the "loadings" of the variables on that factor. After the first factor is extracted, the effect of this factor is removed from the matrix of correlations $R$, and a new matrix representing the "residual" correlations is computed. A second factor may then be extracted if the residual correlations are sufficiently substantial to warrant doing so, and so on, until the residual correlations are too small to continue.

If the columns of factor loadings for all the factors thus extracted are put together in a matrix (usually called "A"), it happens that, mathematically, the matrices $R$ and $A$ have the following relationship:

$$
\begin{equation*}
A A^{-}=R \tag{5}
\end{equation*}
$$

where $A^{\prime}$ represents the transpose of the matrix $A$. From a mathematical point of view, then, the task of extracting factors reduces to the task of decomposing the matrix $R$ in such a way that it can be expressed as the product of a matrix and its transpose.

The fact that $R$ is a symmetric matrix brings into play some basic theorems of linear algebra which make such a decomposition possible. Omitting the mathematical details (see for example Comrey, 1973), it turns out that the required matrix A can be calculated as:

$$
\begin{equation*}
A=B^{-} \sqrt{D} \tag{6}
\end{equation*}
$$

where $D$ is the diagonal matrix of eigenvalues of $R$, and $B^{\prime}$ is the transpose of the matrix $B$ of normalized eigenvectors belonging to those eigenvalues. These may be calculated by standard procedures such as the diagonalization method of Jacobi used here.

The eigenvalues of matrix $R$ are those values $\lambda_{i}$ for which there exist vectors $\underline{b}_{1}$ such that the multiplication of that vector by the matrix returns the vector $\underline{b}_{i}$ multiplied by a constant $\left(\lambda_{i}\right)$, i.e., for which:

$$
\begin{equation*}
R \underline{b}_{1}=\lambda_{i} \underline{b}_{1} \tag{7}
\end{equation*}
$$

The vector $b_{1}$ is called the "eigenvector belonging to the eigenvalue $\lambda_{i}$." All the eigenvalues of the matrix R will appear on the diagonal when the matrix is transformed into diagonal form D.

The matrix $D$ is of additional interest, since its entries provide needed information about the factors. Specifically if

$$
\mathrm{D}=\left[\begin{array}{lllll}
\lambda_{1} & & & &  \tag{8}\\
& \lambda_{2} & & & \\
& & \cdot & & \\
& & & \cdot & \\
& & & & \\
& & & & \lambda_{m}
\end{array}\right]
$$

the proportion of the variance extracted by factor i is given by
$\frac{\lambda_{i}}{\sum_{j=1}^{m} \lambda_{j}}$,
the proportion of each eigenvalue relative to the total.
In a completely random data set each factor will account for $1 / \mathrm{m}$ of the total eigenvalues, where $m$ is the number of variables. Thus in a data set containing nine variables, each factor will account for 0.111 of the total variance.

If a list of rankings is used as input data, the rank of the mth item to be ranked is completely determined by the ranks of the previously ranked $\mathrm{m}-1$ items; in this case only $\mathrm{m}-1$ factors account for all the variance, and the proportion of variance accounted for by each factor is $1 /(m-1)$. Thus, in a data set of nine variables, each of the eight factors of non-zero variance will account for 0.125 of the total variance.

Since no data set is completely random, however, these theoretical values are never exactly achieved. For example, with a "random" data set of 2400 observations with nine ranked variables, the first factor accounted for 0.135 of the total eigenvalues, and the eighth factor accounted for 0.115 of the total eigenvalues.

Since the proportion of eigenvalue totals can thus be calculated for a random sample, it is instructive to compare the eigenvalues of an actual sample to the calculated values of random samples. Those factors with greater than a random value can be considered important in an interpretation; those with less than or equal to a random value should not be considered in interpretation.

We have found in several detailed survey results that ranked values for variables can usually be expressed with only two factors. The third factor is usually very near a random value, and the fourth and higher factors account for less variance than expected for a random effect (Fig. 2). Thus, for data of this kind, we recommend that two factors from the factor analysis be exhibited.

Once these calculations have been completed, and the matrix of factor loadings A has been found, the factors can be identified by the columns of A . $A$ is called the unrotated factor matrix, and each column represents a factor, with the entries in the columns signifying the loadings for each variable. Note that the sum of the squares of the loadings of factor $i$ (entries in column i) yields the eigenvalue $\lambda_{i}$. In addition, the sum of the squares of the row entries have statistical significance. These numbers, called the communalities represent the extent of the overlap between each variable and all the factors. Thus a communality near to a value of 1 for a particular variable indicates that variable overlaps almost completely with the factors in what it measures.

The factor analysis does not stop here, however. Because the procedure thus far has been designed so that each successive factor extracts as much of the variance as possible, the resulting factors tend to be combinations of large numbers of the original variables, and are rarely useful. For this reason, a further procedure is initiated, called the rotation of the factor matrix. The objective of the rotation is to determine a new set of factors called the rotated factors, each of which correlates with a smaller number of the original variables. The rotated factor matrix is equivalent mathematically to the unrotated factor matrix, however, and the communalities for each variable are unchanged. The rotated factors (columns) differ from the unrotated factors in the distribution of the loadings, since each of the rotated factors should have high loadings for a small number of variables.


Fig. 2. Comparison of eigenvalues determined by factor analysis of random samples and actual survey data.

There are several methods available for effecting the rotation of the factors, the most frequently used being Kaiser's Varimax method which results in an orthogonal solution with maximum variance. Where two factors are rotated, this means they may be represented by axes which are perpendicular.

Because certain approximations are introduced in the process of rotating the factors, it is often considered useful to provide a check on the equivalence of the rotated factor matrix with the unrotated factor matrix. This can be done by determining whether any significant changes have occurred in the communalities, which are theoretically equal for both matrices. Thus a check on communalities may be made by calculating both sets of values (the sums of the squares of the row entries), and computing their differences.

The final step in factor analysis involves interpreting the rotated factor matrix. This may be done in several ways, but in the case where only two factors are extracted, an interpretation can be obtained by visual geometrical representation, since only two dimensions are involved. In this case, each factor may be considered as an axis, and when the Varimax procedure is used, the two axes are perpendicular. The two-dimensional space defined by these axes is called the factor space, and provides an orientation for graphical representation of the data. The axes are scaled in such a way that the origin ( 0.0 ) represents the mean value of each factor (zero), and the units into which the axes are divided represent standard deviations (positive and negative) from the mean.

Several kinds of information may be plotted onto the factor space. Of initial interest is the relationship between the original variables and the extracted factors. Here the variables are located on the plane by coordinates equal to the factor loadings. That is, the first coordinate for each variable designates the correlation between that variable and factor 1 (and is equal to the loading of that variable on factor 1), while the second coordinate designates the correlation between the variable and factor 2 (the loading on factor 2). In this way, each of the original variables is assigned a point in the factor space.

Original data observations can also be plotted, by means of their factor scores. These scores represent translations of the individuals' scores (in our example, rankings) on the original variables into scores on the factors.

Factor scores are calculated by means of factor multipliers derived from the factor loadings and represent the departure of the observation from the mean position (zero) in terms of standard deviations. Since the distribution along each axis is statistically normal, there will theoretically be more observations near the 0.0 point than at the extremes of either axis.

Theoretically we would expect that several data points would occur between 3 and 4 standard deviations from 0.0 in a very large data set. Empirically, however, we find that ranked data usually limits the actual departures to $\pm 2.5$ standard deviations (Fig. 3). Using the calculated factor scores, each individual may be assigned a point in the factor space indicating his position with respect to the factors, with the arrangement of these points providing information on configurations of interests.

Additional data too, though they may not have entered into the initial factor analysis, may be overlaid onto the factor space. As scores (rankings) from more individuals become available, these may also be converted to factor scores, and the results plotted against the factor axes. This information can be extremely useful when compared to the distribution of points of the initial group of individuals.

Sample Data from Surveys
When mail surveys are used to collect data, it can be expected that many questionnaires will not be returned for tabulation. This poses an important question; who has returned and who has not returned the questionnaires? To look at this question, 2400 questionnaires were sent to a "random" sample of residents using telephone books to identify the address for each questionnaire. The sample was drawn from the residents living near six National Forest Ranger Districts. Of all the questionnaires sent, 823 were completed in sufficient detail to use in analysis.

The 823 questionnaires were then compared to a "random" sample of 2400 observations generated by a computer. The "random" sample, representing all the questionnaires mailed, is compared to the actual returns in Fig. 4. The most noticeable aspect of this figure is that the central point of the normal distribution is greatly under-represented in the returned questionnaires.


Fig. 3. Density diagram of individual observations plotted against factor axes.


This is to be expected, however, since this represents a "middle-of-the-road" area where the interest levels of the individuals are so low that most did not bother to respond to the questionnaire. In addition, one of the most extreme positions seems to be shifted to a somewhat less extreme position at about +2.0 standard deviation from the mean; the other extreme position had values near the 2.5 standard deviation point.

The questionnaires used to collect these data listed nine types of uses common to the six districts. These were (i) wilderness, (ii) timber, (iii) minerals, (iv) watershed, (v) developed recreation, (vi) dispersed recreation, (vii) scenic beauty, (viii) wildlife, and (ix) range management. Respondents were asked to rank these uses from 1 to 9 according to their own priorities. Secondly, respondents were asked to rank the activities from 1 to 9 according to what they felt was the policy of the Forest Service.

In addition to the questions asked of the public, a similar procedure was followed with the staffs of the six districts. Some 227 of these questionnaires were filled out; in this case respondents were asked only to rank their own priorities.

The public's own opinion was considered to be the base data on which the factor analysis was performed, and the agency staff's view and the public perception of the agency were compared to this base. Based on the contribution of each factor (Fig. 2), the most satisfactory representation is a twodimensional plot.

Each factor can be interpreted in terms of a combination of original variables (Fig. 5). The first factor is identified with dispersed recreation and scenic beauty vs. timber, while the second factor represents developed recreation vs. wildife. The remaining original variables are identified with combinations of these two factors. Range management and watershed are negatively correlated with both factors. Minerals has a negative correlation with the factor of dispersed recreation and scenic beauty but a positive correlation with developed recreation, and wilderness is correlated positively with dispersed recreation and scenic beauty but negatively with developed recreation.


Fig. 5. Factor plot of nine variables used in the survey of public opinion of public land management. The variables in this configuration are used in defining each of the two axes of Fig. 6.

The location of each observation is calculated by using multipliers for each variable so that a score is calculated with reference to each axis. This score is the number of standard deviations which an observation departs from the zero points on the axes, thus scores may be either positive or negative (Fig. 6).

These same multipliers were also used for other data. We calculated the factor scores of the 227 agency staff personnel based on the multipliers from the public data. The result is an overlay of staff opinions plotted on axes which are determined by public opinions (Fig. 7). We also plotted the public perception of the agency's priorities against the public's own priorities (Fig. 8).

The plot of agency personnel shows how the attitude of the two groups compare. It is obvious from Fig. 7 that the opinions within the agency staff are essentially the same as the range of opinions in the public responses. If this is so, why should there be conflict between the public and agency personnel?

Part of the answer lies in Fig. 8 which shows that the public view of the agency priorities for each of the six districts departs somewhat from the public's own priorities. Thus, each district has a peculiar set of problems; the public perception of how the agency is treating these problems and the agency personnel opinions all vary. In some districts the difference between public perception of agency position and average opinion of agency personnel is small, in other districts it is large.

This appears to be a possibility for evaluation of information and education (I and E) programs. The degree of departure of public perception from the real agency position indicates a lack of communication; an effective $I$ and E program will result in little departure since the public will clearly understand the agency position, an ineffective $I$ and $E$ program will result in larger departures. In our example, District 5 appears to have the most effective I and E program, and District 3 the least effective.

Another part of the answer lies in the position of the manager decisionmaker (Fig. 8). The six decision-makers of the six districts are shown to have viewpoints widely divergent from the average of the public opinion; since these are key individuals in making management decisions their opinions may enhance the apparent conflict between the public and the agency.


Fig. 6. Factor score plot of 823 individuals responding to a survey on priorities of public land management. Each axis represents a component of the data set, and observations are plotted according to the number of standard deviations from the intersection of the axes.


Fig. 7. Factor score plot of opinions of 227 agency personnel plotted against the public opinion axes of Figs. 5 and 6.


Fig. 8. Factor score plot of the public perceptions of agency priorities of six districts, average agency staff opinions, and the manager decision-maker opinions of these districts plotted against the public opinion axes of Figs. 5 and 6.

Armed with the information on configurations of interests derived from the factor analytic procedure, the decision-maker can thus identify potential areas of conflict that may develop if a particular management strategy is implemented. This knowledge, in conjunction with that gained from the preference measurement model, can serve to indicate what steps need to be taken in the iterative process of compromise to insure general public acceptance of management activities.

COMPUTER PROGRAMS

The measurement models as discussed in the previous section have been incorporated into a series of computer programs which are packaged into a main program called PUBLIC. This package provides the manager with two basic types of services: (i) analysis of multivariate data such as community interest and activity structures, and (ii) analysis of univariate data with common statistical procedures.

This package is designed primarily for batch input of data, but width of output tables has been designed to be suitable for remote interactive terminals. PUBLIC is designed to accept particular kinds of data and to perform particular analyses to assist with natural resource decisions and the study of public constituencies. It is not designed to be an all-purpose social science computer package; for more general uses the reader is referred to packages such as Statistical Package for the Social Sciences (SPSS), UCLA Biomedical Division Statistical Routines (BMD), or IBM's Scientific Subroutine Package (SSP).

OVERVIEW OF PUBLIC
The PUBLIC package consists of several subsystems (Fig. 9). The first is a sample identification program RANSAM which selects random samples from a standard telephone book (Appendix B). Once the data are collected, they are analyzed by the analytical routines of the main PUBLIC package.


Fig. 9. A general overview of PUBLIC.

Survey data (usually gathered from precoded questionnaires) are arranged so that all data for an observation are entered in a block. As many blocks are entered as there are observations. The data block contains subscripted variables which correspond to questionnaire items. A header block in the data file indicates the number of identifiers and number of data items included in the file.

To initiate a task in the PUBLIC system the user calls up the program, and invokes any process by entering the name of the desired analysis. The command words are as follows:

| TITLE | Read a new title card. This may be done initially or between <br> any analyses. |
| :--- | :--- |
| DATA | Read data from a specified input device (if not specified, <br> card reader assumed). |
| LEVEL | Descriptive statistics of a single variable. |
| KENDAL | Computes Kendall's concordance coefficient on specified <br> variables. |
| ORDER | Computes least-disliked social order. |
| FACTOR | Computes rotated factor matrix and factor scores and plots <br> factor scores. KENDAL and ORDER analyses are performed on <br> subgroups identified by FACTOR. |
| COMPARE | Compares another data set to the factor matrix developed by <br> FACTOR. Must be preceded by a FACTOR command. |
| STOP | Ends analyses. |

The data routine reads in the data file according to the input format statement and writes onto temporary logical units; from the data files variables are selected for further analysis. If the values contained in a particular block of variables are invalid, the variable block will not be used for a particular analysis. Details of each command are described in the section Data Input for PUBLIC.

TAPE ASSIGNMENTS IN PUBLIC

PUBLIC uses seven auxiliary disks (eight if punched output is desired) in addition to the input file (card reader) and output file (printer). All logical units are references in the program by variable names LU, LU2, LU3, LU4, LU5, LU6, LU7, LU8, LU9, LU10, which are initialized in the BLOCK DATA
subprogram. Because of variations among operating systems, it may be necessary for the user to change these assignments to conform to the operating system being used. Table 2 indicates the function of each of the logical units.

The user also has the option to have individual data records read from an additional unit, if desired (see the section Data Input for PUBLIC for details of this option). If this option is chosen, a numerical value for LUDATA is specified on input, and this value must be distinct from any values assigned to logical units in BLOCK DATA. When this option is not chosen, LUDATA automatically defaults to LU5 (card reader).

Table 2. Functions of logical units.

| Variable Name | Function | Assigned Value <br> in BLoCK DATA |
| :--- | :--- | :---: |
| LU | Auxiliary disk | 1 |
| LU2 | Auxiliary disk | 2 |
| LU3 | Auxiliary disk | 3 |
| LU4 | Auxiliary disk | 4 |
| LU5 | Card reader | 5 |
| LU6 | Printer | 6 |
| LU7 | Auxiliary disk | 7 |
| LU8 | Auxiliary disk | 8 |
| LU9 | Auxiliary disk | 9 |
| LU10 | Punch file (Hollerith) | 10 |

DATA INPUT FOR PUBLIC

## TITLE

Use involves two cards:

1. TITLE (Cols. 1-5)
2. Any alphanumeric characters (Cols. 1-72).

A TITLE command may be inserted anywhere in the analysis schedule, thus titles may be selected to identify the input data or the analysis performed.

## DATA

Use involves four cards (in addition to the data records):

1. DATA (Cols. 1-4)
2. NID, NDAT,LUDATA, IWIDE, PRDAT (FORMAT 5I2)

NID $=$ number of identifier fields, must be $\leq 3$ (defaults to 3 )
NDAT = number of data fields, must be $<80$ ( (defaults to 1)
LUDATA $=$ number of the input unit containing data (defaults to LU5)
IWIDE $=1$ if carriage width of output unit is less than 120 characters; 0 or blank otherwise.
PRDAT $=1$ if the first 60 data records are desired to be printed out, 0 or blank if no data records are to be printed out.
3. Variable format card (FORMAT 20A4)
4. END (Cols. 1-3)

The individual data records are placed between cards 3 and 4. They are preceded by a format statement describing the data arrangement (card 3). The format may include columns $1-80$ on the card or card image. The first and last characters must be left and right parentheses, respectively. Inside the parentheses may be any combination of $A, F, X$, "/" and numeric descriptors. These A, $F, X$, "/" and numeric descriptors have the same meaning as in FORTRAN and may be used in any way that is legal in FORTRAN, but with the following restrictions:
(a) The read list for the data cards requires that the identifier fields must precede the data fields (ID(I), $I=1, N I D)$, (DATA(J), J=1,NDAT).
(b) Internal storage requires that the identifier fields must be in an A3 or A4 format.
(c) Internal storage requires that the data fields must be in an $F$ format.
(d) The letters END must not be used as the first three identifier characters for any data record, to avoid being read as the END card.
If the data records are to be read from a unit other than the card reader (as specified by LUDATA), they must be formatted according to the variable format card, and must be trailed by an END record.

If the variable format card contains any "/" descriptors, i.e., if multiple record data input is used, the END card must be trailed by as many cards as necessary to complete the multiple record requirement. This prevents the next command card from being read as a data card.

## LEVEL

This routine provides the user with a histogram and a set of descriptive statistics. These statistics are mean, variance, standard deviation, standard error, mode, kurtosis, skewness, median and range. LEVEL can be used with either a single data element or a consecutive string of data elements. To use LEVEL, two cards are needed:

> 1. LEVEL (Co1s. 1-5)
> 2. N1,N2,ICON, IPRIN, EXTOP (FORMAT 5I2).

If a single data element (variable) is to be analyzed, $N 1$ is the position of that element in the data array (DATA(J)), and N2 is zero or blank. If a consecutive string of data elements is to be analyzed, N1 is the position of the first element (variable) to be analyzed and N 2 is the position of the last element (variable) to be analyzed. The other variables in the list are not used by subroutine LEVEL and need not be entered. LEVEL may be used on any number of variables, and no restriction is made on the number of observations.

## KENDAL

This routine is used to test the amount of agreement among a set of observations consisting of ranked data. The output lists the number of observations, the number of variables, and the concordance coefficient. The instructions are:

1. KENDAL (Cols. 1-6)
2. N1,N2,ICON,IPRIN, EXTOP (FORMAT 5I2)
where N1 and N2 are the positions in the data array of the beginning and ending elements of the set of ranked data to be analyzed. The other variables are not used by subroutine KENDAL and need not be entered. The maximum number of data elements that can be analyzed ( $\mathrm{N} 2-\mathrm{N} 1+1$ ) is 15 . No restriction is made on the number of observations.

ORDER
This routine works with individual ranked preference data to produce a single least-disliked preference schedule for use in those cases, such as goal programming, where a single preference order is required. The instructions are:

1. ORDER (Cols. 1-5)
2. N1,N2,ICON,IPRIN,EXTOP (FORMAT 5I2)
where N1 and N2 are the positions in the data array of the beginning and ending elements of the set of ranked data to be analyzed. The other variables are not used in subroutine ORDER and need not be entered. The maximum number of data elements that can be analyzed ( $\mathrm{N} 2-\mathrm{N} 1+1$ ) is 15 . No restriction is made on the number of observations.

## FACTOR

This routine is an adaptation of conventional factor analysis which uses factor analysis primarily as a means of subdividing respondents into subgroups, each with its own interest configuration.

Factor analysis determines the distribution of individuals in a normal orthogonal space of N dimensions according to standard factor analysis procedures using principal component analysis with varimax rotation. Variables are plotted for interpretive purposes, but such interpretation should be used with caution. If unspecified, two factors are rotated; plot of the two principal dimensions is always presented.

The data are then sorted into $2 \mathrm{~N}+1$ groups according to the positions of observations in the factor space. Following these groupings the program is returned to ORDER and KENDAL to conduct these analyses on the subgroups. Finally, an optional analysis is performed which determines the hypothetical data that would give rise to the most extreme positions (positive and negative) on each factor, and these are plotted. Instructions are:

1. FACTOR (Cols. 1-6)
2. N1,N2,ICON,IPRIN, EXTOP (FORMAT 5I2)
where N1 and N2 are the positions in the data array of the beginning and ending elements of the set of ranked data to be analyzed. ICON is the number
of factors to be rotated; if unspecified this value defaults to 2. IPRIN determines whether factor scores for each observation are printed or punched. If IPRIN is unspecified or zero, factor scores will neither be printed nor punched. IPRIN=1 causes factor scores to be printed. IPRIN=2 causes factor scores to be punched, one card for each observation, with the individual identifiers included on the punched card. IPRIN $=3$ will result in factor scores being both printed and punched.

