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Abstract 44 

In this study we evaluated a set Colorado waterbodies (primarily reservoirs) with respect 45 

to fish consumption advisories associated with mercury (Hg) contamination.  We 46 

included system-specific data regarding fish consumption advisories, whether or not apex 47 

predators were analyzed for Hg, system location, secchi depth, chlorophyll a, total 48 

phosphorus, elevation and surface area.  With these data we used model selection 49 

(Akaike’s Information Criterion, corrected for small sample size bias) to determine the 50 

relative influence of these factors on Hg contamination in Colorado sport fish.  Our 51 

findings showed that within our dataset, apex predators from systems west of Colorado 52 

Interstate 25 had some probability of having Hg concentrations exceeding 0.5 ppm.  53 

Furthermore, system productivity was an important predictor of fish consumption 54 

advisories, where apex predators from systems with low productivity had a higher 55 

probability of being contaminated than those from high productivity systems.  56 

Importantly, our results could aid in the development of relatively easy to understand fish 57 

consumption advisories to better protect human health in the western US. 58 

 59 

 60 
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  66 
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Introduction 67 

Research focusing on anthropogenic impacts affecting freshwater systems has increased 68 

in North America since the 1960’s, when it was shown that increasing nutrient inputs to 69 

freshwater systems alter ecosystem processes (Beeton 1965).  At the same time, it 70 

became evident that a variety of anthropogenic pollutants were entering the environment 71 

and had the potential to impact human health and ecosystem processes.  These scientific 72 

findings were brought to the attention of the public in such works as Silent Spring, 73 

written by Rachel Carson in 1962.  More recently, mercury (Hg) contamination has been 74 

recognized as a threat to human and ecosystem health worldwide (Swackhamer et al. 75 

2004; Driscoll et al. 2007; Mergler et al. 2007).  Over the last three decades it has become 76 

apparent that atmospheric deposition of Hg plays an important role in delivering Hg in 77 

the environment through various activities (e.g., power production and incineration) and 78 

as such, even remote, “pristine” systems are at risk from Hg contamination (Hermanson 79 

1991; Fitzgerald et al. 1998). 80 

Mercury contamination has been studied extensively along the East Coast, 81 

Midwest and eastern Canada but Hg data are notably lacking in the western United 82 

States.  Sport fish Hg concentrations are generally the preferred indicator of Hg 83 

contamination in freshwater systems because consumption of Hg contaminated sport fish 84 

is the major method of transfer of aquatic Hg to humans (Mergler et al. 2007; Driscoll et 85 

al. 2007; Lepak et al. 2009b).  Investigators have studied a variety of system-specific 86 

factors associated with Hg contaminated sport fish in eastern North America and the 87 

Midwest; however, these relationships can be highly variable across system types, 88 

regions and species (Sorensen et al. 1990; Driscoll et al. 1994).  Potentially important 89 
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factors include total phosphorous, pH, acid neutralizing capacity, dissolved oxygen, 90 

dissolved organic carbon and species composition (Sorensen et al. 1990; Driscoll et al. 91 

1995; Greenfield et al. 2001). These studies all suggest that more work is needed to 92 

firmly establish the effect of these and other parameters on Hg concentrations in sport 93 

fish across regions and individual landscapes. 94 

In the arid west, artificial, highly fluctuating reservoir systems are the prevalent 95 

lacustrine systems on the landscape.  Reservoirs tend to have fish and other biota that are 96 

particularly high in Hg concentrations (Tremblay and Lucotte 1997; French et al. 1998; 97 

Bodaly and Fudge 1999).  Most reservoirs serve multiple functions including 98 

recreational, municipal and agricultural use.  As such, reservoirs tend to be highly 99 

managed with respect to their biotic and abiotic characteristics.  For example, in the state 100 

of Colorado, the Colorado Division of Wildlife (CDOW) maintains an extensive stocking 101 

program and closely regulates fish harvest to sustain and enhance fisheries within 102 

reservoirs and the Colorado Department of Public Health and Environment (CDPHE) 103 

monitors and regulates nutrient inputs (e.g., phosphorus) to reservoirs to ensure the safety 104 

and functionality of reservoirs for multiple water users.  Importantly, fish species 105 

composition, food web structure and nutrient inputs can heavily influence Hg 106 

concentrations in fish (Kidd et al. 1999; Essington and Houser 2003; Eagles-Smith et al. 107 

2008). 108 

It has been shown that fish trophic position, species, size and diet are important 109 

factors influencing sport fish Hg concentrations (Bodaly et al. 1993; Power et al. 2002; 110 

Johnston et al. 2003).  Specifically, large, piscivorous sport fish with elevated trophic 111 

positions tend to have higher Hg concentrations than small, omnivorous or planktivorous 112 
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fish feeding at lower trophic levels.  Reservoir food web structure and species 113 

interactions are influenced by fisheries management practices.  Management practices 114 

(e.g., fish stocking and harvest regulations) often effect or dictate the food web structure 115 

and species composition in artificial systems like reservoirs and changes in these 116 

characteristics can alter sport fish Hg concentrations by changing fish trophic position, 117 

species composition, growth and diet (Eagles-Smith et al. 2008; Lepak et al. 2009a).  118 