EXTOP represents the optional extreme analysis. If EXTOP is unspecified or zero, the extreme analysis will be performed. If the extreme analysis is not desired, EXTOP must be a positive integer. The maximum number of data elements that can be analyzed (N2-N1+1) is 15. No restriction is made on the number of observations; however, when observations are sorted into the $2 \mathrm{~N}+1$ groups, each group can hold at most 1250 observations, and only 2500 individuals will be plotted.

The number of factors rotated (ICON) will ordinarily be 2, but up to 13 are allowed. ICON must be less than the number of data elements (variables) being analyzed.

## COMPARE

The COMPARE routine compares a new data set to the factor matrix calculated by FACTOR. To be used, it must follow FACTOR. The new data set may be contained as part of the data array in the original set of data records previously entered in DATA; or alternatively, it may be entered immediately previous to COMPARE with a new DATA sequence. Instructions are:

> 1. COMPARE (Cols. 1-7)
> 2. $\mathrm{N} 1, \mathrm{~N} 2$, ICON,IPRIN,EXTOP (FORMAT 5I2)
where N1 and N2 are the beginning and ending elements of the new data array. The COMPARE analysis must be preceded by FACTOR, and the values of ICON and (N2-N1) must agree with the base data set on which FACTOR was performed. No restriction is made on the number of observations, but only 2500 individuals will be plotted.

The command:

1. STOP (Cols. 1-4)
must be given after all desired analyses have been requested in order to achieve a normal exit from the program.

Comments on Data Input
In the PUBLIC system each separate item in the data array is called a variable. The response of any individual to a measurement item is called a value. Each individual's response to the measurement instrument is located on an individual 80 -column card or card image. In the resulting data block, variables are represented by columns, individuals by cards (or card images), and responses by values located in each set of columns. As far as the computer program is concerned, data can be collected in any way. A convenient way, however, is to use data forms designed for use with an optical mark reader (Appendix A). These forms are then transferred by machine to punched cards or magnetic tape (in formatted card image) for analysis (see Sample Problem, Fig. 11).

Although PUBLIC will accept many different data formats, a convenient arrangement is shown in the following example.

Group
Identification System

Rank Order of Land Uses

## Description

The first set of variables in Cols. 1-4 of the data record refers to the survey number. The second set (Cols. 5-8) includes a subgroup identifier (such as a ZIP code). The third set (Cols. 9-12) is an individual respondent identifier. The individual respondent identifier may be blanked out to assure confidential responses, but this will prevent identification of those responses as members of the groups in FACTOR.

It is assumed that the investigator is examining 15 or fewer land uses. Each land use variable is entered with a value in the data record. The variables are the items; the value of this variable identifies which priority has been indicated. Two or more blocks of priority rankings may be included in the data.

Activity Levels for Each Land Use Value

For these data, variables describe the activity level for each of the alternative land uses. Each variable represents one of the alternative land uses and the values taken by the variables describe activity levels on a scale of 1 to 5. Activity levels should be analyzed only by the LEVEL routine.

The header block indicates the number of identifier fields (ordinarily 3) and number of variables; a trailer card (END) is used to indicate the end of a data set, so a count of observations is not necessary.

For data which concerns levels of use only (routine LEVEL), the width of each field can be expanded. A typical format for 10 items might allow six columns for each item beginning in Col. 13.

Ranked data are treated in a special fashion. These data are ordered so that an entry of 1 indicates first priority and an entry of $N$ indicates last priority. The entire field should have only one entry for each rank; any other combination of entries will be rejected.

Data Analysis Sequence
The sequence of analytical steps can actually be in any order, but normally a sequence should be followed for each data type. For preference order data, the following procedure is suggested:


For activity level data and output level data, only the use of the LEVEL routine is suggested.

## OUTPUT FROM PUBLIC

Output from PUBLIC has been designed for full utilization of the type of printer or terminal being used. If the carriage width is at least 120 characters (IWIDE is 0 or blank in Cols. 7-8 of card 2 of the TITLE sequence), output is complete, and the entire available width is used. When an interactive terminal is being used with a carriage width of less than 120 characters (IWIDE is positive), output is reduced somewhat because of time considerations, and width of tables is adjusted for the narrow carriage width.

The following is a general description of the output from each analysis or command. Output from each routine is shown following the sample problem in Sample Problem Output.

## TITLE

An alphanumeric title entered after this command appears as part of the heading for output from any subsequent analyses.

## DATA

When full carriage width is available, individual data records input may be printed out (up to a maximum of 60) if desired, by setting PRDAT=1 in Cols. 9-10 of card 2 of the DATA sequence. If this option is invoked, entries in the data records are printed out in an F3.0 format, which is suitable for all ranked data and for activity level data that does not require an increased field width. This option should not be used where activity level data requires greater field width. See Sample Problem Output A and K for output from this option.

## Exclusion of Invalid Data

Preceding any analysis which requires ranked data (KENDAL, ORDER, FACTOR, or COMPARE) input data is checked to insure for each observation that every variable to be considered in the analysis has been ranked and that each rank has been used exactly once. If any observation fails to meet these criteria, it is not used in that analysis, and a list of the excluded data records and the invalid data sets is printed immediately before the output for the requested analysis. See Sample Problem Output B.

## LEVEL

Output from LEVEL includes a set of descriptive statistics (mean, variance, standard deviation, standard error, skewness, kurtosis, mode, median, range, maximum and minimum) and a histogram representing the percentage of responses falling in up to 13 distinct categories. Where the number of distinct responses exceeds 13, responses are grouped so that only 10 categories of responses are graphed. Output is shown in Sample Problem Output G, H, I, and J.

## KENDAL

Output from KENDAL includes the number of observations used in the calculations, the number of variables ranked, and the Kendall concordance coefficient. When the number of variables ( $M$ ) is greater than 7, a value for the chi-square with M-1 degrees of freedom is printed out also. This value represents the significance of the Kendall concordance coefficient. When it exceeds the chi-square value found in any chi-square table at a particular level of significance, the null hypothesis (that the observations are unrelated) may be rejected at that level of significance. Output is shown in Sample Problem Output C and M.

## ORDER

Output from ORDER is the single priority ranking of the variables satisfactory to the majority of individuals whose priority rankings compose the data. Output is shown in Sample Problem Output D.

## FACTOR

Output from FACTOR includes the number of cases (valid observations) considered in the analysis, and the number of variables being analyzed.

Next, the means and standard deviations for the responses to each variable are printed, followed by the matrix of correlation coefficients between the variables, and the proportion of eigenvalues or variance extracted by each unrotated factor. If an interactive terminal is being used for output and the number of variables exceeds six, means, standard deviations, matrix of correlation coefficients and proportion of eigenvalues will not be printed.

The rotated factor matrix is then printed out, containing the factor loadings on each rotated factor for each of the variables. Also, variables
are given alphabetic identifiers so that they may be located on the subsequent plot. (When the number of rotated factors exceeds six, the rotated factor matrix is omitted from the output for an interactive terminal.)

The variables are then plotted on pairs of axes (corresponding to pairs of factors) according to their factor loadings for those factors. When two factors have been rotated, there will be only one graph, with axes representing the two factors. When more than two factors have been rotated (i.e., when ICON > 2 in Cols. 5-6 of card 2 of the FACTOR card sequence) each distinct pair of factors appears as a pair of axes on a separate graph. However, no more than six graphs will be plotted. These will have as axes, respectively: factor 1 vs. factor 2, factor 1 vs. factor 3, factor 1 vs. factor 4, factor 2 vs. factor 3 , factor 2 vs. factor 4 , and factor 3 vs. factor 4.

Factor scores for each observation are then printed if this has been requested (IPRIN=1 or 3 in Cols. 7-8 of card 2 of the FACTOR card sequence), followed by the average of the factor scores for all observations. The average is always printed (irrespective of IPRIN) as a check, since it is known that the average values should be zero for the base data set. If TPRIN=2 or 3, factor scores and individual identifiers are punched, one card per observation, in the format (3A4,13F5.2).

Individuals are then sorted into groups according to their factor scores, i.e., according to their position in the $N$-dimensional factor space. The number of groups identified depends on the number of rotated factors. If N factors are rotated, there are $2 \mathrm{~N}+1$ groups.

The first group identified consists of individuals closest to the average, i.e., those whose factor scores are within a certain distance from zero on all factors. The remaining groups consist of individuals who are most closely identified with either the positive or negative extremes of each factor. An individual will be in the positive or negative group for a particular factor if (i) he is not in the group closest to average, and (ii) his largest factor score (in absolute value) is on that factor. He will be in the positive group if that score is positive, and the negative group if that score is negative.

In terms of the N-dimensional factor space, the group closest to average consists of those individuals lying in a cube (or hypercube) about the origin, while the remaining groups are made up of those individuals falling in the truncated pyramid (or hyperpyramid) symmetric about the semi-axis corresponding to the factor in question. Fig. 10 shows the location of the five groups for the two-dimensional case $\mathrm{N}=2$.

For each group identified, the identification fields of the members are printed out (so long as the individual identifier field, i.e., the third identifier field, has not been blanked out), together with their scores on the factor with which they have been associated. For the group closest to average, their diagonal distance from the average position (the origin) is printed.

This is followed by the Kendall concordance coefficient for the group, and the single priority ranking (order) most satisfactory to that group.

A plot (or set of plots for more than two factors) of the location of the individuals in the factor space is then presented, with numbers indicating the number of individuals at each location. Also included in this plot is the rectangle enclosing the group closest to average.

If the extreme analysis has been requested (EXTOP is 0 or blank in Cols. $9-10$ of card 2 of the FACTOR sequence), the next output shows those hypothetical priority rankings which would lead to the most extreme (positive and negative) factor scores on each factor. A plot (or set of plots) is then presented indicating where an individual who chose such a ranking would be located in the factor space.

Output from FACTOR is shown in Sample Problem Output E.

## COMPARE

Output from the COMPARE analysis begins with a description of the data set being analyzed, identifying the variables, the data set, the number of observations, and number of variables used in the analysis. The means and standard deviations for each variable are printed, followed by factor scores for each observation if this has been requested (IPRIN=1 or 3 in Cols. 7-8 of card 2 of the COMPARE card sequence). If punched factor scores are requested (TPRIN=2 or 3), individual identifiers and factor scores are punched, one card per observation, in the format (3A4,13F5.2).


Fig. 10. Location of groups of individuals in a two-dimensional factor space.

Individuals are then sorted into groups based on their factor scores (as in FACTOR) and the results of the KENDAL and ORDER analyses for each group are printed out. Finally, a plot of the location of the individuals in the factor space is presented. Output from COMPARE is shown in Sample Problem Output F and L.

## Diagnostics

ANALYSIS REQUESTED FOR DATA ELEMENT $\qquad$ WHICH EXCEEDS TOTAL NUMBER OF DATA ELEMENTS INPUT ( $\qquad$ ).

Check the values of NI and N 2 on card 2 of the indicated command sequence. These values cannot exceed the number of data elements (NDAT) input in the DATA sequence.

COMPARATIVE FACTOR ANALYSIS NOT PRECEDED BY PRIMARY ANALYSIS OR DIMENSIONED DIFFERENTLY.

A request for COMPARE must be preceded by a request for FACTOR. Also the values of $\mathrm{N} 2-\mathrm{Nl}$ and ICON must agree for both these analyses. Check card 2 of the FACTOR and COMPARE card sequences. The COMPARE request is ignored, and the next command is sought.

DATA ENTRY _ WITH VALUES OF ___ __ IGNORED FOR THE FOLLOWING ANALYSIS.

The indicated data record contains illegal values for ranked data. Each priority must be used exactly once. This observation will not be used in the analysis following the diagnostic.

ILLEGAL DATA FOUND. OBSERVATION NO. $\qquad$ AND VARIABLE NO. $\qquad$ -

This diagnostic from the ORDER analysis indicates that invalid values for ranked data have been input. The ORDER command is ignored and the next command is sought.

MULTIVARIATE ANALYSIS REQUESTED FOR SINGLE VARIABLE. CHECK COMMAND AND PARAMETERS $\qquad$ -

Check card 2 of the indicated command sequence for the values of N 1 and N2, which must be the first and last data elements (variables), respectively, to be used in the analysis requested, and which cannot be equal to each other.

NUMBER OF IDENTIFICATION FIELDS EXCEEDS THREE.
The number of identification fields must be $\leq 3$. Check card 2 of the DATA sequence for the value of NID (Cols. 1-2), and adjust variable format card if necessary.

NUMBER OF ROTATED FACTORS MUST BE LESS THAN NUMBER OF VARIABLES. ROTATION OF A MAXIMUM OF $\qquad$ FACTORS POSSIBLE. FACTOR ANALYSIS CONTINUES WITH ICON RESET TO $\qquad$ .

The input value of ICON is greater than or equal to the number of variables (N2-N1+1). ICON is reduced accordingly, and factor analysis continues with the reduced number of rotated factors.

OVERFLOW OF CLASS WITH OBSERVATION $\qquad$ - VALUE = $\qquad$ .

A maximum of 1250 observations per group will be listed. The indicated observation will not be listed.

TOTAL NUMBER OF DATA ELEMENTS EXCEEDS 80.

A maximum of 80 data elements (variables) can be read in the DATA sequence of PUBLIC. Check the value of NDAT in Cols. 3-4 of card 2 of the DATA sequence, and adjust the variable format card (card 3), if necessary.

UNRECOGNI ZED COMMAND $\qquad$ .

A command is misspelled or in the wrong columns. Command words must begin in Col. 1. If multiple record data input has been used (i.e., if a "/" is included in the variable format card), check that this has not caused a command card to be skipped. (See DATA section of Data Input for PUBLIC.) Program execution stops.

VARIABLES HAVE STANDARD DEVIATIONS OF ZERO. MEANINGFUL FACTOR ANALYSIS NOT POSSIBLE ON THIS DATA SET.

The number of variables whose standard deviation is not zero must exceed the number of factors rotated in order for the factor scores to have any significance. If there are not at least three variables with non-zero standard deviations, factor analysis is meaningless.

VARIABLES HAVE STANDARD DEVIATIONS OF ZERO. ROTATION OF A MAXIMUM OF ___ FACTORS POSSIBLE. FACTOR ANALYSIS CONTINUES WITH ICON RESET TO .___

Meaningful factor analysis can be performed as long as the number of rotated factors (ICON) is smaller than the number of variables with non-zero standard deviations. This diagnostic indicates that the number of factors requested to be rotated was too large, and that the analysis goes on with the value of ICON reduced according1y.

## SAMPLE PROBLEM

Data Input for Sample Problem
In the following hypothetical case example, 22 responses were received to the questionnaire shown as Appendix B. Each response contains two sets of rankings for each of six land use preference items, as well as a use level (from "very frequent" to "never") for each preference item. Figure 11 shows a questionnaire that has been filled in (a), the coding for the data records for that set of responses (b), and the variable format card (c) that precedes all 22 of the data records. In addition, we have five hypothetical responses to question 1 of the questionnaire from agency personnel which we wish to compare to the other 22 responses.

Figure 12 shows the coding for the entire data deck for the sample problem.

Card 1 contains the command TITLE, indicating that the following card contains the problem title.

Card 2 contains the alphanumeric problem title.

Card 3, DATA, denotes that a data set is to follow.
Card 4 contains the parameters of the data set. The entry in Cols. 1-2 indicates that NID=3, i.e., that three 4-character alphanumeric identifier fields will be used. The entry in Cols. 3-4 indicates that NDAT=18, since there are 18 responses on each questionnaire, yielding 18 data fields. Columns 5-6 are blank denoting that data to be read from input unit 5 (card reader). The
(a)

(b)

(c)

## (3A4,3(2X,6F1.0))

Fig. 11. Coding of data records: (a) questionnaire with responses marked; (b) card image of coded responses; (c) variable format card.

1. TITLE
2. SATLE PROBLEM
3. DATA
4. 031801
5. ( $304,3(2 \mathrm{X}, \mathscr{( F 1} 1,0)$ )
6. SNOOBO52 11145623652314511143
7. SN018052 2625431354621131235
8. SN018052 3532146625341132511
9. $5: 1018052 \quad 4 \quad 625431256431131225$
10. SNOOPO52 5625341245316131224
11. SN018052 66625413254631131233
12. SN018052 7365421645321211235
13. SNO18052 8645321125643111355
14. 510180529654213541236112554
15. SNO18052 10654132254316111545
16. STO18052 11654213523146111455
17. S4018552 $12 \quad 123456 \quad 643125 \quad 533111$
18. S $4018052 \quad 13463251351246313425$
19. S $\$ 0180521465432124513611144$
20. SN018052 1543216556423123311
21. SHO18052 16 423561624315220215
22. S10018052 17245631542316411125
23. SW018052 18645321543216121345
24. S $\$ 018052 \quad 19643125 \quad 312456112512$
25. S4018052 $20631245 \quad 54213613421$
26. SNO18052 21 643125612453113551
27. SNO18552 22 113564 64531255211
28. END
29. $K \in \mathbb{N} A \mathrm{~A}$
30. 0106
31. ORDER
32. 0106
33. FACTOR
34. 010601
35. COPPAPE
36. 071201
37. LeVEL
38. 1315
39. LEVEL
40. 17
41. DATA
42. 030601
43. ( $344,2 \mathrm{X}, 6 \mathrm{~F} 1.0$ )
44. ANOIUSFS 1223341
45. ANOISCS 2645231
46. ANOIOSIS 3463512
47. ANOIFBI 4625431
48. ANICIA 5654321
49. END

5u. CXPNDE
51. 010001
52. KENDN
53. 0106
54. STOP

Fig. 12. Coded input data for sample problem.
zero entry in Cols. 7-8 indicates that the output unit has at least a 120-character field width available for printing. Finally Cols. 9-10 contain . a non-zero entry for PRDAT indicating that we wish to have the input data printed out.

Card 5 is the variable format card indicating how the data is arranged. In this example, we have three A4 fields for identifiers, followed by three sets of 6Fl.0 fields for the responses, separated by two spaces (2X) (Fig. 12).

Cards 6-27 contain the coded data from the returned questionnaires (see Fig. 12). The first identifier field contains the survey number, the second contains the first four digits of the ZIP code, and the third contains individual identifier numbers. Responses to the first two questions are coded in Cols. 15-20 and 23-28, respectively. Observe that these are coded in the order: priority ranking of item 1 (range management), priority ranking of item 2 (timber management), etc., through priority ranking of item 6 (wildlife management). For question 3, the values 5, 4, 3, 2, and 1, respectively, are assigned to the responses "very frequent," "frequent," "occasional," "seldom," and "never." Note that in this example, respondent 22 (card 27, Fig. 12) has filled in his questionnaire incorrectly, using priority 1 twice in his answer to question 1 . His response to this question will be omitted from any analysis of ranked data.

Card 28 contains the command END, indicating the end of the individual data records.

Card 29 contains the command KENDAL indicating that Kendall's concordance coefficient is to be calculated for the set of rankings indicated on the following card.

Card 30 indicates what variables are to be used in calculating the Kendall coefficient. Columns 1-2 contain the beginning element of the data array ( $\mathrm{N} 1=1$ ), and Cols. 3-4 the ending element $(\mathrm{N} 2=6$ ). Thus the Kendall coefficient will be calculated for variables 1-6, i.e., for the responses to the first question on the questionnaire (Fig. 11).

Card 31 contains the command ORDER, indicating that a single priority rarking is to be found which is satisfactory to the majority of people responding to the variables indicated on the next card.

Card 32 indicates $N 1=1$ and $N 2=6$ so that we are dealing with the first six data elements, i.e., the six responses to the first question on the questionnaire.

Card 33 contains the command FACTOR, requesting that factor analysis be performed on the variables indicated on the next card.

Card 34 indicates on what data elements the factor analysis is to be performed. Columns 1-2 have NI=1 and Cols. $3-4$ have $N 2=6$, so that the factor analysis is done on the first six data items. Columns 5-6 are blank so that the number of rotated factors (ICON) is two. Columns 7-8 indicate TPRIN=1, so that the factor scores will be printed out for each observation. Columns 9-10 are blank since the extreme analysis is desired.

Card 35 contains the command COMPARE, indicating that the responses to the variables listed on the next card are to be compared with those examined in the factor analysis, and plotted on the same factor axes.

Card 36 indicates $\mathrm{N} 1=7$ and $\mathrm{N} 2=12$, so that the COMPARE analysis is to be done on the 7 th through the 12 th data items (corresponding to the six responses to the second question on the questionnaire). Thus the perceived priority rankings are compared to the individuals' own priority rankings.

Card 37 contains the command LEVEL indicating that we wish to have an analysis done of the use levels for the variables indicated on the next card.

Card 38 shows $\mathrm{N} 1=13$ and $\mathrm{N} 2=15$ so that the LEVEL analysis is done on the 13 th , 14 th and 15 th data items (corresponding to "range management," "timber management," and "developed recreation" in question 3 of the questionnaire).

Card 39 contains the command LEVEL, requesting another use level analysis for the variable listed on the next card.

Card 40 shows $\mathrm{Nl}=17$ with no entry for N 2 , so that the LEVEL analysis is done on the 17th data item only (corresponding to "wilderness" in question 3 of the questionnaire).

We have now completed our requests for all the analyses we wished to have done on the first data set of 22 responses. Further analyses are to be performed on the second data set (the five responses from agency personnel). This new data set is now read in.

Card 41 contains the DATA command, indicating that a new data set is to follow.

Card 42 contains the parameters of the new data set. NID=3 (Cols. 1-2) indicating that three alphanumeric identifier fields are used. NDAT=6 (Cols. 3-4), since there are six data items on each card (corresponding to six answers on the questionnaire). Columns 5-6 are blank, indicating that input unit 5 is to be used, since the data is coming from cards. Columns 7-8 are blank since full carriage width is available. Columns 9-10 contain a 1 indicating that we wish to have the data printed out.

Card 43 is the variable format card for the new data set.

Cards 44-48 contain the coded responses to the questionnaire.

Card 49, END, denotes the end of this data set.

Card 50, COMPARE, requests that the new data set be compared with the factor matrix generated from the previous data set (on which factor analysis was performed).

Card 51 indicates $\mathrm{N} 1=1$ (Cols. 1-2) and $\mathrm{N} 2=6$ (Cols. 3-4) so that the COMPARE analysis will be done on the first six data items of the new data set. Thus agency responses will be compared to the individuals' responses.

Card 52 contains the command KENDAL requesting that Kendall's concordance coefficient be calculated for the new data set.

Card 53 shows $\mathrm{N} 1=1$ and $\mathrm{N} 2=6$, denoting that the KENDAL analysis is to be done on data items 1 through 6 of the new data set.

Card 54, STOP, indicates that no further analyses are to be done.

Sample Problem Output
The following is the complete output from PUBLIC for the example problem whose data input is shown in Fig. 12.
 SAHPLL PhudLeH


B．DATA ENTRY SN010052 22 $\quad$| WITH VALUES UF 1．1．3．5．6．4． |
| :--- |




|  | OnŠk |
| :---: | :---: |

NLいBEK Or VAKIABLES 6
KENDALL CUE゙ドドICIENT＝$\quad 185$

WI＇H VALLLS UF 1．1．3．5．6． 4.


VAKIAbLEi OKDEKED AS F゚ULLOW：

| VakIabLe | HAWK |
| :---: | :---: |
| 1 | 6 |
| 2 | 5 |
| 3 | 4 |
| 4 | 3 |
| 5 | 2 |
| 6 | 1 |

```
 WA%'A LH'LIIY WNU1005%2 22
HLiH Vallag ur 1. 1. 3. 5. 6.4.
IGNUKED FUK I'AL rULLUWINL AIFALYSIS
```




| SH01805 | 1 | -1.24 | 1.21 |
| :---: | :---: | :---: | :---: |
| 21010052 | 2 | -.71 | . 14 |
| sholdous | 3 | 1.74 | - 19 |
| -1N010052 | 4 | -. 77 | . 19 |
| Su01805\% | 5 | -.43 | . 23 |
| Lld013052 |  | -. 64 | -.25 |
| 214010052 | 7 | -1.16 | -. 24 |
| ~180100\% | 8 | -. 74 | -. 73 |
| 36018052 | 9 | -. 00 | -1.30 |
| 3ilvoluos2 | 10 | . 26 | -1.03 |
| Sivolout 2 | 11 | -. 00 | -1.30 |
| Slwuluu52 | 12 | . 75 | 2.24 |
| Sllol0052 | 13 | . 28 | -. 02 |
| S10018052 | 14 | -. 40 | . 90 |
| -14016052 | 15 | 1.74 | . 91 |
| Sin016052 | 16 | -. 10 | 1.79 |
| - 5018052 | 17 | -1.45 | 1.14 |
| Sll018052 | 16 | -. 74 | -. 73 |
| 34010052 | 19 | 1.03 | -. 89 |
| Sid010052 | 20 | 1.72 | . 19 |
| Sin010052 | 21 | 1.03 | -. 89 |
| a VELHA |  | -. 00 | . 00 |

## IDLHIIFILATIUA OF INDIVIDUALS WITHIF GHOUPS

IndIVIDUALS CLUSESI TU AVEKAGL

| SH010052 | 13 | .286 |
| :--- | ---: | :--- |
| SNO18052 | j | .509 |
| AVEHAGE $=$ | .397 |  |



ORDER ANALYSIS FOK THL AVEKAGE GHOUP OF sAllPLE PhObLEIH
ruk varlatle 1 Thhough variable 6 of data Set 1
VArIAblé ORDE'HED AS FULLUWS

| VakIAbLE | RaivK |
| :---: | :---: |
| 1 | 6 |
| 2 | 5 |
| 3 | 4 |
| 4 | 2 |
| 5 | 3 |
| 6 | 1 |


| GhuUs | 1--PUSIIIIVE OH FAC'iUK 1 |  |  |
| :---: | :---: | :---: | :---: |
|  | Sinuluusi | 3 | 1.740 |
|  |  | 15 | 1.740 |
|  | 510100ヶ\% | 20 | 1.720 |
|  | ¢140100'j2 | 21 | 1.031 |
|  | SH0100¢2 | 19 | 1.031 |
|  | AVelinge |  | 1.453 |


UKDE'K AHALYSIS FOK GROLP 1 Or
ShHPLL PKULLEH
r'UH VAHIAULE 1 THKOUGH VAKIAbLE 6 OF DATA SET 1

VAKIASLES OKUEKLD AS FULLOHS

| Variable 1 2 3 4 5 4 | $\begin{gathered} \text { KANK } \\ 6 \\ 3 \\ 2 \\ 1 \\ 4 \\ 5 \end{gathered}$ | - |
| :---: | :---: | :---: |
| GHOLP | 2--NLGA'IIVE Ow | Factun 1 |
|  | Sw010052 17 | -1.450 |
|  | Su010052 1 | -1.254 |
|  | Slu01005 7 | -1.161 |
|  | Swolcos2 2 | -. 774 |
|  | Sivolues2 4 | -. 774 |
|  | SH010052 18 | -. 742 |
|  | Swolcosj e | -. 742 |
|  | Sw010052 6 | -. 643 |
|  | AVLİAGE = | -. 942 |



| VAKIALLE | KAIK |
| :---: | :---: |
| 1 | 6 |
| 2 | 3 |
| 3 | 5 |
| 4 | 4 |
| 5 | 2 |
| 6 | 1 |



```
    iloblu0!2 1: a.230
    EHvlu0g< 16 1.7ub
    AVLITAGL = 2.011
```


aHAHLL PhuゃLE゙!
Fun Vardabie 1 'ilmuuli variable 6 of data set 1
wumbh UF UbithVATIUNS 2
mumbla or varlableo $G$
heivball CUlr'PIUIlivi $=\quad .406$
OKDLK ANALISIS RUK GKUUF 3 Or
sAMPLL PHULLEM
ruk Vakiable 1 Thruuli vakiable 6 Or data skit 1
VARIADLES UKDEATED AS FOLLUHS

| VAKIALLL | KAlVK |
| :---: | :---: |
| 1 | 1 |
| 2 | 2 |
| 3 | 4 |
| 4 | 5 |
| 5 | 6 |
| 6 | 3 |


| LHUUP | 4－－Hcliciaiive Un thliok |  |  |
| :---: | :---: | :---: | :---: |
|  | S．0100『2 | 9 | －1．296 |
|  |  | 11 | －1．296 |
|  |  | 10 | －1．033 |
|  | S゙ロu1005 | 14 | －．900 |
|  | averact． |  | －1．131 |

aEHDALL CUACOADAHCE COEFFICIENT FUK GIIUUP 4 OF －AHPLL PKULLEH
ruk vakiadle 1 Thruulif variable 6 of data Sts 1
HUMEEK UF ObSLhVATIONS 4
WUllUEK UF VAKIALLES 6
KLINDALL COLH'Y゙ILIENT $=\quad .893$
UHDeth Analisis fun gnude 4 Ur'
aHAPLE PKUELEA,
ruir Varlalle 1 'timuUGh VahIable 6 of data StT 1

VAKIALLES OHULKLD AS FULLOWS

| VAlIIALLE | KAIN |
| :---: | :---: |
| 1 | 6 |
| 2 | 5 |
| 3 | 4 |
| 4 | 2 |
| 5 | 1 |
| 6 | 3 |






INUIVIDUALS CLUSEST＇TU AVLHAGE

| SN018052 | 10 | ． 134 |
| :---: | :---: | :---: |
| Sill | 5 | ． 233 |
| SH01d0ヶ， 2 | 16 | ． 407 |
| Sllolubsz | 3 | ． 509 |
| Sw018052 | 14 | ． $55 \%$ |
| avehact |  | ． 36 |

## kendall coldcumbance culfficien＇fok ithe average group of SAIIPLE HIUBLEM fun Variable 7 ＇Inkullh Variable 12 Of data set 1

WUHDEK OF OLŠKKVATIONS 5
WUHELH Or VARIABLES 6
hENDALL COEFEICIENT $=\quad .342$

ORDEI AIJALYSIS FOR THE AVERAGE GIIUUP OF SAHPLL PHUBLEH
FUK VAKIAbLE 7 Through Variable 12 OF DATA SET 1
VARIABLES ORDERED AS FOLLOWS

| Varlable | Halsk |  |
| :---: | :---: | :---: |
| 7 | 5 |  |
| 8 | 3 |  |
| 9 | 4 |  |
| 10 | 2 |  |
| 11. | 1 |  |
| 12 | 6 |  |
| Gruer | 1－－POSITIVE UN | FACIOK 1 |
|  | SNO1J052 9 | 1.705 |
|  | Sil016052 13 | 1.690 |
|  | Sil010052 20 | 1.595 |
|  | Sil010052 11 | 1.453 |
|  | Sllo 1005212 | 1.031 |
|  | SH018052 17 | ． 950 |
|  | SN018052 18 | ． 839 |
|  | AVERAGE＝ | 1.323 |

KENDALL CONCORDANCE COLFFICIENT FUR GHOUP 1 OF SAHPLE PKUbLEr
FUK VAKIABLE 7 THFOUGH VARIABLE 12 OF DATA SET 1
WUMEEK UF UDSEKVATIONS 7

WUHEE＇K OF VARIALLES 6
KENDALL CUEF゙ドICIENT＝$\quad 767$

UKUEIK ANALYSIS r＇Un GRULH 1 OF
aHAPLE PHULLEM
rUII VAHLABLE 7 THKUUU゙॥ VAKIABLE 12 OF DATA SET 1
Vakiablė Undtit＇l Aü rulluhs

| VAKlable | HANK |
| :---: | :---: |
| 7 | 5 |
| 8 | 4 |
| 9 | 2 |
| 10 | 1 |
| 14 | 3 |
| 12 | 6 |


| cinuer | 2--wluailvt U.d | raciuk 1 |
| :---: | :---: | :---: |
|  | Siroloutic 4 | -1.303 |
|  | SH0lu0bz a | -1.220 |
|  | SNO1005: 6 | -1.163 |
|  | SW010052 7 | -. 742 |
|  | AVLKAGE $=$ | -1.129 |



| LruUf | 3--POSITIVE UNJ | FALTUR 2 |
| :---: | :---: | :---: |
|  | SH018゙52 8 | 2.173 |
|  | Sw018052 19 | 2.035 |
|  | SH018052 21 | 1.189 |
|  | AVERAGE = | 1.799 |

KEINDALL COHCUKDANCE COEFFILILNT FOK GROUP 3 OF
SAHPLL PROBLEH
KUH VAKIAGLE 7 THKUUGH VARIAGLE 12 OF DATA SET 1
NUIGEK OF OBSERVATIONS 3
NUMBEK OF VARIABLES 6
KENDALL COEFFICIEFT $=\quad .454$
UMLER A/JALISIS FUK GROUP 3 OF
SAHPLE PHULLLA
rUM VAMIABLE 7 THKUUGH VARIABLE 12 OF DATA SET 1

VAKIABLES OKDEKED AS FOLLOWS

| VAKIABLE | HALK |
| :---: | :---: |
| 7 | 3 |
| 8 | 1 |
| 9 | 2 |
| 10 | 6 |
| 11 | 5 |
| 12 | 4 |


| ghuUP | 4--NELiA't | VE | FACTOK 2 |
| :---: | :---: | :---: | :---: |
|  | SNO18052 | 22 | -. 953 |
|  | Sw018052 | 1 | -. 923 |
|  | SH010052 | 15 | -. 840 |
| AVEHAGE $=\quad-.905$ |  |  |  |



HU VAKIAbLL 7 Through Variable 12 OF DATA SEI 1
VAHIAbLLS OHDERED AS FOLLOWS

| VABIADLE | KAiNK |
| :---: | :---: |
| 7 | 6 |
| 8 | 5 |
| 9 | 4 |
| 10 | 3 |
| 11 | 8 |
| 12 | 2 |


G.

LEVELL ANALY:
JAHPLE PKULLEH
fun tllt $13 T \|$ VamIable uf Data ser 1

| HEAN | 1.91 |
| :---: | :---: |
| VAKIminct | 2.18 |
| STAINDAKD UEVIATION | 1.48 |
| S'LANDAKL ENHOK | . 31 |
| SKLWNLS'S | 10.71 |
| KURT'USIS | -2.76 |
| HOLE | 1.00 |
| HEDIAN | 1.00 |
| RAlvGE | 4.00 |
| HININUH | 1.00 |
| HAXIHUM | 5.00 |

(PLHCENTAGES REPRESENTED ABUVE THE INDIVIDUAL BAKS)

| 1.001 111111111111111111111111111111111111111111111111111111 |  |
| :---: | :---: |
| $13.6$ |  |
| $2.001 \backslash 111111 \backslash 11 \$} \hline \multicolumn{2}{\|l|}{I 4.5} \hline \multicolumn{2}{\|l|}{$3.001 \backslash \backslash 1$ |  |
|  | I 4.5 |
| 4.001\111 |  |
|  | I 13.6 |
|  | .00I |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

LEVLL ANALYSIS PGh
SAMPLE Prublell
F'Uk Thl 14 'Ti VarIablé UF Dazáa SkT 1

| Hefil | 1.95 |
| :---: | :---: |
| VARIANCE | 1.28 |
| STAHDAKD DEVIATION | 1.13 |
| STANDAKD EHHOR | . 24 |
| SKEHNESS | 15.62 |
| KUkTOSIS | -8.60 |
| HUDE | 1.00 |
| HEDIAM | 2.00 |
| Kaluce | 4.00 |
| HINIMUH | 1.00 |
| MAXIHIUK | 5.00 |

(PLNCENTAGES KEYKESEHTED ABOVE THE INDIVIDUAL BARS)

```
    1.001\11111\IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
            I 13.6
    2.00I\11111\1\1\1\1\\
            I 31.8
```



```
5.00I\11115
```

LE：VEL AlvaLY：Ji ruis
シAIIfLE HふいんL r＇UK＂ilte 1tTH VAKIAbLe UF＇UA＇AA sib＇l 1
ILAK $\quad 1.73$
S＇I＇ANDAKD LLVIATIUI ．Y4

| SIANDAKD EKITUK | .20 |
| :--- | ---: |
| SKEWNESS | 17.45 |

KURTUSIS $\quad-11.70$

| HEDIAL | 1.00 |
| :--- | :--- |
|  | 3.00 |

HINIHUH 1.00
HAXIHUH $\quad 4.00$
（percentages hepresented above the Individual bars）

$$
\begin{aligned}
& \text { I } 22.7 \\
& \text { 2.001 } 1111111111111111111111 T
\end{aligned}
$$

I 4.5
4.00111111
LeVEL AWALYSIS FOF
SAHPLE PHOLLLII
FOK THE $17 T H$ VARIABLE OF DATA SヒT ？
（PLKCENTAGLS HEPHESEINTED ALOVE THE INDIVIDUAL BAKS）

```
        I 27.3
```



```
    I 22.7
    2.001\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
        I }9.
    3.00I\\\\1\\\\\\\\\\\\\\
```



```
    I 22.7
    5.00I\1111111111111111111111111111\1111\11\1111111\111
```

K: DATA SEI 2 (FILHST 60 ObSEHVATIUNS) ron SAHPLE PRULLEH

L. CUHPAKE AHALYBIS. . . .

SAHPLE PKOBLEM
FUK VAHIABLE 1 THHOUGH VAKIAbLE 6 OF' DATA SLT 2
$\begin{array}{ll}\text { NU. OF CASES } & 5 \\ \text { NO. OF VARIABLESS } & 6\end{array}$


EAC'OOR SCORES

| AlHO1USFS | 1 | -.45 | .23 |
| :--- | :--- | :--- | ---: |
| AHO1SCS | 2 | -.42 | -.69 |
| AH010SIS | 3 | -.62 | -.37 |
| AHO1FBI | 4 | -.77 | .19 |
| AHO1CIA | 5 | -.46 | -.90 |
| AVEKAGE |  | -.54 | -.31 |

## IUENTIFICATIUN Ur INDIVIDUALS WITHIN GKUUP'S

INDIVIDUALS CLUSEBT TO AVEKAGE

| chuep | 1－－PUNITIVE UH | ractor |
| :---: | :---: | :---: |
| GHOUP | 2－－NLGATIVE UIJ | FALTOK 1 |
|  | ANO1ドめl 4 | －． 774 |
|  | ANOIUSIS 3 | －． 617 |
|  | AVEKACE $=$ | －． 696 |




| VARIABLE | Ralvi |
| :---: | :---: |
| 1 | 6 |
| 2 | 5 |
| 3 | 4 |
| 4 | 3 |
| 5 | 1 |
| 6 | 2 |

GHOUK 3－－PUSITIVE UN FACIOA 2

| GROUP | 4－－nblititve Of FACTOH 2 |  |  |
| :---: | :---: | :---: | :---: |
|  | Aldo1CIA | 5 | －． 900 |
|  | AHO1SCS | 2 | －． 691 |


UKDLK AINALYSIS FUK GHUUP 4 OF
SAHPLE PKULLE
FUK VAKIALLE 1 THMUUGII VARIALLE 6 OF DATA UET 2
VAKIABLES URDEREU AL FOLLOWS

VARIABLEES ORDERELV AL FOLLOWS

| VAKIABLE | KAINK |
| :---: | :---: |
| 1 | 6 |
| 2 | 5 |
| 3 | 4 |
| 4 | 2 |
| 5 | 3 |
| 4 | 1 |


M.


0



Comrey, Andrew L. 1973. A first course in factor analysis. Academic Press, New York.

Coombs, C. H. 1958. Social choice and strength of preference. In R. M. Thra11, C. H. Coombs and R. L. Davis [eds.] Decision Processes. John Wiley and Sons, New York.

Coombs, C. H. 1964. A theory of data. John Wiley and Sons, New York.
Fairfax, Sally K. 1975. Public involvement and the Forest Service. J. Forest. 73:657-659.

Gerth, H. H. and C. Wright Mills [eds.]. 1946. From Max Weber: Essays in Sociology. Galaxy Book Edition, New York, Oxford University Press, 1958. Originally published in 1946.

Gulick, Luther and L. Urwick [eds.]. 1937. Papers on the science of administration. Columbia Univ. Inst. of Public Admin., New York.

Ingram, Helen M. 1973. Information channels and environmental decision making. Nat. Resource J. Vol. 13 No. 1 (January). pp. 155-169.

Mesarovic, M. D., D. Macko and Y. Takahara. 1970. Theory of hierarchical multilevel systems. Academic Press, New York and London.











 , 217





APPENDIX A

Sample Questionnaire for Optical Mark Reader

$$
000000
$$

## ANSWER SHEET

NOTE: THIS ANSWER SHEET WILL BE SCORED WITH AN OPTICAL MARK READER. FILL IN ONE SPOT PER ROW WITH A SOFT BLACK PENCIL ONLY \&NO. 2 OR NO. $21 / 21$. FILL IN THE SPOT COMPLETELY. IF YOU CHANGE YOUR MIND, ERASE CLEANLY.