Thus, the food web structure and species composition of a reservoir fish community (i.e., 119 

the presence of large, piscivorous apex predators targeted for consumption by anglers) is 120 

likely to be an important factor influencing overall Hg contamination of a system and its 121 

potential for impacting human health. 122 

Nutrient inputs influence the productivity of reservoirs and the resulting changes 123 

in productivity have the potential to alter Hg concentrations in sport fish.  Two 124 

mechanisms associated with increased productivity can reduce Hg concentrations in 125 

organisms.  The first, known as “bloom dilution” occurs when high nutrient availability 126 

stimulates population growth of algae and subsequently zooplankton resulting in a higher 127 

amount of biomass available to accumulate a given amount of Hg (Pickhardt et al. 2002; 128 

Chen and Folt 2005).  The second process is known as “growth dilution” and can occur in 129 

organisms at multiple trophic levels.  For example, it has been shown that zooplankton 130 

growth increases while Hg concentrations decrease when algae with relatively low C:N:P 131 

ratios (and therefore higher quality) are available (Karimi et al. 2007).  When relatively 132 

high quality diet items are available to organisms, they typically display high rates of 133 

somatic growth paired with lower consumption rates.  This reduces both Hg 134 

concentration in prey and overall intake by predators.  In the case of fish, it has been 135 
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shown through experimental nutrient additions and observational studies that fish from 136 

systems with higher nutrient inputs have relatively low Hg concentrations (Cleckner et al. 137 

1998; Kidd et al. 1999; Essington and Houser 2003).  Thus, increased nutrient inputs to 138 

reservoirs can reduce Hg bioaccumulation in sport fish within them. 139 

Although nutrient inputs have the potential to lower Hg concentrations in aquatic 140 

organisms, they can also increase bioavailability of Hg and subsequently Hg 141 

bioaccumulation.  Mercury is methylated (becoming bioavailable) under anoxic 142 

conditions by sulfate-reducing and iron-reducing bacteria as a byproduct of their energy 143 

sequestration pathway (Compeau and Bartha 1985; Fleming et al. 2006).  Abundant 144 

nutrients can stimulate primary production, some of which decays, creating anoxic 145 

conditions conducive to Hg methylation by microbes (Bodaly et al. 1984).  For example, 146 

Lienesch et al. (2005) found that increased nutrient inputs intended to enhance sport fish 147 

populations resulted in increased hypoxia during the summer and winter.  Hypoxic 148 

conditions have been associated with high concentrations of Hg in water, zooplankton 149 

and fish (Driscoll et al. 1994; Slotton et al. 1995).  Nutrient inputs may induce changes in 150 

community composition, food web dynamics and other ecosystem characteristics (e.g., 151 

water clarity) that can complicate the effects of nutrients on sport fish bioaccumulation. 152 

 This study provided an opportunity to evaluate a range of systems with respect to 153 

fish community composition, nutrient inputs and food web configurations because of the 154 

wide variety of biomes, water uses and management practices found in Colorado.  We 155 

evaluated a set Colorado waterbodies (primarily reservoirs) with respect to fish 156 

consumption advisories developed by CDPHE.  We included system-specific data 157 

provided by CDOW and CDPHE on fish consumption advisories, whether or not apex 158 
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predators were analyzed for Hg, system location, secchi depth, chlorophyll a, total 159 

phosphorus, elevation and surface area.  Using these data we determined the relative 160 

influence of these factors on Hg contamination in Colorado sport fish. 161 

 162 

Methods 163 

At the time of this study, fish tissue Hg data were available for 95 waterbodies in 164 

Colorado.  River systems and systems where water chemistry data were not available 165 

were excluded from the data set, leaving 46 systems for analysis.  The response variable 166 

evaluated was whether or not a given system had a fish consumption advisory associated 167 

with it.  The CDPHE has defined systems with fish consumption advisories as those 168 

where any fish tissue sample analyzed exceeded a Hg concentration of 0.5 ppm.   169 

  We used multiple logistic regression to determine the influence of various factors 170 

on the issuance of fish consumption advisories in the state of Colorado.  Our model 171 

selection protocol involved developing two model sets including predictors of fish 172 

consumption advisories.  We developed two model sets to evaluate correlated 173 

productivity indices individually and combined as a single multivariate index (explained 174 

below).  Pearson product-moment correlation coefficients between all independent and 175 

dependent variables were calculated to determine the relationship between the covariates 176 

using SAS (SAS Institute Inc.).  When two or more covariates were significantly 177 

correlated they were not included in the same model set and only one of the correlated 178 

predictors was retained.  We then fit all possible models (excluding interaction terms) by 179 

multiple logistic regression using the generalized linear model function in R 2.9.2 (R 180 

Development and Core Team 2005).  We used AICc (Akaike’s Information Criterion, 181 
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corrected for small sample size bias; Burnham and Anderson 2002) to compare 182 

competing models and individual predictors.  We tested for overfitting of the data using a 183 