1. INDICATE YOUR VIEWS OF NATURAL RESOURCE PRIORITIES. MARK PRIORITIES FOR ITEMS INDICATING ONLY ONE PRIORITY PER ROW AND A DIFFERENT PRIORITY FOR EACH ROW.

|  | PRIORITY |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 |
| RANGE MANAGEMENT. | 0 | 0 | 0 | 0 | 0 | 0 |
| TIMBER MANAGEMENT**.. | 0 | 0 | 0 | 0 | 0 | 0 |
| DEVELOPED RECREATION... | 0 | 0 | 0 | 0 | 0 | 0 |
| SCENIC BEAUTY••••••••• | 0 | 0 | 0 | 0 | 0 | 0 |
| WILDERNESS*•••••••••• | 0 | 0 | 0 | 0 | 0 | 0 |
| WILDLIFE MANAGEMENT••• | 0 | 0 | 0 | 0 | 0 | 0 |

2. INDICATE YOUR VIEWS OF HOW THE REGIGNAL AGENCIES SET PRIORITIES. MARK ONLY ONE PRIORITY PER ROW AND A DIFFERENT PRIORITY FOR EACH ROW.

|  | PRIGRITY |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 |
| RANGE MANAGEMENT***.. | 0 | 0 | 0 | 0 | 0 | 0 |
| TIMBER MANAGEMENT. | 0 | 0 | 0 | 0 | 0 | 0 |
| DEVELOPED RECREATION... | 0 | 0 | 0 | 0 | 0 | 0 |
| SCENIC BEAUTY. | 0 | 0 | 0 | 0 | 0 | 0 |
| WILDERNESS. | 0 | 0 | 0 | 0 | 0 | 0 |
| WILDLIFE MANAGEMENT... | 0 | 0 | 0 | 0 | 0 | 0 |

3. INDICATE YOUR PARTICIPATION IN, OR ORGANIZATION MEMBERSHIP RELATED TO, EACH OF THE NATURAL RESOURCE ITEMS. MAKE ONLY ONE MARK PER ROW.

|  | VERY FREQUENT | FREQUENT | OCCAS IONAL | SELDOM | NEVER |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RANGE MANAGEMENT**. | 0 | 0 | 0 | 0 | 0 |
| TIMBER MANAGEMENT** | 0 | 0 | 0 | 0 | 0 |
| DEVELOPED RECREATION. | 0 | 0 | 0 | 0 | 0 |
| SCENIC BEAUTY........ | 0 | 0 | 0 | 0 | 0 |
| WILDERNESS........... | 0 | 0 | 0 | 0 | 0 |
| WILDLIFE MANAGEMENT.. | 0 | 0 | 0 | 0 | 0 |

SURVEY NUMBER SN01 ZIP CODE 8052 (FIRST FOUR DIGITS ONLY) PLACE THIS ANSWER SHEET IN THE ENCLOSED ENVELOPE AND MAIL.



|  |  |  |
| :---: | :---: | :---: |
| 103 | WRITE (WRITEU.118) | RNSAMO12 |
|  | STOP | RNSAMO13 |
| c |  | RNSAMO14 |
| c . | - - calculate number of facing pages and numrer of | RNSAMO15 |
| C | Obsekvations per facing parie. | RNSAM016 |
| c |  | RNSSAMO17 |
| 104 | NFP $=(N P-N Z+1) / 2$ | RNSAMOIR |
|  | NT $=$ NP/2 | RNSAMC19 |
|  | $N X=N Z / 2$ | RNSAMORO |
|  | $N X=N X * 2$ | RNSAM021 |
|  | $N W=N P-N \angle+1$ | RNSAMn22 |
|  | NTIINT*2 | RNSAM023 |
|  | IF ( $\mathrm{NT} \cdot \mathrm{EQ}$. NP) $\mathrm{NFP}=\mathrm{NFP}+1$ | RNSAMO24 |
|  | NADD $=(N S / N W) / N W$ | RNSAMO25 |
|  | NSPF = $=(N S \bullet$ NFP-1) /NFP | RNSAM026 |
|  | IF (NT.EQ, NP.OR.NX, NE. NZ ) NSPF =NSPF\& NAUN | RNSAMn27 |
|  | WRITE (WRITEU,116) (TITLE(L) -LE1.31),NZ,NP,NS,NSPF | RNSAME28 |
|  | IF (NSPF.GT.300) GO TO 105 | RNSAMO29 |
|  | IF (NSPF.LT.1) Go TO 106 | RNSAMO30 |
|  | GO 10107 | RNSAMC31 |
| 105 | WRITE (WRITEU.119) | RNSAM032 |
|  | GO TO 101 | RNSAM033 |
| 106 | WRITE (WRITEU,120) | RNSAM034 |
|  | GO TO 101 | RNSAMO 35 |
| C |  | RNSAM036 |
| C. | - . Clfar arrays. | RNSAMO37 |
| C |  | RNSAMn38 |
| 107 | D0 $108 \quad 1=1,100$ | RNSAMO39 |
|  | DO $108 \mathrm{~J}=1.6$ | RNSAM040 |
|  | $1 \mathrm{NOX}(1, J)=0$ | RNSAM041 |
|  | $\operatorname{IOUT}(I ; J)=0$ | RNSAMO42 |
| 108 | CONTINUE | RNSAM043 |
| C |  | RNSAM044 |
| C - | - . . SElect row number by column. | RNSAMO45 |
| C |  | RNSAMO46 |
|  | DO 115 NPG $=$ NX,NT, 2 | RNSAMO47 |
|  | DO $111 \mathrm{~K}=1$, NSPF | RNSAM048 |
| 109 | R=RANF (1.0) | RNSAM049 |
|  | $1 K=R$ - $600.0+1.0$ | RNSAM050 |
|  | $J=1+(1 R-1) / 100$ | RNSAM051 |
|  | $I=I R-(J-1) 100$ | RNSAM05? |
|  | If (INDX(I.J)) 110.110 .109 | RNSAM053 |
| 110 | INDX $11, \mathrm{~J})=1$ | RNSAM054 |
| 111 | CONTINUE | RNSAM055 |
| C |  | RNSAMO56 |
| C. . | . . . Write selected row numbers. | RNSAM057 |
| C |  | RNSAM058 |
|  | max $=0$ | RNSAM059 |
|  | DO $113 \mathrm{~J}=1,6$ | RNSAM060 |
|  | KOUNT (J) $=0$ | RNSAMO61 |
|  | DO $113 \mathrm{I}=1,100$ | RNSAM062 |
|  | If ([NDX(I.J)) 113.113.112 | RNSAM063 |
| 112 | KOUNT ( $J$ ) mKOUNT ( $J$ ) +1 | RNSAM064 |
|  | IF (KOUNT (J),GT, MAX) MAX $=$ KOUNT(J) | RNSAM065 |
|  | $I K=K$ OUNT (J) | RNSAM066 |
|  | IOUT(IK,J) =INDX(I,J) | RNSAM067 |
|  | INOX $(1, J)=0$ | RNSAM068 |
| 113 | CONTINUE | RNSAME69 |
|  | DO $114 \mathrm{I}=1 . \mathrm{MAX}$ | RNSAMO70 |
|  | JA=1 | RNSAMOT1 |
|  | IF (NX.NE.NZ.AND.NPG.EQ.NX) JA=4 | RNSAMO72 |
|  | $J 甘=6$ | RNSAMO73 |
|  | IF (NPG.GE.NT.AND.NT.EO,NP) JR=? | RNSAMO74 |
|  | IF (I.EQ.1) WRITE (WRITEU,121) NPG.(rOL,UMN,KCOL,KCOL=JA.JA) | RNSAMO75 |
| 114 | WRITE (WRITEU,122) (IOUT(I,J):J=JA, JH) | RNSAMB76 |
|  | 00115 I=1, MAX | RNSAMO77 |

```
OO 115 J=1.6 RNSAMO7R
    IOUT(I.J)=0 RNSAMO79
    1 1 5 \text { CONTINUL RNSAMNRO}
        WRITE (WRITEU,123) RNSAMORI
        GO TO 101 RNSAMOBZ
C RNSAMOR3
C ...... formats usen in this progqam.
RNSAMOAL
C RNSAMOB5
    116 FORMAT (IHI,3IAZ/,IH ,13HSIAKTING PAGF.15X.ILC./.IH ,1IHENGING PAGRNSAMOBG
        IE,ITX,112/IH, 23HNUMREK OF ORSFRVATIONS ,12X.I5/1H ,33HNUMEER OF SRNSAMOB7
        2AMPLES HER FACING PAGE.17)
        RNSAMORE
    117 FORMAT 1315.31A2) RNSAMO89
    118 FORMAT (1HO.35H BLANK CARD INNICATFS PHOGRAM STOP ) RNSAMO9O
    119 FORMAT (IHO,52H NUMBE.H OF SAMPLES GREAIE.H THAN ONF-HALF OF ENTRIESRNSAMOGI
    I ,/IHO,ZAH SUGGEST IOO PERCENT SAMPIE, , RNSAMOGO
    120 FORMAT (IHO.49H NUMBER OF SAMPLES LESS IHAN UNE PER DNUHLE PAGE ./RNSAMO93
        11HO.35H SUGGEST RANDOM SELECTION OF PAGES )
        RNSAM094
    121 FOKMAT (1HO.//1HO,13H PAGE NISMHEN .15/1HO.3X.6(4X,A3.A3.12)) RNSAMO95
```



```
    123 FORMAT (1HO./1HO) RNSAMO97
C
ENO RNSAMO99
RNSAMO98
```



APPENDIX C

 the data can be ranked（I．e．variables can taxe values one THROUGH N INTEGERS，WHERE N IS THE NUMBER OF VARIABLES）OR UARANKED（I．E．VARIABLES CAN have the value of any real NUMBER）．ANALYSES INCLUDE（1）BASIC STATISTICAL ANALYSES SUCH AS MEAN，STANDARD DEVIATIONS，KUROSIS，AND SKEWNESS（2） KENDALLJS CONCORDANCE COEFFICIENTH（3）PREFERENCE ORDERINGM AND （4）FACTOR ANALYSIS．THESE ROUTINES PROVIDE ANALYSES OF OPINION DATA IN A FORMAT USEFUL FOR MANAGERIAL ACTION．
PROGRAM UNITS－（MAIN PROGRAM）－PUBLIC
（SUBPROGRAM）－BLOCK OATA
$c$
（SUBROUTINES）－CORRE，DATCK，EIGEN，EXTRM，FACTOR，FSCOR C
GROUP，GRUPN，HIST，KENDAL，LEVEL，LOAD
${ }^{c}$
ATIN，ORDE，PLOT，SORT，SORT，SYM，VAREX
$c$
float．Ifix．INT
abs finds the absolute value of a real argument．
c
float is a conversion process given an integer argumemt
c
to a real variable．
IFIX IS A CONVERSION PROCESS GIVEN A REAL ARGUMENT TO
INT IS A FUNCTION THAT TRUNCATES THE VALUE OF A REAL VARIABLE TO BECOME AN INTEGER VARIABLE．
SQRT CALCULATES THE SQUARE ROOT OF ITS REAL ARGUMENT．
VARIABLE DEFINITIONS－SOME VARIABLES IN THE SUBROUTIMES
AN INTEGER VARIABLE WITH TRUNCATION．
c （EIGEN，MATINV，AND VARMX）ARE NOT DEFINED OTHERUISE ALL VARIABLES EXCEPT SUBSCRIPTS ARE DEFINED BELOW．
－REAL ARRAY CONTAINING THE FACTOR MATRIX TO BE ROTATED IN THE SUBROUTINE（VARMX）．DEVELOPED ON THE DIAGONAL IN DESCENDING ORDER IN THE
DEVELOPED ON THE DIAGONAL IN DESCENDING ORDER IN THE
－REAL MATRIX CONTAINING THE SQUARE MATRIX TO BE INVERTED IN THE SUBROUTINE（MATINV）．
ANRMX－REAL VARIABLE CONTAINING THE FINAL NORM．
AVG－REAL VARIABLE CONTAINING THE AVERAGE VALUE FOR THE
B $\quad$ FACTOR SCORES IN A PARTICULAR GROUP $\quad$ REAL ARRAY CONTAINING THE ORIGINAL COMMUNALITIES IN
B THE SUBROUTINE（FACTOR）－REAL ARRAY CONTAINING THE SUM OF OBSERVATIONS IN THE
C－RUBRL ARINAY（ONTAINING THE SIZE OF THE CENTRAL CUBE， DEPENDING ON THE NUMBER OF ROTATED FACTORS IN THE （BLOCK DATA）．
C－REAL MATRIX CONTAINING ROTATED FACTOR LOADINGS IN SUBROUTINE（EXTRM）．
C－REAL MATRIX CONTAINING THE FACTOR MATRIX FOR FACTORANALYSIS DATA AND SECONDLY RAW SCORE WEIGHTS IN THE

```
FOR THE UNIQUE VALUES OCCURRING IN THE DATA SET．
```FOR EITHER PRINTING AT THE START OF A NEU PAGE（1）OR
CENT－REAL VARIABLE CONTAINING THE SIZE OF THE CENTRAL CUBE
CHISQ－REAL VARIABLE CONTAINING THE STATISTICAL VALUE FOR
 INPUT INTO THE PROGRAM.
REAL ARRAY CONTAINING THE DATA VALUES READ FROM THE DISF. OR TAPE FOR FACTOR ANALYSIS DATA IN THE SUBROUTINE (CORRE).
- REAL ARRAY CONTAINING THE STORAGE FOR OUTPUT VALUES AND SECONDLY, THE DIFFERENCES FOR COMMUNALITIES IN THE SUBROUTINES (FACTOR AND VARMX).
REAL MATRIX CONTAINING THE FACTOR MATRIX UITH SQUARED VALUES IN THE SURROUTINE (FSCOR)
DATA
- REAL ARRAY CONTAINING STORAGE PLACE FOR DATA VALUES. CURRENTLY BEING PROCESSED.
- INTEGER VARIABLE CONTAINING TEMPORARY STORAGE FOR THE NUMEER OF VARIABLES. CALCULATING SIZE OF CENTRAL CUBE IF NUMBER OF ROTATEO FACTORS IS GREATER THAN NINE.
INTEGER VARIABLE CONTAINING THE OPTION FOR EXTREME ANALYSIS AS PART OF FACTOR ANALYSIS.
SUBR ANTAY CONTAINING JHE FINAL COMNUNALITIES IN THE SUBROUTINE (VARMX).
FC - REAL MATRIX CONTAINING FACTOR SCORE COEFFICIENTS.
FL - REAL MATRIX CONTAINING THE ROTATED FACTOR LOADINGS.
FMAX - REAL VARIABLE CONTAINING CURRENT MAXIMUM VALUE OF FACTOR LOADINGS ON EACH FACTOR.
FMT - INTEGER ARRAY CONTAINING THE VARIABLE FORMAT.
FN - A REAL VARIABLE CONTAINING THE NUMBER OF OBSERVATIONS FOR FACTOR ANALYSIS DATA.
H - REAL ARRAY CONTAINING THE ORIGINAL COMMUNALITIES.
IALPHA - INTEGER ARRAY CONTAINING THE ALPHABETIC SYMBOLS REPRESENTING VARIABLES.
ICCN - INTEGER VARIABLE CONTAINING THE NUMBER OF FACTORS TO BE ROTATED.
INTEGER ARRAY CONTAINING THE THREE IDENTIFICATION SUBROUTINES EXCEPT (GRUPN) OR EACH SET OF FACTOR SCORES IN THE SUBROUTINE (GRUPN).
INTEGER ARRAY CONTAINING THE IDENTIFICATION FIELOS (GRUPN).
- Integer variable containing the statistical value for THE DEGREES OF FREEDOM.
INTEGER VARIABLE CONTAINING A FLAG FOR BAD DATA NOT BEING PUT ONTO THE INPUT DISK FOR EACH ANALYSIS EXCEPT LEVEL.
- INTEGER VARIABLE CONTAINING A ONE IN VALUE FOR COMPARISON ANALYSIS AND A ZERO FOR OTHER ANALYSES. OR NEGATIVE AXIS IS BEING ANALYZED.
INTEGER VARIABLE CONTAINING A FLAG TO INDICATE THAT IN HISTOGRAM REPRESENT A RANGE OF VALUES DETERMINE WHETHER THE CURRENT DOMINANT VECTOR IS POSITIVE OR NEGATIVE.
IND - INTEGER VARIABLE CONTAINING THE INDICATOR FOR ANY
- INTEGER ARRAY CONTAINING ALPHABETIC CHARACTERS FOR THE HEADING PRINTING FOR LEVEL ANALYSIS. TO CURRENT RANKING (1), OTHERWISE (O).
IPRIN - INTEGER VARIARLE CONTAINING THE FLAG VALUE FOR PRINTING AND/OR PUNCHING FACTOR SCORES OR NOT.
IRANK - INTEGER ARRAY CONTAINING THE CURRENT RANKINGS FROM THE ORDER ANALYSIS DATA.
ISMKNT - INTEGER VARIABLE CONTAINING THE SUM OF THE NUMBER OF OBSERVATIONS FOR EACH DISTINCT DATA VALUE
ISORT - INTEGER VARIABLE CONTAINING A VALUE FOR DIRECTIMG THE
C

\(\begin{array}{ll}6 & \\ 6 & \end{array}\)






```

    102 READ (LU5,128) IHORO PUBLCOS9
    DO103 I=1.9 PUELCO40
            IF (IWORD.EQ.LBL(I)) 60 TO (105,110,110,110,110,110,127,103,104PURLC041
    1). 1 PUBLCO42
    103 CONTINUE PURLCO4E
    HRITE (LU6.130) IHORD PURLCO44
    GO TO 127
    104 READ (LU5,128) (PR(I),I=1,18)
    (LU,128) (PR(I),1=1*1&)
    GOTO 102
    ISK PUELCO48
C.. TRANSFER DATA TO A MASS STORAGE DISK IN BINARY. PURLCOGG
1CS DATCNT=DATCNT+1
NUMOT=0 PUELCOS?
KEAD (LUS,129) NID,NDAT,LUDATA,IWIDE,PRDAT PUELCOSE
READ (LUS,12E) (FMT(I), I=1,20) PUELCO54
IF (LUDATA.LE.O) LUDATA=LUS PUELCOSS
IF (LUDATA.NE.LUS) REWIND LUDATA PUBLCOSE
RE:IND LU
IF (NID.LE.O) NID=3
IF (NID.LE.3) 60 T0 106
WRITE (LU6,133)
GO TO 127
106 IF (NDAT.LE.O) NDAT=1
IF (NDAT.LE.80) GO TO 107
WRITE (LU6,137)
GO TO 127
107 IF (IWIDE.LE.0) IWIDE=0
IF (PRDAT,LE.C) PRDAT=O
IF (PRDAT.GT.O.AND.IWIDE.EQ.O) WRITE (LU6,134) DATCNT, (PR(I),I=1,1PUELCC68
18)
WRITE (LU) NID,NDAT
10ミ READ (LUDATA,FMT) (ID(I),I=1,NID),(DATA(J),J=1,NDAT)
NUMOT =NUMDT +1
IF (PRDAT.LT.1.OR.IWIDE.GT.O) GO TO 109
IF (ID(1).EQ.LEL(15)) GO TO 109
IF (NUMDT.GT.60) GO TO 109
WRITE (LUG,135) (ID(I),I=1,3), (DATA(J),J=1,NDAT) PUELCOTE
109 WRITE (LU) (ID(I),I=1,NID),(DATA(J),J=1,NDAT) PURLCOT7
IF (ID(1).EQ.LGL(15)) GO TO 102 PUELCOT\&
GOTO 108

```

```

C
110 READ (LU5,129) N1,N2,ICON,IPRIN,EXTOP
IF (H1.LT.1) N1=1
1F (N2.LT.N1) N2=N1
IF (N2.LE.NDAT) GO TO 111
WRITE (LU6,136) IWORD,N2,NDAT
GOTO 102
111 IF (1CON-LE.2) ICON=2
IF (ICON.GT.13) ICON=13
IF (IPRIN.LE,O) IPRIN=0 PUELCC91
IF (EXTOP.LE.O) EXTOP=0
LUA=LU2
IF (IWORD.EQ.LBL(5).OR.IHORD.EQ.LBL(6)) LUA=LU8
IF (IWORD.EG.LBL(2)) GOTO 115 PUBLCO95
REWIND LUA
REUIND LU
M=1+N2-N1
CORECT=(M* (M*1))/2
NOBS=0
C
C.......CHECK OF DATA VALUES.
READ (LU) NID,NDAT
Pu日LCC57
PUELC065
PU
PUELCO72
PUELCOTE
PUBLCC74
PUBLCO75
PUELCOT\&
PUBLC079
PU日LCO81
PUELCO\&2
PU日LCC8!
PUBLC084
PUBLCO85
PUBLCO8E
PUELCC87
PUELCO\&\&
PUBLC089
PUELCO9O
PUELCC91
PUELCO92
LUA=LU2 PUELCO93
PUELC094
PUBLC095
puelcoge
PUELC097
PMUBLCO98
PUELC099
PUELC100
PUBLC101
c
PUBLC102
PUBLC103

```
```

    112 READ (LU) (ID(I),I=1,NID),(DATA(I),I#1,NDAT) PUBLC105
    IERR=O
    IF (ID(1).EQ.L日L(15)) GO TO 113
    CALL DATCK (IERR,CORECT,DATA,ID,N1,N2)
    C
C . .... TrANSFER of good data to appropriate diSk file.
If (IERR.NE.O) GO TO 112
NCBS=NOBS+1
WRITE (LUA) (ID(I),I=1,3),(DATA(I),I=N1,N2)
GC TO 112
11? DO 114 I=1,7
IF (IHORD.EG.LEL(I)) GO TO (127,115,119,119,119,119,127), I
114 CONTINUE
HRITE (LUG,130) IWORD
GC TO }12
c
C ...... process level analysis.
C
115 11=N1
DC 11% N1=11,N2
NOES=0
REWIND LUA
REWIND LU
FEAD (LU) NID,NDAT
116 PEAD (LU) (ID(I),I=1,NID),(DATA(I),I=1,NDAT)
IF (ID(1).EQ.LBL(15)) GO TO 117
NOES = NOBS+1
WRITE (LUA) (ID(I),I=1,3),DATA(N1)
GO TO 116
117 CALL LEVEL
11\& COHTINUE
GO TO 102
11G IF (N2.GT.N1) GO TO 120
WRITE (LUE,131) IWORD,N1,N2
GC TO 102
120 GC TO (127,127,121,122,123,125), i
C
c...... Process kendall analysis.
121 CALL KENDAL (1,0)
GO TO 102
C
C ...... PROCESS ORDER ANALYSIS.
122 CALL ORDER (1,0)
GC TO 102
c
c...... process factor analysis.
123 I FAC=1
AFLAG=0
124 (ALL FACTOR (NFLAG,EXTOP)
IF (NFLAG.EQ.99) IFAC=0
\muPEF=%
KREF=ICON
GO TO 102
C
c ..... process compare amalysis.
125 IF (IFAC.NE.1.OR.M.NE.MREF.OR.ICON.NE.KREF) 60 TO 126
NFLAG=1
GC TO 124
126 WRITE (LU6,132)
60 TO 102
c

```

Puble 105
Publciob
puelciot
PURLC108
puelcics
PUELC110
Publci11
Puelcil2
PUELC113
PuElC114
puelcils
PUELC11t
PUBLC117
PLELC118
PUELC119
publci20
PUBLC121
PUELC122
PUBLC123
PUELC124
PUELC125
PUBLC126
PUELC127
PUELC128
publci2s
PUBLC13C
PUELC131
PUELC132
PUELC13？
PUBLC134
PLBLC135
PUELC136
PUELC137
PUELC138
PUELC13G
PURLC14C
PUELC141
PUELC142
PUELC143
PUELC144
PUELC145
PUELC146
PUELC147
PURLC148
PU日LC149
PUELC150
PUELC1S1
PUELC152
Publcisz
PUELC154
PUBLC15s
puelcise
PUELC157
PUELC158
PUELC159
PUELC160
PUELC161
PUELC162
PU日LC163
PUBLC164
PUELC165
puelciot
PLBLC167
PUELC168
Publci69
publcilo
```

C.... PROCESS STOP.
C
127 STOP
C
C......FORMATS USED IN THIS PROGRAM.
C
128 FORMAT (2CA4)
129 FGRMAT (4012)
13C FORNAT (22HO UNRECOGNIZED COMMAND, 2X,A4)
3GFCRYAT (SZHOMULTIVARISTE ANALYSIS REQUESTEO FOR-
1H CHECK COMMAND, 2X,A4, 2X,14HAND PARAMETERS, 2X,216)
PUELC181
1?2 FORMAT (G4HOCOMPARATIVE FACTOR ANALYSIS NOT PRECEDED BY PRIMARY ANPUELC182
1ALYSIS OR/24H DIMENSIONED DIFFERENTLY)
PUELC18?
133 FOFNAT (47HO NUMBER OF IDENTIFICATION FIELDS EXCEEDS THREE) PURLC184
124 FOK`AT (////1014 DATA SET,I2,28H (FIRST 60 OBSERVATIONS) FOR/1H ,1PUELC185
1\&A4/)
135 FORMAT (1H, 3A4,2X,35(F3.0)/1H,41(F3.0))) PUELC187
PLBLC186
136 FORMAT (1HO,A4,36H ANALYSIS REQUESTED FOR DATA ELEMENT,I3,14H WHICPUELC18\&
1H EXCEEDS/38H TOTAL NUMBER OF DATA ELEMENTS INPUT (,I2,2H).) PUELC189
1?7 FORMAT (1HO,41H TOTAL NUMBER OF DATA ELEMENTS EXCEEDS 80) PUELC19C
C
END
ELOCK DATA
C
C..... THIS SUBPROGRAM (BLOCK DATA) ENTERS INITIAL VALUES INTO
VARIABLES IN THE LABELED COMMON BLOCKS PRIOR TO PROGRAM
EXECUTION.
INTEGER IWIDE,LRL,LU,LU2,LU3,LU4,LUS,LU6,LU7,LU8,LU9,LU10
fEAL C
COMMON /LABEL/ LBL(56)
COMMON /QUAD/ C(9)
COMMON /UNIT/ LU,LU2,LU3,LU4,LU5,LU6,LU7,LU8,LU9,LU1O,IWIDE
DATA C(1)/.4306/,C(2)/.5936/,C(3)/.7108/,C(4)/.8017/.C(5)/.8761/
DATA C(6)/.9388/,C(7)/.9929/,C(8)/1.0404/,C(9)/1.0827/
DATA LBL(1)/4HDATA/.LBL(2)/4HLEVE/.LBL(3)/4HKEND/,LBL(4)/4HORDE/
DATA LBL(5)/4HFACT/,LBL(6)/4HCOMP/,LBL(7)/4HSTOP/,LBL(8)/4H /
DATA LBL(9)/4HTITL/,LBL(10)/2HST/,LBL(11)/2HND/,LBL(12)/2HRD/
DATA LEL(13)/2HTH/,LBL(14)/1H\/,LBL(15)/4HEND/,LBL(16)/1H-/
DATA LEL(17)/1H./,LBL(18)/1H+/,LBL(19)/1H /,LBL(2C)/1H1/
DATA LBL(21)/1H2/,LBL(22)/1H3/;LBL(23)/1H4/,LEL(24)/1H5/
DATA LBL(25)/1H6/,LBL(26)/1H7/,LBL(27)/1H8/,L日L(28)/1H9/
DATA LBL(29)/1H0/,LBL(30)/1H*/,LBL(31)/1HA/,LBL(32)/1HB/
DATA LBL(33)/1HC/,LBL(34)/1HD/,LBL(35)/1HE/,LBL(36)/1HF/
DATA LEL(37)/1HG/,L日L(38)/1HH/,LBL(39)/1HI/,LBL(40)/1HJ/
DATA LBL(41)/1HK/,LBL(42)/1HL/,LBL(43)/1HM/,LBL(44)/1HN/
DATA LBL(45)/1H0/,LBL(46)/1HP/,LBL(47)/1HQ/,LBL(48)/1HR/
DATA LEL(49)/1HS/.LBL(50)/1HT/,LBL(51)/1HU/,LBL(52)/1HV/
DATA LBL(53)/1HW/,LBL(54)/1HX/,LBL(55)/1HY/,LBL(56)/1HZ/
OATA LU/1/,LU2/2/,LU3/3/.LU4/4/,LU5/5/.LU6/6/,LU7/7/0LU8/8/,LU9/9/BLKDT030
DATA LU10/101 BLKDTO31
C
END
SUBROUTINE CORRE (N,M,D,XBAR,STD,RX,R)
C
C . . . THIS SUBROUTINE (CORRE) IS CALLED BY THE SUEROUTINE
(FACTOR) TO COMPUTE MEANS, STANDARD DEVIATIONS, SUMS OF CROSS-
PRODUCTS OF DEVIATIONS, AND CORRELATION COEFFICIENTS.
INTEGER I,ID(3),IHIDE,J,JK,K,L,LU,LU2,LU3,LU4,LU5,LU6,LU7,LU\&
INTEGER LU9,LU10,M,N
REAL B(15),D(15),FN,R(120),RX(225),STD(15), XBAR(15)
C
COMMON /UNIT/ LU,LUZ,LUS,LU4,LUS,LU6,LU7,LU8,LU9,LU9O,IHIDE
Puelicil1
C
PuBLC172
127 STOP
PUBLC173
C
128 FORMAT（20A4）
PUELC174
PUELC175
PUELC17E
PUELC177
PUELC178
PUELC17S
$1 \Xi 1$ FCRMAT（S2HOMULTIVARIATE ANALYSIS REQUESTED FOR SINGLE VARIABLE／14PUELC18C
1H CHECK COMMAND， $2 X, A 4,2 X, 14$ HAND PARAMETERS， $2 X, 216$ ）PUELC181
：2 FORMAT（64HOCOMPARATIVE FACTOR ANALYSIS NOT PRECEDED BY PRIMARY ANPUELC182
IDENTIFICATION FIELDS EXCEEDS THREE）
124 FOR MAT（／／／／10H DATA SET，I2．28H（FIRST 60 OBSERVATIONS）FOR／1H 1 PUELC185
135 FORMAT（1H，3A4，2X．3S（F3．0）／1H．41（F3．0））PUELC187
136 FORMAT（1HO，A4，36H ANALYSIS REQUESTED FOR DATA ELEMENT，I3，14H WHICPUELC188
1H EXCEEDS／38H TOTAL NUMBER OF DATA ELEMENTS INPUT（，I2，2H）．）PUELC189
127 FORMAT（ $1 H 0,41 \mathrm{H}$ TOTAL NUMBER OF DATA ELEMENTS EXCEEDS 80）
C
END ELOCK DATA
C．．．．THIS SUBPROGRAM（BLOCK DATA）ENTERS INITIAL VALUES INTO VARIABLES IN THE LABELED COMMON BLOCKS PRIOR TO PROGRAM EXECUTION．
PUELC19C
PURLC191
PUBLC192
BLKDTOO1
日LKDTOO2
日LKDTOO3
BLKDTOO4
ELKDTOOS
BLKOTCOE
BLKDT007
BLKOTCOE
BLKDTOOS
BLKDT01C
BLKDTC11
BLKDTC12
BLKOTO1？
BLKOTC14
BLKDTO15
BLKDTO16
BLKDTO17
ELKOT018
BLKDTO19
BLKOTO20
BLKDTO21
BLKDTO22
BLKDTO23
BLKDTC24
BLKDT025
BLKDTO2E
BLKDTO27
BLKDTO 28
BLKDTO2S
BLKDTO31
BLKDTO32
ELKDTO33
CORRE 001
CORREOO2
C ．．．．THIS SUBROUTINE（CORRE）IS CALLED 日Y THE SUEROUTINE CORREOOE CORREOO4 CCRREOO5 CCRREOOE CORREOO7 CCRREOOR CORRECOS CCRRE 010
COMMON／UNIT／LU，LUZ，LUS，LU4，LUS，LU6，LUT．LU8，LU9．LU9O，IHIDE CORREO11

```
```

C CORREO12
00 101 J=1,m
CORREO1I
101 8(J)=0.0
K=(M*M+M)/2
DO 102 1=1,K
1C2 R(1)=C.O
F N=N
C C READ THE OBSERYATIONS OME AT A TORREOIS
C... READ THE OBSERVATIONS ONE AT A TIME, SUM THE OBSERVATIONS,CORREOZO
C AND CALCULATE SUMS OF CROSS-PRODUCTS OF DEVIATIONS FROM MEANS. CCRREOZI
C CORREO22
DO 104 I=1,N CORREO2I
JK=0
READ (LUQ) (ID(L),L=1,3),(D(L),L=1,M)
DO 103 J=1.M
103 P(J)=B(J)+D(J)
DO 1CL J=1,M
DO 104 K=1,J
JK=JK+1
104R(JK)=R(JK)+D(J)*D(K)
C
C............clulate means.
J K=0
DO 105 J=1,m
XBAR(J)=B(J)/FN
C
C.........NUST SUMS OF CROSS-PRODUCTS OF DEVIATIONS FROM MEANS.
C
D0 105 K=1.J
JK= JK+1
105R(JK)=R(JK)-B(J)*B(K)/FN
C
C.......CALCulATE CORRELATION COEFFICIENTS.
C
JK=n
DO 106 J=1,M
JK= JK+J
106 STD(J)=SQRT(ABS (R(JK)))
DO 109 J=1,M
DO 109 K=J.M
dK= J + (K*K K K)/2
L=M* (J-1)+K
RX(L)=Q(JK)
L=M* (K-1)+J
RX(L) = R(JK)
IF (STD(J)*STD(K)) 108,107,108
107 R(JK)=0.0
IF (J.EG.K) R(JK)=1.0
GO TO 109
108 R(JK)=R(JK)/(STD(J)*STO(K))
109 CONTINUE
c
C......CALCULATE STANDARD DEVIATIONS.
C
FN=SQRT(FN-1.O)
DO 110 J=1,M
110 STD(J)=STD(J)/FN
RETURN
C
END
SUBROUTINE DATCK (IERR,CORECT,DATA,ID,N1,N2)
C
C - - THIS SUBROUTINE (DATCK) IS CALLED BY THE MAIN PROGRAM
C (PUBLIC) TO SET FLAG FOR BAD OBSERVATIONS WHICH WILL NOT GE
USED FOR ANALYSIS AND REVERSES RANK DATA FOR THE PURPOSES OF
FACTOR ANALYSIS.
CORREQ24
CORREO25
CCRREO2C
CCRREO27
CCRREO29
CCRREO29
C
CORRREC31
CORREO32
CCRREO33
CORREO34
CCRREO35
CCRREO36
CCRREOS7
CORREO38
CORREO39
CCRREO4C
CORRE041
CCRREOG2
CCRREC43
CCRREO44
CCRRE04S
CORREOGE
CCRREC47
CCRREC47
CORREC49
CORREOSO
CORREOS1
CCRREOS2
CORREOS?
CORREO5?
CORRECS4
CCRREOS5
CORREC56
CORREOS7
CORREOS7
CORREOS9
CORREO6O
CORREO61
CORREO62
CORRE063
CORRE064
CORREO65
CORREO65
CORREOGE
CCRREO67
CCRREC68
CORRE069
CORREO69
CORRE071
CORREOT2
DATCKCO1
DATCKOO2
DATCKOO3
OATCKOO4
DATCKOOS
DATCKODG
DATCKOOT

```
```

    INTEGER I,ID(3),IERR,IUIDE,J,LU,LUZ,LUS,LUG,LUS,LUG,LU7 DATCKOOZ
    INTEGER LU8,LU9,LU1O,N1,N2
    REAL CORECT,DATA(80),REVERS,SUM
    c
COMMON /UNIT/ LU,LU2,LU3,LU4,LUS,LU6,LU7,LU8,LU9,LU1O,IYIDE
SUM=0.0
REVERS=2+N2-N1
DO 101 1=N1,N2
101 SUM=SUM+DATA(I)
IF (AES(SUM-CORECT).LT.1.0E-30) 60 TO 102
IERR=1
WRITE (LUG,104) (ID(I),I=1,3),(DATA(J),J=N1,N2)
WRITE (LUG,105)
RETURN
102 DO TO3 I=N1,N2
103 DATA(I)=REVERS-DATA(I)
RETURN
c
C . . . . . . FORmATS USED IM this SUBROUTINE.
C
104 fORMAT (////111H DATA ENTRY,2X,3A4/15H WITH VALUES OF,2X,15F3.0)
1OS FCRRAT (35H IGNORED FOR THE FOLLOWING ANALYSIS)
c
END
SUGROUTINE EIGEN (N,R,A)
C C......this Subroutine (EIGEN) is called by the subroutine
C (FACTOR) TO COMPUTE EIGENVALUES AND EIGENVECTORS.
C
INTEGER I,IA,IJ,IL,ILQ,ILR,IM,IMQ,IMR,IND,IQ,J,IQ,K,L,LL,LM,LQ,M
INTEGER MM,MQ,N
REAL A(120),ANORM,ANRMX,COSX,COSX2,R(225),SINCS,SINX,SINX2,THR,X
REAL Y
c
C . . . . . . GENERATE IDEmtIty matrix.
c
10=-N
00 102 J=1,N
16=10+N
DO 102 I=1,N
I J=In+I
R(IJ)=0.0
IF (1-J) 102,101,102
101 P(1J)=1.0
102 CONTINUE
C
C...... COMPUTE INITIAL AND FINAL NORMS (ANORM AND ANORMX).
C
ANORM=0.0
DO 104 I=1,N
DO 104 J=1,N
IF (1-J) 103,104,103
103 IA=I+(J*J-J)/2
ANORM=ANORM+A(IA)*A(IA)
104 CONTINUE
IF (ANORM) 129.129,105
105 ANORM=1.414:SQRT(ANORM)
ANRMX=ANORM*1.OE-6/FLOAT(N)
c
C...... INITIALIZE INDICATORS AND COMPUTE THRESHOLD.
IND =0
IND=0 SHORM EIGENOSS

```
```

    106 THR=THR/FLOAT(N) EIGENO&O
    1C7 L=1 E EIGENO49
    108 M=L+1 EIGENO42
    c....... COMPUTE SIN AND cos.
109MQ=(M*M-M)/2
LQ=(L*L-L)/2
LV=L+MO
IF (APS(A(LM))-THR) 122,110,110
110 IND=1
LL=L+LO
MM=M+MG
x=0.5*(A(LL)-A(MM))
Y=-A(LM)/SQRT(A(LM)*A(LM) \& X*X)
If (X) 111,112,112
111 Y=-Y
112 SINX=Y/SORT(2.0*(1.0*(SQRT(ABS(1.0-Y*Y)))))
SINXZ=SINX*SINX
COSx=SQRT(1.0-SINX2)
cosx2=\operatorname{cos}x=\operatorname{cos}x
SINCS=SINX*\operatorname{cos}x
c
C . . . . . rotate l and m columms.
ILQ=N*(L-1)
IMQ =N*(M-1)
00 121 I=1,N
IG=(I*I-I)/2
IF (I-L) 113,120,113
IF (I-M) 114,120,115
IM=1*MO
GO TO 116
IM=M+1Q
IF (I-L) 117.118,118
IL=I+LQ
GO T0 119
IL=L+10
X=A(IL)*\operatorname{Cos}X-A(IM)*SINX
A(IM)=A(IL)*SINX+A(IM) \#COSX
A(IL)=X
ILR=ILQ Q I
IMR=IMQ+I
x=R(ILR)* (OSx-R(IMR)*SINX
R(IMR)=R(ILR)*SINX*R(IMR)*COSX
P(ILR) = X
121 CONTINUE
x=2.0*A(LM)*SINCS
Y=A(LL)* COS X2+A(MM)*SINX2-x
X=A(LL)*SINX2+A(MM)*\operatorname{Cos}\times2+X
A(LM) =(A(LL)-A (MM))*SINCS+A(LM)*(COS\times2-S1N\times2)
A(LL) = Y
A(MM) =X
c
c...... test for m=last column.
C
122 IF ( }M,-N\mathrm{ ) 123,124,123
123 M=M+1
60 TO 109
C
C...... TESt FOR l=SECOND from last cOlumn.
124 If (L-(N-1)) 125,126,125
125 L=L \$1
60 TO 108
126 If (IND-1) 128,127,128
EIGENO42
EIGENC43
EIGENO44
EIGENO4S
EIEENOLE
EIGENG47
EIGENOL\&
EI6ENO4S
EIGENOSO
EIGENOS1
EIGENOSZ
EIGENOS?
EIGENOS4
E1GENC55
EIGENOSE
EIGENOS7
EIGENOS\&
EIGENO5S
EIGENOSC
EIGEN061
EIGENO62
EIGEN063
EIGENO64
EIGENC65
EIGENO66
EIGEN067
EIGENOGE
EIGENC69
EIGENC7C
EIGENO79
EIGENOT2
EIGENO7?
EIGENOT4
EIGENO75
EIGENO76
EIGENO77
EIGEN078
EIGENO79
EIGEN080
EIGENC81
EIGENO82
EIGENC83
EIGENCB4
EIGENO85
EIGENO8E
EIGEN087
EIGENO88
EIGEN089
EIGEN090
EIGEN091
EIGENO92
EIGENO9?
EIGENO94
EIGENO9S
EIGENO9%
EIGENO97
EIGENOO8
EIGENO99
EIGEN10C
EIGEN101
EIGEN102
EIGEN103
EIGEM104
EIGEN105

```


```

        COFMON /ARRAY/ VALUS(5000) FACTRO1I
        COMMCN /INPT/ NOES,M,ICON,IPRIN,PR(18),N1,M2,DATCNT
        CCMMCN /LABEL/ LBL(S6)
        CCMMON /LOADNG/ FL(15.15)
        COMMON /UNIT/ LU,LU2,LU3,LU4,LU5,LU6,LU7,LU8,LU9,LU10,IWIDE
    C
C
1C1
1=1,3
ID(I)=LBL(8)
REWIND LU8
IF (NFLAG.EQ.1) GO TO 102
GRITE (LUE,126) (PR(I),I=1,18),N1,N2,DATCNT,NOBS,M
60 TO 103
1C2 WRITE (LU6,132) (PR(I),I=1,18),N1,N2,OATCNT,NOBS,M
1C3 CALL CORRE (NOBS,M,B,XBAR,S,V,R)
C
C.... PRINT MEANS, STANDARD DEVIATIONS, AND CORRELATION
CUEFFICIENTS.
IF (P.GT.C.AND.IWIDE.GT.O) 60 TO 108
DO 1[G J=1.M
104 XEAP(J) =(FLOAT(M)+1.0)-XBAR(J)
IF (M..LE.10) GO TO 10S
N = N 1 +9
WRITE (LU6,125) (I,I=N1,N3)
GC TC 106
1CS bRITE (LU6,125)(I,I=N1,N2)
10t GRITE (LUG,127) (XBAR(J),J=1,m)
DO 1二7 J=1.M
1:7 XRAR(J)=(FLOAT(M)+1.0)-XBAR(J)
WRITE (LU6,128) (S(J),J=1,M)
IF (fFLAG.EQ.1) GO TO 123
108 DC 109 LL=1,M
SD(LL)=S(LL)
109 CCNTINUE
IF (M.LE.6.OR.IWIDE.LE.O) WRITE (LU6.129)
DO 113 I=1gM
DO 112 J=1,M
IF (I-J) 110,111,111
L=I*(J*J-J)/2.
GO TO 112
L=J + (I*I-I)/2
D(J)=R(L)
IF (M.LE.G.OR.INIDE.LE.O) WRITE (LUG,130) I,(D(J),J=1,M)
113 CONTINUE
C
C . . . COUNT THE NUMBER OF VARIAGLES UITH ZERO STANDARD
C DEVIATION
NSDZ=C
DO 114 J=1,M
IF (ABS(S(J)).GT.1.OE-30) GO TO 114
NSDZ=NSDZ*1
114 CONTINUE
C
C. . . REDUCE ICON, IF NECESSARY, TO BE LESS THAN NUMBER OF
C
C
VARIABLES HITH NON-ZERO STANDARD DEVIATION.
IF (ICON.LE.(M-NSDZ-1)) GOT0 116
ICON=M-NSDZ-1
IF (ICON.LT.2) GOTO 115
IF (NSDZ.GT.O) WRITE (LUG.137) NSDZ
IF (NSDZ.EQ.O) WRITE (LUG,140)

```

FACTRO13
FACTRO14
FACTRO15
FACTRO1E
FACTRO17
FACTRC18
FACTRO1s
FACTRO2C
FACTRC21
FACTRO22
FACTRO2
FACTRO24
FACTRC25
FACTRO2E
FACTRO27
FACTRC28
FACTRO29
FACTRO3C
FACTRO31
FACTRO32
FACTRO33
FACTRC34
FACTRO35
FACTROSE
FACTRO37
FACTRO38
FACTRO39
FACTRO4C
FACTRO41
FACTROL2
FACTRO43
FACTRO44
FACTRO45
FACTRO46
FACTRC47
FACTRO48
FACTRC4S
FACTROSO
FACTROS 1
FACTRO52
fACTROS3
FACTROS4
FACTRCSS
factrose
FACTROS7
FACTRC58
FACTRCSS
FACTROGC
FACTRO61
FACTROE?
FACTR063
FACTRO64
FACTRO65
FACTROGE
FACTRO67
FACTRO68
FACTRO69
FACTRC7C
FACTRO71
FACTRO72
FACTRO73
FACTRC74
FACTRO75
fACTRO76
```

```
        WRITE (LUG,139) ICON,ICON FACTQCT7
```

```
        WRITE (LUG,139) ICON,ICON FACTQCT7
    GOTO 116
    GOTO 116
115 WRITE (LUG,137) NSDZ
115 WRITE (LUG,137) NSDZ
WQITE (LU6,138) FACTRO8C
WQITE (LU6,138) FACTRO8C
        AFL^G=99
        AFL^G=99
RETURN FACTRC82
RETURN FACTRC82
C
C
C... CALCULATE AND PRINT PROPORTION OF CONTRIQUTION OF
C... CALCULATE AND PRINT PROPORTION OF CONTRIQUTION OF
        EIGENVALUES.
        EIGENVALUES.
11E CALL EIGEN (M,V,R)
11E CALL EIGEN (M,V,R)
    L=U
    L=U
    DO 117 I=1.M
    DO 117 I=1.M
        L=L+I
        L=L+I
        D(I)=R(L)/FLOAT(M)
        D(I)=R(L)/FLOAT(M)
    117 CCNTINUE
    117 CCNTINUE
IF (M.LE.G.OR.IHIDE.LE.O) WRITE (LU6.131)(D(J),J=1.M)
IF (M.LE.G.OR.IHIDE.LE.O) WRITE (LU6.131)(D(J),J=1.M)
    CALL LOAD (M,ICON,V,R)
    CALL LOAD (M,ICON,V,R)
    CALL VARMX (M,ICON,V,B,D,T)
    CALL VARMX (M,ICON,V,B,D,T)
    REWIND LU4
    REWIND LU4
    IF (ICON.LE.G.OR.IWIDE.LE.O) WRITE (LU6.133) ICON
    IF (ICON.LE.G.OR.IWIDE.LE.O) WRITE (LU6.133) ICON
    KEWIND LUG
    KEWIND LUG
    DO 119 I=1.m
    DO 119 I=1.m
        DO 118 J=1,ICON
        DO 118 J=1,ICON
            L=M*(J-1) +I
            L=M*(J-1) +I
            S(J)=V(L)
            S(J)=V(L)
    11E FL(J,I)=S(J) FACTR103
    11E FL(J,I)=S(J) FACTR103
C 11E FL(S,I)=S(J)
C 11E FL(S,I)=S(J)
C... STORE ROTATED FACTOR MATRIX ON DEVICES LUP AND LUG. THEN FACTRIOS
C... STORE ROTATED FACTOR MATRIX ON DEVICES LUP AND LUG. THEN FACTRIOS
C PKINT ON OUTPUT FILE. FACTR1OG
C PKINT ON OUTPUT FILE. FACTR1OG
        WRITE (LU9) (S(J),J=1,ICON) FACTR10&
        WRITE (LU9) (S(J),J=1,ICON) FACTR10&
        WRITE (LU4) (ID(J),J=1,3),(S(J),J=1,ICON) FACTR10S
        WRITE (LU4) (ID(J),J=1,3),(S(J),J=1,ICON) FACTR10S
            N3=N1+I-1 FACTR11C
            N3=N1+I-1 FACTR11C
            IF (ICON-LE.6.OR.IWIDE.LE.O) WRITE (LU6,134) N3,IALPHA(I),(S(J)FACTR111
            IF (ICON-LE.6.OR.IWIDE.LE.O) WRITE (LU6,134) N3,IALPHA(I),(S(J)FACTR111
    1,J=1,ICON) FACTR112
    1,J=1,ICON) FACTR112
    119 CONTINUE FACTR113
    119 CONTINUE FACTR113
    CALL PLOT (M,ICON,1,0)
    CALL PLOT (M,ICON,1,0)
C
C
C. - PRINT COMMUNALITIES IF ANY DIFFERENCES ARE GREATER THAN
C. - PRINT COMMUNALITIES IF ANY DIFFERENCES ARE GREATER THAN
    0.001.
    0.001.
    DC 1こO I=1,M
    DC 1こO I=1,M
        IF (D(I).GT.O.001) 60 TO 121
        IF (D(I).GT.O.001) 60 TO 121
    12C CCNTINUE F
    12C CCNTINUE F
    GO TO 123
    GO TO 123
    121 hRITE (LU6,135)
    121 hRITE (LU6,135)
    DC 122 I=1,M
    DC 122 I=1,M
        N3=N1+I-1
        N3=N1+I-1
    122 WRITE (LU6,136) N3,B(I),T(I),D(I)
    122 WRITE (LU6,136) N3,B(I),T(I),D(I)
C
C
C.*. CONTINUE FACTOR ANALYSIS WITH CALCULATION OF FACTOR FACTRIZE
C.*. CONTINUE FACTOR ANALYSIS WITH CALCULATION OF FACTOR FACTRIZE
        SCORES.
        SCORES.
123 CALL FSCOR (M,ICON,XBAR,SD,V,NFLAG)
123 CALL FSCOR (M,ICON,XBAR,SD,V,NFLAG)
    IF (NFLAG.EG.99) RETURN
    IF (NFLAG.EG.99) RETURN
        REWIND LU8
        REWIND LU8
C...... PROCESS EXTREME ANALYSIS IF DESIRED.
C...... PROCESS EXTREME ANALYSIS IF DESIRED.
    IF (NFLAG.GT.O.OR.EXTOP.GT.O) GO TO 124
    IF (NFLAG.GT.O.OR.EXTOP.GT.O) GO TO 124
    CALL EXTRM (M,ICON)
    CALL EXTRM (M,ICON)
    124 RETURN
    124 RETURN
C
C
C......FORMATS USED INTHIS SUBROUTINE.
C......FORMATS USED INTHIS SUBROUTINE.
FACTROTA
FACTROTA
FACTRO79
FACTRO79
    FACTRC81
    FACTRC81
    FACTRC82
    FACTRC82
C
C
FACTRO84
FACTRO84
FACTRO85
FACTRO85
FACTRO&E
FACTRO&E
FACTRCE7
FACTRCE7
FACTRO88
FACTRO88
FACTRC8G
FACTRC8G
FACTRC8Y
FACTRC8Y
FACTR090
FACTR090
    FACTRO91
    FACTRO91
FACTRO92
FACTRO92
FACTR093
FACTR093
FACTRO94
FACTRO94
FACTR09S
FACTR09S
FACTRO9E
FACTRO9E
FACTR097
FACTR097
FACTRC9&
FACTRC9&
FACTR09G
FACTR09G
FACTR100
FACTR100
FACTR101
FACTR101
FACTR102
FACTR102
FACTR103
FACTR103
FACTR104
FACTR104
FACTR106
FACTR106
FACTR1C7
FACTR1C7
FACTR114
FACTR114
C
C
FACTR108
```

FACTR108

```
```

    FACTRO8C
    ```
    FACTRO8C
    FACTRO83
    FACTRO83
    FACTRO84
    FACTRO84
FACTR105
FACTR105
FACTR1OS
FACTR1OS
FACTR11C
FACTR11C
C 0.001.0N AF ANY DIFFERENCES ARE GREATER THAN
C 0.001.0N AF ANY DIFFERENCES ARE GREATER THAN
FACTR115
FACTR115
FACTR116
FACTR116
FACTR117
FACTR117
FACTR118
FACTR118
FACTR119
FACTR119
FACTR12C
```

FACTR12C

```


```

FACTR121

```
FACTR121
FACTR122
FACTR122
FACTR123
FACTR123
FACTR124
FACTR124
FACTR125
FACTR125
FACTR126
FACTR126
FACTR127
FACTR127
C SCORES
C SCORES
C
C
FACTR128
FACTR128
FACTR129
FACTR129
FACTR13C
FACTR13C
FACTR131
FACTR131
FACTR132
FACTR132
FACTR133
FACTR133
FACTR134
FACTR134
C
C
FACTR135
FACTR135
FACTR136
FACTR136
FACTR136
FACTR136
FACTR138
FACTR138
FACTR139
FACTR139
FACTR1&C
FACTR1&C
C
C
FACTR141
FACTR141
FACTR142
```

FACTR142

```
```

    125 FORMAT (17HOVARIABLE NUMBERS/19, 10(5x,I3,3x))
    FACTR163
    126 FORMAT (21H1FACTOR ANALYSIS...../11X,18AG/13H FOR VARIABLE,I3,17H TFACTR144
        1HROUGH VARIABLE,I3,12H OF DATA SET,I3/13X,12HNO. OF CASES,4X,I6/3XFACTR145
        2,16HNO. OF VARIABLES,I6/)}\mathrm{ FACTR146
    127 FORMAT (6HOMEANS/1X,10F11.S/1X,5F11.5) FACTR147
    12% FORMAT (2OHOSTANDARD DEVIATIONS/1X,10F11.5/1X,SF11.5) FACTR148
    129 FCRMAT (2SHOCORRELATION COEFFICIENTS) FACTRI49
    12C FCFMAT (4HOROW,I3/1X,10F11.5/1X,5F11.5) FACTRISC
    131 FORMAT (2GHOPROPORTION OF EIGENVALUES/1X,10F11.5/1X,5F11.5) FACTR151
    122 FCRMAT (22H1COMPARE ANALYSIS....../1X,18A4/13H FOR VARIAELE,IE,17H FACTR1S2
        1THROUGH VARIABLE,I3,12H OF DATA SET,I3/13X,12HNO. OF CASES,4X,IG/3FACTRISE
        2X,1GHNO. OF VARIARLES,I6/)
    123 FCEMAT (1HO/24H ROTATED FACTOR MATRIX (,I3,9H FACTORS)) FACTRISS
    134 FORMAT (9HOVARIABLE,I3,1H=,A1/1X,10F11.5/1X,5F11.5) FACTR15E
    125 FCRMAT (9HO/23H CHECK CN COMMUNALITIES//9H VARIABLE,7X,8HORIGINAL,FACTRI5?
        112X,5HFINAL, 10X,10HDIFFERENCE) FACTR15E
    136 FORMAT (1H,I6,3(F11.5.1X)) FACTR15G
    137 FORMAT (1HO,I2,44H VARIABLES HAVE STANDARD DEVIATIONS OF ZERO.) FACTR16C
    13E FORMAT (58% MEANINGFUL FACTOR ANALYSIS NOT POSSIBLE ON THIS DATA SFACTR161
        1ET.) factr162
    12G FCRMAT (25H ROTATION OF A MAXIMUM OF,13,17H FACTORS POSSIBLE/45N FFACTR16Z
        IACTOR ANALYSIS CONTINUES WITH ICON RESET TO,I3) FACTR1GG
    14O FORMAT (1HO,63HNUMEER OF ROTATED FACTORS MUST BE LESS THAN NUMEER FACTR16S
        IOF VARIABLES) FACTR16G
    C
END
SUGROUTINE FSCOR (M,N,W,Y,C,NFLAG)
c
C..... THIS SUBROUTINE (FSCOR) IS CALLED OY THE SUBROUTINE
C (FACTOR) TO COMPUTE FACTOR SCORES FOR NS SUBJECTS ON N FACTORS FSCOROC4
C FROM M TESTS. THE CONCEPT WAS ADOPTED FRON A COOLEY-LOHNES FSCOROOS
PGOGRAM.
INTEGER DATCNT,DUM,I,ICON,ID(3),II,IPRIN,ISTORE,IMIDE,J,K,LU,LUZ
INTEGER LU3,LU4,LUS,LU6,LU7,LU8,LU9,LU10,M,N,ND21,NFLAG,NNN,NS
INTEGER N1,N2,PR
FEAL AVEFSC(15),C(15,15),D(15,15),SUMFSC(15),V(15),VALUS,W(15)
FEAL X(15),Y(15),Z(15)
C
COMMON /ARRAY/ VALUS(5000)
CCMMON /INPT/ NS,DUM,ICON,IPRIN,PR(18),N1,N2,DATCNT
CCMMON /UNIT/ LU,LUZ,LUS,LU4,LUS,LUG,LUT,LU8,LUQ,LUIO,IWIDE FSCOROIE
c
WRITE (LU6,115)
IF (NFLAG.EQ.1) GO TO 107
REWIND LUG
c
C . . . . . READ FACTOR MATRIX AND MULTIPLY IT EY ITS TRANSPOSE. F
DO 101 J=1,M
READ (LU?) (C(K,J),K=1,N) FSCORC25
101 CONTINUE
DO 102 J=1,N
DO 1C2 K=1,N
D(J,K)=0.0
DO 1こ2 }1=1,
102D(J,K)=D(J,K)+C(J,1)*C(K,I)
C
C ...... INVERT the matrix (D).
CALL MATINV (N,D)
DO 1C4 K=1,M
DO 103 J=1,N
z(J)=0.0
DO 103 1=1,N
z(J)=z(J)+C(I,K)\#0(I,J)
FACTR167
FACTR168
FSCOROO1
FSCOROO2
FSCORCO3
C
FSCOROOE
FSCOROO7
FSCORCO8
FSCOROO9
FSCORO1C
FSCORO11
FSCORO12
FSCORO13
FSCORO1G
FSCORC15
FSCORO1E
FSCORO17
FSCORO18
FSCORO1s
FSCORO2C
FSCORO21
FSCORO22
FSCORO23
FSCORO24
FSCORC25
FSCORO26
FSCORO27
FSCORO28
FSCORC2S
FSCORO3C
FSCORC31
FSCORO32
FSCORO33
FSCORO34
FSCORC35
FSCORO3E
FSCORO37
FSCORC38
FSCORO3S
FSCORO4C

```
```

    DO 104 I=1,N FSCORO41
    104C(I,K)=Z(I) FSCORO42
    C
C . . THE MATRIX (C) NOW CONTAINS COEFFICIENTS COMPUTED AS
C** (A* ((A-PRIME * A) INVERSE)) TRANSPOSE.
DO 105 J=1,N
DO 105 K=1,M
IF (ARS(Y(K)).LT.1.OE-30) Y(K)=1.0E30
105 ( (J,K) =C (J,K)/Y(K)
DO 1C6 J=1,N
2(J)=0.0
DO 1C6 K=1,M
106 2(J)=Z(J)+C(J,K)*W(K)
REWIND LUQ
WRITE (LU9) (Z(J),J=1,N),((C(J,K),J=1,N),K=1,M) FSCORO5E
C
C C. . RAW SCORE WEIGHTS ARE NOW IN MATRIX (C). AND CORRECTIONS
ARE IN ARRAY (Z).
GO TO 103
107 FEWIND LU9
READ (LUQ)(2(J), J=1,N),((C(J,K),J=1,N),K=1,M)
108 NNN=0
REWIND LU\&
REWIND LUZ
REWIND LUG
IF (N.LT.2) N=2
ND21=N*2+1
C
C. - CALCULATE FACTOR SCORES AND AN AVERAGE FOR THE FACTOR
C SCORES.
DC 109 J=1,N
SUMFSC(J)=0.0
AVEFSC(J)=0.0
109 CONTINUE
DO 112 I=1,NS
READ (LUQ) (ID(J),J=1,3),(x(J),J=1,m)
DO 110 J=1,N
v(J)=0.0
CO 110 K=1,M
110 V(J)=V(J)+C(J,K)*x(K)
DO 111 J=9,N
V(J)=V(J)-Z(J)
111 SUMFSC(J)=SUMFSC(J)+V(J)

```


```

    M, CALL GROUP (ID,NNN,V,N,ND21,ISTORE)
    1(V(J),J=1,N)
    112 WRITE (LUG)(ID(J),J=1,3), ISTORE, (V(J),J=1,N)
    l12 WRITE (LUG) (ID(J),J=1,3), ISTORE,(V(J),J=1,N)
    113 AVEFSC(J)=SUMFSC(J)/FLOAT(NS)
    WRITE (LUG,117) (AVEFSC(J),J=1,N)
    REWIND LUG
        CALL GRUPN (NS,ND21,N)
        REWIND LUG
        CALL PLOT (NS,N,2,1)
        RETURN
    C

```

```

C
114 FORMAT (3A4,13F5.2)
115 FCRMAT (1HO,6X,13HFACTOR SCORES/)
116 FORMAT ( }6X,3A4,3X,8F6.2/(18X,5F6.2)
117 FORMAT (1HO.9X,7HAVERAGE,4X,8F6.2/(18X,5F6.2))
104C(I,K)=Z(I) FSCORO42
FSCORC4?
FSCORO44
FSCORO45
FSCORO4E
FS CORO47
FSCORO48
FSCORO49
FSCORO5C
FSCOROS1
FSCORO52
FSCOROS?
FSCORO54
FSCOROS5
WRITE (LU9) (Z(J),J=1,N),((C(J,K),J=1,N),K=1,M) FSCORO5E
FSCOROS7
FSCORO58
FSCORO58
FSCORO6C
FSCORC61
FSCORO62
FSCORC63
FSCORC64
FSCORC65
FSCOROGE
FSCORC67
FSCORC69
FSCORCGS
FSCORO7C
FS CORO71
FSCORO72
FSCORO73
FSCORO74
FSCORO75
FSCORO7E
FSCORO77
FSCORO77
FSCORC78
FSCORO79
FSCORC8C
FSCORO81
FSCORO82
FSCORO8!
FSCORC84
FSCORO85
FSCORO86
FSCORC88
C
c
C
C
FSCORO87
FSCORC89
FSCORC89
FSCORC91
FSCORO92
C
C

```
```

C
END FSCOR107
SUBROUTINE GROUP (ID,N,X,ND,NDZ1,ISTORE) GROUPOO1
c
C.-. THIS SUBROUTINE (GROUP) IS CALLED BY THE SUBROUTINE GRCUPCOZ
C (FSCOR) TO SORT VARIABLES INTO SECTORS WHICH ARE EQUAL AREAS ATGRCUPOOG
C EACH EXTREME AND A MIDDLE ZONE.
INTEGER I,ID(3),ISTORE,IWIDE,J,K,KOUNT(27)
INTEGER L,LU,LUZ,LUS,LU4,LU5,LU6,LU7,LU8,LU9,LU1O,N,ND,ND21,NN
REAL C,CENT,EP, X(ND),Z
COMMON /QUAD/ C(9)
COMMON /UNIT/ LU,LU2,LU3,LU4,LUS,LU6,LU7,LU8,LU9,LU10,IWIDE
ISTORE=O
C...... CHECK PARAMETERS AT FIRST ENTRY.
C
IF (N.NE.O) GO TO 102
DO 121 L=1,ND21
KOUNT(L)=0
1:1 CONTINUE
C
C..... VALUES OF CENT DETERMINES MIDDLE ZONE.
C
102 1F (ND.LE.9) CENT=C(ND)
EP=1.C/FLOAT (ND)
EP=FLOAT(ND21)**EP
IF (ND.GT.9) CENT=4.4/(2.0*EP)-0.5
DO 1こ3 K=1,ND
IF (ABS(X(K)).GT.CENT) GO TO 104
1E? CONTINUE
I=1
GO TO 107
C
C .....CHECK FOR DOMINANT VECTOR:
C
104 z=0.0
DO 105 L=1,ND
IF ((ABS(X(L))).LT.Z) GO TO 105
Z=ABS(X(L))
K=L
105 CONTINUE
NN=?
IF (X(K).GT.O.O) GO TO 106
NN=1
10. I=K*2+NN
107 KOUNT(I)=KOUNT(I)+1
N=KOUNT (I)
IF (N.GT.1250) WRITE (LU6,108) (ID(d),J=1,3),X(K)
IF (N.LE.1250) ISTORE=I
RETURN
C
C.....FORMAT USED IN THIS SUBROUTINE.
C
10% FORMAT (18H OVERFLOU OF CLASS,1X,16HUITH OBSERVATION,1X,3AK,2X,6H
OBSERVATION.1x,3AG.2X,6HVGRCUPC5S
1ALUE=,F12.4) GRCUPOSE
C
END
SUBROUTINE GRUPN (NY,NDZ1,ND)
C
C...... THIS SUBROUTINE (GRUPN) IS CALLED BY THE SUBROUTINE
(FSCOR) TO EXTRACT DATA FROM DATA TAPE ACCORDING TO GROUP
ASSIGNMENT AND PERFORM SORT KENDAL AND ORDER ANALYSIS ON EACH GRUPNOOG
GROUP.
GROUP.
FSCOR107
FSCOR108
GROUPOO1
GRCUPOO2
GRCUPCOZ
ATGRCUPOO4
GRCUPCOS
grcupcoe
GRCUPOOT
GROUPOOR
GRCUPOOS
GRCUPOIC
GROUPO11
GRCUP012
GRCUP013
GRCUPC14
GROUPO1S
GRCUPO16
GACUPC17
GRCUPO18
GRCUPC1S
GRCUPO2O
GRCUPO21
$C$ GRCUPCZ2
C. - . VALUES OF CENT DETERMINES MIDDLE ZONE. GRCUPOZZ
102 IF (ND.LE.9) CENT=C(ND) GRCUPO25
$E P=1 . C / F L O A T(N D) \quad$ GRCUPO26
$E P=F L O A T(N D 21) * * E P \quad$ GROUPO27
(GRCUPO28
GROUPO2S
GRCUPO30
GRCUPO31
GRCUPO32
6RCUPO33
GROUPO34
GRCUPC35
GRCUPO3E
GROUPO37
GRCUPC38
GRCUPO39
GROUPC4C
GRCUPO41
GRCUPO42
GROUPC43
GROUPO44
GRCUPG4S
GRCUPOLE
GRCUPO47
GRCUPC48
GRCUPC4S
GRCUPOSC
GROUPOS1
GRCUPOS2
GRCUPOS3
GRCUPO54
GRCUPOSE
6
END GROUPOS 7
GROUPOS\&
GRLPNCO1
GRUPNOO2
GRUPNCO3
GRUPNOO4
GRUPNOO5
GRUPNOOE

```
```

C
INTEGER DATCNT,I,ICON,ID(3),IDD(3),IGZ,IPRIN,ISORT,ISTORE,IUIDE
INTEGER J,JGRP,K,KD,LBL,LU,LUZ,LU3,LU4,LU5,LU6,LU7,LU8,LU9,LU1O,M GRUPNOO9
INTEGER NCNT,ND,ND2,ND21,NF,NOBS,NS,NUMOBS,NY,N1,N2,PR GRLPNC1C
REAL AVG,DATA(15),SUMSO,V(15),X
COMMON /ARRAY/ X(1250),KD(3.1250)
CCMMON /INPT/ NUMOBS,M,ICON,IPRIN,PR(18),N1,N2,DATCNT
COMMUN /LABEL/ LBL(56)
COMMON /UNIT/ LU,LU2,LU3,LU4,LUS,LU6,LU7,LU8,LU9,LU1O,IWIDE
C
NS=NV
GRITE (LU6.111)
DO 1C8 ND2=1,ND21
NCES=0
NCNT=0
REWIND LUZ
FEWIND LU4
REWIND LU8
IGZ=NDZ/L2
DO 104 I=1,NS
READ (LU8) (IDD(J),J=1,3), (DATA(J), J=1,M)
READ (LU4) (ID(J),J=1,3),ISTORE,(V(J), J=1,ND)
IF (ISTORE.NE.ND2) GO 10 104
NOBS=NOBS+1
C
C.* * *RITE DATA VALUES ONTO INPUT DISK FOR KENDALL AND ORDER
C ANALYSIS OF GROUPS.
WRITE (LUZ) (IDD(J), J=1,3),(DATA(J), J=1,M)
IF (ID(3).EQ.C.OR.ID(3).EE.LBL(8)) GO TO 104
NCNT=NCNT+1
IF (ND2.NE.1) GO TO 102
SUMSQ=0.0
DO 101 J=1,ND
SUMSQ=SUMSQ+V(J)*V(J)
X(NCNT)=SQRT(SUMSQ)
GO TO 103
X(N(NT)=V(IGZ)
KD(1,N(NT)=ID(1)
KD(2,NCNT)=ID(2)
KD(3,NCNT)=ID(3)
CONTINUE
ISORT=1
1GZ=162*2
IF (IGZ.EQ.NDZ) ISORT=O
IF (NCNT.GE.2) CALL SORT (NCNT,ISORT,AVG)
IF (ND2.EQ.1) WRITE (LUG.113)
IF (ND2.GT.1) JGRP=ND2-1
WRITE (LU6,109)
IF (ND2.E日.1) GO T0 10S
NF=IG2/2
IF (ISORT.EG.O) WRITE (LUC,114) JGRP,NF
IF (ISORT.EQ.1) WRITE (LUG,11S) JGRP,NF
IF (NCNT.EQ.O) GO TO 107
DO 106 I=1,NCNT
WRITE (LUG,112) (KO}(K,I),K=1,3),X(I
1CE CUNTINUE
IF (NCNT.GE.2) WRITE (LUG,110) AVG
107 NUMOBS =NOBS
IF (NOBS.LT.2) 60 TO 108
IF (ND2.EQ.1) JGRP=0
CALL KENDAL (O,JGRP)
CALL ORDER (O,JGRP)
1C8 CONTINUE
REWIND LUZ
NUMOBS=NS
RETURN
C

```
```

C...... FORMATS USED IN THIS SUBROUTINE. GRLPMO76
c
109 FORMAT (//)
110 FORMAT (/10X,1GHAVERAGE = ,F13.3/)
119 FORMAT (4SM1 IDENTIFICATION OF INDIVIDUALS WITHIN GROUPS)
11 format (4SH1 IDENTIFICATION OF INDIVIDUALS WITHIN GROUPS)
112 FORMAT (9H , 8X,3A4,F12.3)
113 FORMAT (31HOINDIVIDUALS CLOSEST TO AVERAGE)
114 FORMAT (GHCGROUP, 2X,12;2OH--POSITIVE ON FACTOR,I2)
115 FORMAT (GHCGROUP,2X,12,2OH--NEGATIVE ON FACTOR,12)
END
SUEROUTINE HIST (NUMCAT,CATEGS,RANVAL,XMAX,IFLAG)
...... this subroutine (hist) is Called by the subroutine
(LEVEL) TO PLOT A HISTOGRAM OF OCCURENCES OF A UNIQUE NUMEER
Of VALUES and plot them in terms of a percentage of the total
NUMBER OF OBSERVATIONS fOR THIS PARTICULAR VARIAELE.
INTEGER I,IFLAG,INIDE,J,K,LBL,LU,LUZ,LUS,LU4,LUS,LUG,LUT,LU8,LU9
INTEGER LUIO,NUMCAT,STAR
REAL CATEGS(13),PCT,RANVAL(13), XMAX
COMmGN /LABEL/ LBL(56)
COMMON /UNIT/ LU,LUZ,LUS,LU4,LUS,LU6,LUT,LU8,LU9,LU1O,IWIDE
hrite (lue,102)
STAR=LEL(14)
OO 1こ1 I=1,NUMCAT
*FITE (LUG,103) CATEGS(I)
PCT=(CATEGS(I)/XMAX) * 60.0
K=1FIX(PCT)
IF (K.GT.64) K=64
HRITE (LU6,104) RANVAL(I),(STAR,J=1,K)
1C1 CONTINUE
IF (IFLAG.EQ.1) URITE (LUG,105)
RETURN
c
c .......formats used in this sueroutine.
102 FORMAT (1HO/1HC,51H(PERCENTAGES REPRESENTED ABOVE THE INDIVIDUAL EH
1ARS)/1/
103 FORMAT (7X,1HI,F6.1)
104 FORMAT (1X,F6.2,1HI,80A1/7X,1H1)
104 FORMAT (1X,F6.2,1HI,80A1/7X,1H1)
1 OF A RANGE OF VALUES IE/1HO,5X,66HTHE RANGE fOR THE FIRST CATEGORHIST OSG
2Y IS---MAXVAL TO VALUE PRINTED ETC.) HIST O35
c
END
SURROUTINE KENDAL (CCNTRL,JGRP)
HIST 036
HIST O36
KENDLOO1
C
C -... this subroutine (KENDAL) is called oy the main program
(FUBLIC) AND BY THE SUBROUTINE (GRUPN) TO COMPUTE KENDALLJS
CONCORDANCE COEFFICIENT.
KENDLOOZ
KENDLOO?
KENDLOO4
KEMDLOOS
KENDLOOE
INTEGER CCNTRL,DATCNT,I,ICON,ID(3),IDF,IPRIN,IWIDE,J,JGRP,K,LU,LUZKENDLCOT
INTEGER LUZ,LU4,LUS,LU6,LUT,LU8,LU9,LU9O,M,NOBS,N1,N2,PR KENDLOO\&
REAL CHISQ,DATA(15), KENCC,SUMMAT(15),SUMSO,XMEAM KEADLCOS
KEADLCOG
COMMON /INPT/ NOBS,M,ICON,IPRIN,PR(1\&),N1,N2,DATCNT KEADLO11
COMMON /UNIT/ LU,LUZ,LU3,LU4,LUS,LU6,LUT,LU8,LU9,LU1O,IHIDE KEADLOI2
IF (CCNTRL.EQ.1) GO TO 101 KENDLO13
WRITE (LU6,108)
KENDLOTS

```
```

        IF (JGRP.GT.O) 60 TO 100 KENDLO16
        W91TE (LU6,114) (PA(I),I=1,18),N1,N2,DATCNT
        GO TO 102
    100 WRITE (LU6,113) JGRP,(PR(I),I=1,18),N1,N2,DATCNT
        GO TO 102
    101 WRITE (LU6,109)
        WRITE (LU6,110) (PR(1),I=1,18),N1,N2,DATCNT
    C
C.... CALCULATE SUM OF OBSERVATIONS FOR EACH VARIABLE
C
1C2=0 103 I= 1,M
SUMMAT (I) =0.0
IT? CONTINUE
FEWIND LUZ
DO 1G5 I=1,NOBS
PEAD (LUZ) (ID(K),K=1,3),(DATA(K),K=1,M)
DO 104 J=1,M
SUMMAT (J)=SUMMAT (J) + DATA(J)
CONTINUE
105 CONTINUE
C
C. - CALCULATE SUM OF SOUARES, AND KENDALLIS CONCORDANCE
COEFFICIENT.
XNEAN=FLOAT(NOES*(M+1))/2.0
SUMSG=0.O

```

```

        SUMSQ=SUMSQ+(SUMMAT(I)-XMEAN)*(SUMMAT(I)-XMEAN)
    1CE CONTINUE
    KEACC=12.0*SUMSQ/FLOAT(NOBS*NOBS*(H*M*M-M))
    C
C. - PRINT NUMBER OF OBSERVATIONS. NUMBER OF VARIABLES,
AND KENDALLJS CONCORDANCE COEFFICIENT.
WRITE (LUC,191) NOBS,M,KENCC
C .... CALCULATE AND PRINT THE CHI SQUARE AND DEGREES OF
C FREEDOM IF THE NUMEER OF VARIABLES IS GREATER THAN SEVEN.
C
IF (M.LE.7) GO TO 107
CHISQ=FLOAT(M*(NOBS-1))\&KENCC
IDF=M-1
WRITE (LU6,112) CHISQ,IDF
107 REWIND LU2
RETURN
C
C......FORMATS USED IN THIS SUBROUTINE.
C
108 FORMAT (1HO)
109 FORMAT (1H1) KENDLO65
KEADLC64
110 FOR*AT (36H KENDALL CONCORDANCE COEFFICIENT FOR/1H, 18A4/13H FOR VRENDLOGE
1ARIAELE,I3,17H THROUGH VARIABLE,I3,12H OF DATA SET,I3)
KENDLO67
111 FORNAT \23HONUMBER OF OBSERVATIONS,GX,I4/2OHCNUMBER OF VARIABLES, 9KENDLOGE
1X,I4/21HONENDALL COEFFICIENT=,4X,F8.3) KEMDLO69
112 FORMAT (12HOCHI SQUARE=,F12.3, 2X,3HFOR,IG,19H DEGREES OF FREEDOM) KENDLCTC
113 FORMAT (42H KENDALL CONCORDANCE COEFFICIENT FOR GROUP,I4,3H OF/1H KENDLOT1
1.18AL/13H FOR VARIABLE,I3,17H THROUGH VARIABLE,I3,12H OF DATA SET,KENDLOT2
213)
KEADLO73
114 FORMAT (57H KENDALL CONCORDANCE COEFFICIENT FOR THE AVERAGE GROUP KENDLOTA
10F/1H, 18A4/13H FOR VARIABLE,I3,17H THROUGH VARIABLE,I3,12H OF DATKENDLCTS
2A SET,I3)
KEMDLO7E
KENDLO77
KENDLO78
END
SUBROUTINE LEVEL
LEVELOO1

```
```

c
c.......this subroutine (level) is called by the main program
C (PUBLIC) TO COMPUTE VARIOUS STATISTICS UPON SOME
OBSERVATIONS CONCERNING A PARTICULAR VARIABLE WITHIN THE
PrESENT DATA SET.
INTEGER DATCNT,I,ICON,ID(3),IFLAG,INUM(4),IN1,IPRIN,ISMKNT,ITOP
INTEGER IWIDE,J,K,KOUNT,LEL,LU,LUZ,LU3,LU4,LUS,LUG,LUT,LU\&,LUS
INTEGER LU1O,M,MDLEPT,NOBS,NUMCAT,N1,N2,PR
REAL CATEGS(13), DATA, KURTOS,MAXVAL,MEAN,MEDIAN,MINVAL,MODE,RANGE
REAL RANVAL(13),SKEW,STDDEV,STDERR,SUMXS,SUMXS2,SUMXS3
REAL SUMXS4,TOLR,TOTOES,UPLIM,VALUS,VAR,XINCMT,XK,XMAX,Z
COMMON /ARRAY/ KOUNT(2500),VALUS(2500)
COMMON /INPT/ NOBS,M,ICON,IPRIN,PR(18),N1,N2,DATCNT
COMMON /LABEL/ LBL(56)
COMMON /UNIT/ LU,LUZ,LU3,LU4,LU5,LU6,LUT,LU8,LU9,LU1O,IWIDE
EQUIVALENCE (INUM(1),LBL(10))
IN1=N1
IF (IN1.GT.4) IN1=4
WRITE (LU8,120) (PR(I),I=1,18),N1,INUM(IN1),DATCNT
REWIND LUZ
c
C...... CALCULATIONS OF VARIOUS STATISTICS If NUMBER OF
ORSERVATIONS IS ONE.
IF (NOBS.GT.1) GO TO 101
READ (LUZ) (ID(J),J=1,3),DATA
MEDIAN=DATA
MAXVAL=DATA
MINVAL=DATA
RANGE=0.0
MEAN=DATA
VAR=0.0
STDDEV=0.0
STDERR=0.0
KURTOS=0.0
SKEW=0.0
MODE=DATA
WRITE (LU6,122)
GO TO 112
101 TOLR=.001
102 DO 103 I=1,2500
103 KOUNT(I)=1.
C
C.* COUNT THE NUMBER OF TIMES EACH DISTINCT VALUE OCCURS.
REWIND LUZ
READ (LUZ) (ID(I),I=1,3),DATA
F={
VALUS(1)=DATA
DO 1CS I=2,NOBS
READ (LU2) (ID(J),J=1,3),DATA
DO 104 J=1,K
IF (ARS(DATA-VALUS(J)).GT.TOLR) GO TO 104
KOUNT(J)=KOUNT(J)+1
GO TO 105
continue
k=k+1
IF (K.GT.2500) 60 TO 106
VALUS(K)=DATA
105 CONTINUE
60 T0 107
106 TOLR=TOLR*10.0
60 TO 102
C
Level 002
LEVELOO3
(PUBLIC) TO COMPUTE VARIOUS STATISTICS UPON SOME present data set.
INTEGER DATCNT,I,ICON,ID(3),IFLAG,INUM(4),IN1,IPRIN,ISMKNT,ITOP
INTEGER IWIDE,J,K,KOUNT,LEL,LU,LUZ,LU3,LU4,LU5,LU6,LUT,LUR,LUS
REAL CATEGS(13), DATA, KURTOS, MAXVAL, MEAN,MEDIAN,MINVAL, MODE, RANGE
REAL RANVAL(13),SKEW,STDDEV,STDERR, SUMXS, SUMXS2,SUMXS3
COMMON /ARRAY/ KOUNT(2500), VALUS(2500)
COMMON /INPT/ NOBS,M,ICON,IPRIN,PR(18),N1,N2,DATCNT
COMMON /UNIT/ LU,LUZ,LU3,LU4,LU5,LU6,LU7,LU8,LU9,LU10,IWIDE
equivalence (INUM(1), Lbl(10))
c
IN1 $=\mathrm{N} 1$
IF (IN1.GT.4) IN1=ム
WPITE (LU8,120) (PR(1), I=1,18),N1,INUM(IN1),DATCNT
REWIND LUZ
C..... CALCULATIONS OF VARIOUS STATISTICS If nUMBER of ORSERVATIONS IS ONE.
IF (NOBS.GT.1) GO TO 101
READ (LUZ) (ID(J), J=1,3), DATA
NEDIAN=DATA
MINVAL = DATA
rance =0.0
MEAN = DATA
STDDEV=0.0
STDERR $=0.0$
$K$ URTOS $=0.0$
MODE=DATA
GO TO 112
101 TOLR $=.001$
102 DO $103 \quad I=1,2500$
$103 \operatorname{KOUNT}(I)=1$.

```
```

C.... SORT DISTINCT VALUES FROM LOY TO HIGH. LEVELOTO
C
107 CALL SORT1 (K)
LEYELC71
C
C.-... CALCULATE THE MEDIAN, RANGE, MAXIMUM AND MINIMUM VALUE
C OF THE OBSERVATIONS.
C
MAXVAL=VALUS(K)
MINVAL=VALUS(1)
RANGE=MAXVAL-MINVAL
MDLEPT=NOBS/2+1
I SMKNT =0
DO 1G8 I=1,K
ISMKNT = ISMKNT + KOUNT (I)
IF (ISMKNT.GE.MDLEPT) GO TO 109
10% CCNTINUE
109 MEDIAN=VALUS(I)
C
C......CALCULATE THE MEAN, VARIANCE, STANDARD DEVIATION AND
STANDARD ERROR OF THE OBSERVATIONS, ALONG WITH THE SUM OF
OESERVATIONS, SUM OF OBSERVATIONS SQUARED, SUM OF
OBSERVATIONS CUBED, AND SUM OF OBSERVATIONS TO THE FOURTH.
S UNMS =0.0
S UMX S 2 =0.0
S UNXS = =0.0
SUM XS4=0.0
DC 11C I=1,K
Z=VALUS(I)
XK=FLOAT(KOUNT(I))
SUMXS =SUMXS + Z \#XK
z=2*z
SUMXSZ=SUMXS 2 + Z*XK
SUMXS3=SUMXS 3+2*VALUS(1)*X*
Z=Z*Z
SUMXS4=SUMXS4+Z*XK
110 CONTINUE
MEAN=SUMXS/FLOAT(NOBS)
TOTOBS=FLOAT (NOBS)
VAR=(SUMXS2-((SUMXS*SUMXS)/TOTOBS))/(TOTOBS-1.0)
STDDEV=SQRT (VAR)
STDERR=STDDEV/SQRT(TOTOES)
C
C....COMPUTE KURTOSIS SKEWNESS, AND MODE OF THE OBSERYATIONS. LEVEL11I
C
KURTOS=(SUMXS4-(4.0*MEAN*SUMXS3) +(6.0*SUMXS 2*MEAN*MEAN)-(4.0*TOTOBLEVEL115
1S*MEAN**4)+MEAN**4)/(STDDEV**4*TOTOBS)-3.0
LEVEL11E
SKEW=(SUMXS 3-3.0*TOTOBS*MEAN** 3+3.0*MEAN*SUMXS2-MEAN**3)/(TOTOBS*SLEVEL117
1TDDEV**3)
LEVEL118
C
C.*....IND THE VALUE OCCURRING THE MOST TIMES. LEVELI2O
C
I=1
ITOP=KOUNT(1)
DO 111 J=2,k
IF (1TOP.GT.KOUNT(J)) GO TO 111
ITOP=KOUNT(J)
I=\
111 CONTINUE
MODE=VALUS(I)
C
C C. . . - OUTPUT STATISTICS ABOUT VARIABLE BEING PROCESSED.
112 WRITE (LU6,121) MEAM,VAR,STDDEV,STDERQ,SKEU, YUPTOS,MODE MEDIAN, MANLEVELI33
M, MRINGN,VAR,STDDEV,STDERR,SKEH,KURTOS,FODE,MEDIAN,RANLEVEL133
16E,MINVAL,MAXVAL
LEVEL134
IF (NOBS.LE.1) RETURN LEVEL135

```
```

C
C. COMPUTE THE PERCENTAGE THAT EACH UNIQUE VALUE OCCURS IN LEVELIST
C THE TOTAL NUMBER OF OBSERVATIONS BY DETERMINING THE NUMBER LEVELI3R
C OF DISTINCT VALUES OCCURRING AND IF GREATER THAN 13 DIVIDE THE
RANGE INTO 13 AREAS
NUMCAT =K
XMAX=C.O
IFLAG=0
DO 113 I= 1.13
CATEGS(I)=0.0
112 CONTINUE
IF (NUMCAT.LE.13) GOTO 116
C
C - . . NUMCAT IS GREATER THAN 13 THEREFORE THE RANGE OF THE
VALUES IS DIVIDED INTO 10 CATEGORIES.
XINCMT=RANGE/10.0
NUMCAT=10
1FLAG=1
C
C - . . NOY THE NUMBER OF CATEGORIES HAS BEEN CUT TO IO AND
AKRANGED TOGETHER ARE THOSE OESERVATIONS FALLING MITHIN EACH
CATEGORY.
UPLIM=MAXVAL
DO 115 I=1,10
UPLIM=UPLIM-XINCMT
DC 114 J=1,K
IF (VALUS(J).LE.UPLIM) GO TO 114
CATEGS(I) = CATEGS(I) +FLOAT(KOUNT(J))
KOUNT(J)=0
CONTINUE
RANVAL(I)=UPLIM
115 CONTINUE
GOTO 118
116 J=1
DO 117 I=1,K
CATEGS(J)=FLOAT(KOUNT(I))
RANVAL(J)=VALUS(I)
J=J+1
117 CONTINUE
C
C......COMPUTE PERCENTAGES.
C
118 DC 119 I= 1,NUMCAT
CATEGS(I) =(CATEGS(I)/TOTOBS)*100.0
IF (CATEGS(I).GT.XMAX) XMAX=CATEGS(I)
119 CONTINUE
CALL HIST (NUMCAT,CATEGS,RANVAL,XMAX,IFLAG)
REWIND LUZ
RETURN
C
C......FORMATS USED IN THIS SUBROUTINE.
C
120 FORMAT (1H1,5X,18HLEVEL ANALYSIS FOR/1X,18A4/1H 5X,8HF0R THE I2,
1A2,21H VARIABLE OF DATA SET,I3)
.LEVEL191
LEVEL192
121 FORMAT (1HO,10X,4HMEAN, 16X,F8.2/1HO,10X,8HVARIANCE,12X,F8.2/1HO,10LEVEL193
1 X, 1:HSTANDARD DEVIATION, 2X,F8. 2/1HO,1CX,14HSTANDARD ERROR,6X,F8. 2/LEVVELI94
21HO,10X,8HSKEWNESS,12X,F8.2/1HO,10X,8HKURTOSIS,12X,F8.2/1HO,10X,GHLEVEL.195
ZMODE,16X,F8, 2/1HO,10X,GHMEDIAN,14X,F8, 2/11HO,10X,SHRANGE,15X,F8., 2/1LEVEL19E
4HO,10X,7HMINIMUM,13X,F8.2/1H0,10X,7HMAXIMUM,13X,F8.2)
LEVEL197
122 FORMAT (1HO, LOHTHE NUMBER OF OBSERVATIONS IS EQUAL TO 1/1HO, 38HTHELEVEL19\&
IGEFORE NO HISTOGRAM WILL EE PRINTED)
LEVEL199
C
LEVELZOC





```
        INTEGER LUS,LU9,LU1O,M,MDLINE,MM,MMO,MO,N,NNN,PFLAG,XX(61,67)
        INTEGER XXN(4)
        REAL C,DATA(15),VALUS,X(2500,2),XNUM(7)
C
        COMMON /ARRAY/ VALUS(SOOO)
        COMMON /LAEEL/ L8L(56)
        COMMON /QUAD/ C(9)
        COMMON /UNIT/ LU,LU2,LU3,LU4,LUS,LU6,LU7,LU8,LU9,LU1C,IWIDE
    EQUIVALENCE (VALUS(1), X(1,1))
C . . . . READ IN DATA FROM MASS STORAGE.
    M*O=MQ
    IF (PMNO.GT.4) MOMQ=4
        NNN=N
        IF (NNN.GT.2500) NNN=2500
        IIQ=MQ-1
        IF (IIQ.GT.3) IIO=3
        DO116 I=1,110
        JJO =I +1
        DO116 J=JJQ,MMQ
        MDLINE=1
            IF (KF.EQ.Z.AND.MQ.LE.O) MDLINE=2
        REWIND LUG
        DO 103 11I=1,NNN
            IF (PFLAG.NE.1) GO TO 101
            READ(LUム) (ID(JJJ),JJJ=1,4), (DATA(JJJ), JJJ=1,MQ)
            GO TO 102
    1:1 READ (LUL) (ID(JJJ),JJJ=1,3), (DATA(JJJ),JJJ=1,MQ)
    102 
    192 
        CONTINUE
C
C
C }\quad\times\timesN(1)=LRL(22
    XXN(2)=LBL(21)
    XXN(3)=LBL(20)
    XXN(4)=LEL(29)
    DO 104 K=1,7
    194 XNUM(K)=K-4
        DO 105 M=1,67
        DO 105 L=1,61
            XX(L,M)=LBL(19)
CO5 CONTINUE
C CONTINUE
C CONTINUE
    DO 106 M=2,60
    DO 106 L=1,61,30
                LL=L+6
                MM=M+6
            XX(M,LL)=LBL(17)
            XX(L,MM)=LBL(17)
106 CONTINUE 
    IF (MDLINE.LE.1) 60 T0 108
    KE=20
    IF (MDLINE.EO.2) KE=INT(10.0*(C(m0)*.05)):2
    KG=40
    IF (MDLINE,EQ.2) KGIRE
    DO 107 KN=KE,KG,KE
C
MMO=MO
    CONTINUE
C
C.... DEVELOP MID LINE BORDERS IF DESIRED.
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
INTEGER LU\&,LU9,LU10,M,MDLINE,MM,MMO,MQ,N,NNN,PFLAG,XX(61,67) INTEGER XXN(4) \\
REAL \(C, D A T A(15), V A L U S, x(2500,2), X N U M(7)\)
\end{tabular} \\
\hline \multicolumn{2}{|l|}{C COMMON} \\
\hline & COMMON /ARRAY/ VALUS (5000) \\
\hline & COMMON /LAEEL/ L8L(56) \\
\hline & COMMON /QUAD/ C(9) \\
\hline & COMMON /UNIT/ LU,LU2,LU3,LU4,LUS,LU6,LU7,LU8,LU9,LU1C,IWIDE \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{C EQUIVALENCE (VALUS (1), X(1,1))}} \\
\hline & \\
\hline C - & - . READ IN DATA FROM MASS Storage. \\
\hline \multicolumn{2}{|l|}{C \(M \times O=M O\)} \\
\hline \multicolumn{2}{|r|}{} \\
\hline &  \\
\hline \multicolumn{2}{|r|}{\[
N N N=N
\]} \\
\hline \multicolumn{2}{|r|}{IF (NNN.GT. 2500) NNN = 2500} \\
\hline \multicolumn{2}{|r|}{IIQ M M - 1} \\
\hline \multicolumn{2}{|r|}{IF (IIQ.GT.3) IIQ \({ }^{\text {I }}\)} \\
\hline \multicolumn{2}{|r|}{DO \(116 \mathrm{I}=1\), 110} \\
\hline \multicolumn{2}{|r|}{\(\mathrm{JJQ}=\mathrm{I}+1\)} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\(D O 116 \quad J=J J Q, M M Q\)
\(M D L I N E=1\)}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{IF (KF.EQ.2.AND.MQ.LE.9) MDLINE=2} \\
\hline \multicolumn{2}{|r|}{REWIND LU4} \\
\hline \multicolumn{2}{|r|}{DO 103 III=1, NNN} \\
\hline \multicolumn{2}{|r|}{IF (PFLAG-NE, 1) G0 TO 101} \\
\hline \multicolumn{2}{|r|}{READ (LUC) (ID(JJJ), JJJ=1, 4), (DATA(JJJ), dJJ=1, MQ)} \\
\hline \multicolumn{2}{|r|}{GOTO 102} \\
\hline \multicolumn{2}{|l|}{1 ¢1 READ (LU4) (ID(JJJ), JJJ=1,3), (DATA(JJJ), JJJ=1, MQ)} \\
\hline \multicolumn{2}{|l|}{\(192 \times(111,1)=\) DATA (1)} \\
\hline \multicolumn{2}{|r|}{\(X(I I I, 2)=\) DATA (J)} \\
\hline \multicolumn{2}{|l|}{103 CONTINUE} \\
\hline \multicolumn{2}{|l|}{C} \\
\hline C. & - - ESTABLISH SYMBOLS FOR THE LEGENDS AND INITIALIZE PLOT \\
\hline \multicolumn{2}{|l|}{\(C\) SPACES TO BLANKS.} \\
\hline C & \\
\hline \multicolumn{2}{|r|}{\(X X N(1)=L P L(22)\)} \\
\hline \multicolumn{2}{|r|}{\(\times X N(2)=L B L(21)\)} \\
\hline \multicolumn{2}{|r|}{\(X X N(3)=L B L(20)\)} \\
\hline \multicolumn{2}{|r|}{XXN(4) =LEL(29)} \\
\hline \multicolumn{2}{|r|}{DO \(104 \mathrm{~K}=1,7\)} \\
\hline \multicolumn{2}{|l|}{\(1: 4 \quad X N U M(K)=K-4\)} \\
\hline \multicolumn{2}{|r|}{DO \(105 \mathrm{M}=1,67\)} \\
\hline \multicolumn{2}{|r|}{\(\begin{array}{lll}\text { DO } \\ \text { DO } & 105 & L=1,61\end{array}\)} \\
\hline \multicolumn{2}{|r|}{\(X X(L, M)=L B L(19)\)} \\
\hline \multicolumn{2}{|l|}{1 S5 CONTINUE} \\
\hline \multicolumn{2}{|l|}{c} \\
\hline C. & -. DEVELOP MAIN BORDERS FOR PLOT. \\
\hline \multicolumn{2}{|r|}{DO \(106 \mathrm{r}=2,60\)} \\
\hline \multicolumn{2}{|r|}{DO \(106 \mathrm{~L}=1,61,30\)} \\
\hline \multicolumn{2}{|r|}{\(L L=L+6\)} \\
\hline & \(M M=N+6\) \\
\hline & \(\times X(M, L L)=L B L(17)\) \\
\hline \multicolumn{2}{|r|}{\(X X(L, M M)=L B L(17)\)} \\
\hline \multicolumn{2}{|l|}{106 CONTINUE} \\
\hline \multicolumn{2}{|l|}{\(C\) C} \\
\hline C. & -. - DEVELOP MID LINE BORDERS IF DESIRED. \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{IF (MDLINE•LE.1) 60 T0 108
KE= 0 (}} \\
\hline & \\
\hline \multicolumn{2}{|r|}{IF (MDLINE.EQ.2) KE=INT(10.0-(C)(m0)*.05)) 2} \\
\hline \multicolumn{2}{|r|}{\(K G=40\)} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{IF (MDLINE,EQ-2) KGEKE
DO 107 KNEKE, KG, KE}} \\
\hline & \\
\hline
\end{tabular}
```

    PLOT 008
    PLCT 010
    PLOT 009
PLCT 010
PLCT 011
PLCT 012
PLCT 013
PLCT 014
PLCT 015
PLOT 016
PLCT 017
PLCT 618
PLCT 019
PLOT 020
PLCT C21
PLCT C22
PLCT 023
PLCT 024
PLCT C2S
PLCT 026
PLOT 027
PLCT 028
PLCT 029
PLOT O3C
PLOT C31
PLOT 032
PLCT 033
PLCT C34
PLOT 035
PLCT C3E
PLOT C37
PLCT C38
PLOT C39
PLCT C4C
PLOT 041
PLCT 042
PLOT 043
PLCT C44
PLCT 045
PLOT O4E
PLCT 047
PLCT 048
PLCT 049
PLCT OSO
PLOT 051
PLOT OS2
PLCT 053
PLCT OS4
PLCT CS5
PLCT 056
PLCT C57
PLCT O5E
PLCT 059
PLOT OSC
PLCT 061
PLCT C62
PLCT 06?
PLCT 064
PLOT C6S
PLCT 066
PLCT 067
PLCT 068
PLOT 069
PLCT 07C
PLCT 071
PLCT 072
PLOT 07E
PLOT 074


```
                IF (KF.EQ.1) WRITE (LUG.120) PLCT 149
                IF (KF.EQ.2) WRITE (LU6.121) PLOT 142
                IF (KF.EQ.3) WRITE (LUG.122)
    PLCT 146
    PLCT 145
    PLCT 14E
    PLOT 147
    PLCT 148
    117 FORMAT (1H1,5X,6(F4.1,6X),F4,1)
    118 FORMAT ( }2\times,67A1)\mathrm{ ( PMCT ISC
    PLCT 149
    119 FORMAT (10X,GHFACTOR,I3, 2X,27HIS ON THE X-AXIS AND FACTOR,I3, 2X,16PLCT 1S4
    1HIS ON THE Y-AXIS) PLCT 152
    1HIS ON THE Y-AXIS) PLCT 152
    120 FCRMAT (1H, 10X, 3OHLETTERS REPRESEMT THE VARIABLE) PLCT 1SE
    120 FCRMAT (1H, 10X, 30HLETTERS REPRESENT THE VARIABLE) PLCT 1SE
    121 FORMAT (1H, 10X,53HNUMRERS REPRESENT NUMBER OF INDIVIDUALS AT EACHPLCT 1S4
    121 FORMAT (1H, 10X,53HNUMEERS REPRESENT NUMBER OF INDIVIDUALS AT EACHPLCT 154
    121 FORMAT (1H, 10X,53HNUMRERS REPRESENT NUMBER OF INDIVIDUALS AT EACHPLCT 1S4
    122 FORMAT (1H,10X,35HLETTENS REPRESENT EXTREME POSITIONS) PLCT 15E 
C
        END
    SUEROUTINE SORT (N,ISORT,AVG)
C.... THIS SUBROUTINE (SORT) IS CALLED EY THE SUBROUTINE
    122 FORMAT (1H 10X,35HLETTERS REPRESENT EXTREME POSITIONS) PLCT 15E
C
    RETURN
C.....FORMATS USED IN THIS SUBROUTINE.
    PLCT 158
    SORT 001
    SORT OO2
        THIS SUBROUTINE (SORT) IS CALLED BY THE SUBROUTINE SORT OOZ
        (GRUPN) TO SORT THE IDENTIFICATION FIELDS AND FACTOR SCORES FORSCRT OO&
        EACH GROUP. THEN CALCULATE THE AVERAGE FOR THE FACTOR SCORES. SORT OOS
    SORT CCE
    INTEGER I,II,ISORT,KD,KKD,KKF,KKG,KKK,L,N,NN SCRT CO7
    REAL AVG,SUM,X,XX SCRT CO&
COMMON /ARRAY/ X(1250),KD(3,1250)
    SCRT COS
    SORT O1C
C. - SORT OF FACTOR SCORES AND THEIR IDENTIFICATION FIELDS. SCRT OIZ
C
    NN=N
    DO 1CZ KKK=1,N
        IF (NN.EQ.1) GO TO 102
            NN=NN-1
        DO 101 I=1,NN
                    II=1+1
                    IF (X(I).GT.X(II).AND.ISORT,EQ.O) GO TO 101
                    IF (X(I).LT.X(II).AND.ISORT.EQ.1) GO TO 101
                XX=x(I)
                x(I) =x(II)
                X(II)=xX
                    KKD=KD(1,I)
                    KKF=KD(2,I)
                    KKG=KD(3,1)
                KD(1,I)=KD(1,11)
                KD(2,1)=KD(2,11)
                KD(3,I)=KD(3,1I)
                    KD(1,II)=KKD
                    KD(2,II)=KKF
                    KD(3,II)=KKG
    1C1 CCNTINUE
    102 CONTINUE
C
C.... SUM THE FACTOR SCORES AND CALCULATE ThE AVERAGE for the
C FACTORSCORES. SORT O3E
C SUM=0.0 SCRT OSY
    DC 103 L=1.N
        SUM=SUM+X(L)
    103 CONTINUE
    AVG=SUM/FLOAT(N) SORT O44
    RETURN
c
    END
    SUBROUTINE SORTI(K)
    SCFT 013
    SCRT O14
    SCAT 015
    SCRT C1E
    SORT 017
    SORT 01E
    SORT O1E
    SORT 020
    SORT 021
    SORT 022
    SCRT 023
    SORT 026
    SORT O25
    SCRT O2E
    SCRT O2E
    SORT 027
    SCRT 02&
    SCRT 02G
    SCRT O3C
    SCRT 031
    SORT CEZ
    SCRT 033
    SCRT O34
    SCRT 035
    SCRT OSC
    SORT 037
C FACTOR SCORES. SORT O3R 
    SORT O4C
    SORT 041
    SORT 042
    SCRT C4E
    SORT O44
    SCRT 045
    SCRT OAE
    SUBROUTINE SORTI(K) SORT 047
    SORT O4%
```



```
    REAL EPS,F(15),FFN,FN,H(1S),SINP,SINT,SIM2T,SINGT,T,TANAT,TV(51) VARMXOO&
    REAL TVLT,U
C
    EPS =0.00116
    TVLT=0.0
    LL=K-1
    NV=1
    NC=0
    FN=M
    FFN=FN*FN
    CONS=0.707106781
c
c......calculate original communalities.
    DO 101 I=1,M
        H(I)=0.0
    DO 101 J=1,K
        L=M*(J-1)+I
    101 H(I)=H(I)+A(L)*A(L)
c
C...... Calculate normalized factor matrix.
c
    DC 1C2 I=1,N
        H(I)=SORT(H(I))
    IF(H(I).LE.1.OE-30) H(I)=1.0E-30
    DO 1G2 J=1,K
        L=M*(J-1)+I
    102 A(L)=A(L)/H(I)
    GOTO 104
c
C...... CALCulate variance for factor matrix.
c
    103 NV=NV+1
    TVLT=TV(NV-1)
    104 TV(NV) =0.0
    DO 106 J=1,K
        A A =0.0
        OB=0.0
        LE=M*(J-1)
        DO 105 1=1,M
            L=LB+1
                    CC=A(L)*A(L)
                    AA=AA+CC
    105 B8=8日+CC*CC
    106 TV(NV)=TV(NV)+(FN*BB-AA*AA)/FFN
    If (NV-51) 107,128,128
c
c . . . . . PERfORM CONVERGENCE teSt.
c
    107 IF ((TV(NV)-TVLT)-(1.E-7)) 108,108,109
    108 NC=NC+1
    IF (NC-3) 109,109,128
c
C ...... rotation of two factors continues up to the stated numberovarmxcgi
C VARMXOG2
    109 DO 127 J=1,LL
            L1=M*(J-1)
            II=J*1
c
c ...... calculate numerator and denominator.
c
    DO 127 K1=11,k
        L2=M*(K9-1)
        A A =0.0
        8B=0.0
```



```
        C. =0.0 VARMXO73
```



```
    DO 110 I=1.M VARMX075
        L 3=L1+I
        L4=L2+1
        U=(A(L3)+A(L4))*(A(L3)-A(L4))
        T=A(L3)*A(L4)
        T=T+T
        CC=CC+(U+T)* (U-T)
        DD=DD+2.O*U*T
        AA=AA+U
    110
    EB=日B+T
    T=DD-2.0*AA*BB/FN
    P=CC-(AA*AA-BB*BB)/FN
C
C... COMPARISON OF MUMERATOR AND DENOMINATOR.
C
    IF (T-B) 113,111,117
    111 If ((T+B)-EPS) 127.112.112
C
C . * . NUMERATOR + DENOMINATOR IS GREATER THAN OR EQUAL TO THE
C TOLERANCE FACTOR.
C
    112 COS4T=CONS
    SIN4T=CONS
    GO TO 120
C
C......NUMERATOR IS LESS THAN DENOMINATOR.
    113 TANGT=ABS(T)/ABS (B)
        IF (TAN4T-EPS) 115,114,114
    114 COSムT=1.O/SORT(1.0 TTAN4T*TAN4T)
        SIN4T=TAN4T*COS&T
        GO TO 120
    115 If (B) 116,127,127
    116 SINP=CONS
        COSP=CONS
        GO TO 125
C
C . . . NUMERATOR IS GREATER THAN DENOMINATOR.
C
    117 CTN4T=ABS(T/8)
        IF (CTN4T-EPS) 119,118,118
    118 SIN4T=1.0/SQRT(1.O+CTN4T*CTN4T)
        COS4T=CTN4T*SIN4T
        GO TO 120
    119 Cos4T=0.0
        SIN4T=1.0
C
C...... DETERMINE COS THETA AND SIN THETA.
C
    120 cos2T=SQRT((1.0+\operatorname{cos 4T)/2.0)}
    SIN2T=SIN4T/(2.0*COS2T)
    COST=SQRT((1.0+COS2T)/2.0)
    SINT=SIN2T/(2.O*COST).
C
C...DETERMINE COS PHI AND SIN PHI.
C
    IF (B) 122.122.121
    121 COSP=COST
        SINP=SINT
        GO TO 123
    122 COSP=CONS*COST+CONS*SINT
        SINP=ABS(CONS*COST-CONS*SINT)
    123 IF (T) 124.124.125
    124 SINP=-SINP
C
```

```
c . . . . . PERFORM ROTATION.
c
    125 DO 126 1=1,m
        LI=L1+1
        L4=L2+1
            AA=A(L3)*COSP+A(L4)*SINP
            A(L4)=-A(L3)*SINP+A(LG)*COSP
    120 A(L3)=AA
    127 CONTINUE
        GO 10 103
c
c..... Denormalize varimax loadings.
    12ミOC 129 I=1,n
        ic 12! J=1,k
            L=M*( 
    120 B(L)=A(L)*H(I)
c
c ...... check on communalities.
C
    NC=NV-1
    DO 130 I=1,M
    1?0 H(I)=H(I)*H(I)
        DO 132 I=1,M
        F(I) = C.0
        DC 131 J=1,k
            L=M*(J-1)+1
    1\geq1 f(I)=F(I)+A(L)*A(L)
    1?2 C(1)=H(!)-F(1)
        FETURN
C
    EMD
```

VARMX140
varmxial
VARM×142
VARMX143
VARMX164
VARMX145
VARM×14E
VARM×147
VARMX148
VARMX149
varmxisc
VARMX151
VARMX152
VAFMX15
VARM×154
Varmx955
VARMX156
VARMX157
VARMX158
Varmx95s
VARMX16C
VARM×161
VARMX162
varmx 163
VARM×164
VARMX165
varmx $16 t$
VARMX167
VAFMX168
VAKMX165
VARMX170
varmx171