Hosmer and Lemeshow Goodness-of-Fit test in SAS (SAS Institute Inc.).  We computed 184 

ΔAICc, the difference in AICc for a given model standardized to that of the model with 185 

the lowest AICc.  Models with ΔAICc ≤ 6 were considered to have substantial evidence to 186 

support them (Burnham and Anderson 2002). We used model averaging to develop a 187 

predictive model based on the coefficients estimated in each of the two model sets 188 

analyzed (Burnham and Anderson 2002).  Using the model averaged coefficients we 189 

determined point estimates and back-transformed these estimates to obtain results on a 190 

probability scale using equation 1: 191 

 192 

e(point estimate) / 1 + e(point estimate)   (1) 193 

 194 

Covariates analyzed as predictors of systems with fish consumption advisories were 195 

whether or not apex predators were analyzed for Hg (“apex”), system location, secchi 196 

depth, chlorophyll a, total phosphorus, elevation and surface area.  Apex predators were 197 

defined as those that are considered primarily piscivorous and non-apex predators were 198 

defined as those that are considered primarily omnivorous or planktivorous (Table 1).  199 

System location was defined as position east (1) or west (0) of Colorado Interstate 25.  200 

This categorized systems into those in mostly agricultural areas (east) and those in mostly 201 

mountainous areas (west).  Water quality data were compiled and provided by CDOW.  202 

We used mean measurements of secchi depth (m), chlorophyll a (µg/L) and total 203 

phosphorus (mg/L), from May through September from 2000 through 2009.  Samples 204 
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below the detection limit were “censored” and assigned a value equal to one half of the 205 

detection limit (Rao et al. 1991).  System elevation (m) and surface area (ha) data were 206 

also compiled and provided by CDOW.  Fish consumption advisory data (fish Hg 207 

concentrations) were provided by CDPHE. 208 

 An analysis was conducted using all the system productivity indicators in order to 209 

incorporate them into a single model set.  To combine correlated water chemistry 210 

covariates, (secchi depth, chlorophyll a and total phosphorus) a principal component 211 

analysis was conducted to develop a single, multivariate index that could represent 212 

differences in system productivity (Niles 1973; Cooch et al. 1999).  Due to high 213 

correlations among these productivity indicators, they could not be used as independent 214 

predictors; however, since each metric has predictive value and is relatively inexpensive 215 

to obtain, (when compared to Hg analyses) all three were included in the principal 216 

components analysis.  The index (referred to as PCA) was used to reduce the amount of 217 

information lost when excluding correlated covariates from analyses.  A second principal 218 

component incorporating these same productivity indicators was developed to explain 219 

variation in fish consumption advisories, but this had little to no additional explanatory 220 

value (Pearson product-moment correlation coefficient; -0.01, p = 0.92) and therefore 221 

was not used in further analyses.   222 

 223 

Results 224 

Model set 1 225 

Pearson product-moment correlation coefficients showed significant relationships 226 

between several covariates.  System location was correlated to five other covariates and 227 
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system elevation was correlated to four other covariates (Table 2).  System location and 228 

system elevation were removed from further analyses.  The remaining covariates were 229 

primarily indicators of system productivity (secchi depth, chlorophyll a and total 230 

phosphorus).  These covariates were all significantly correlated, thus, chlorophyll a was 231 

retained as a productivity indicator.  Chlorophyll a was selected because it had the 232 

highest correlation coefficient with fish consumption advisories and it is also a direct 233 

measure of system primary production. 234 

 The model with the most support from the data included apex and chlorophyll a 235 

(Table 3).  Apex had a cumulative weight (the sum of the weights of the models in which 236 

apex appears) of 0.80 while chlorophyll a and surface area had cumulative weights of 237 

0.75 and 0.25 respectively.  Surface area appeared to be a “pretending” variable, (ΔAICc 238 

of approximately 2, signifying little information was gained by adding the covariate; 239 

Burnham and Anderson 2002) having small coefficients, low cumulative weight and was 240 

not found in the heavily supported top two models.  Thus, surface area was not 241 

considered in model averaged estimates.   242 

The model averaged (models with ΔAICc ≤ 6) coefficients and unconditional 243 

standard errors for the intercept (-0.24 ± 0.50) and chlorophyll a (-0.04 ± 0.04) were 244 

estimated; however, within our dataset there was never a case where a fish consumption 245 

advisory was in place due to a non-apex predator.  Thus, apex predators were the only 246 

species that had tissue Hg concentrations exceeding 0.5 ppm, triggering a fish 247 

consumption advisory.  In other words, testing non-apex predators had essentially a 0 248 

probability of triggering a fish consumption advisory.  Thus, realistic unconditional 249 

standard error around the model averaged coefficient of apex (-14.45) using logistic 250 
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regression was not calculable unless one or more non-apex predators had triggered fish 251 

consumption advisories.  We did not include system location in the model set because of 252 

its high correlation to other covariates; however it is another example of a covariate 253 

where error calculation was not realistic.  Within our dataset there was never a situation 254 

where a system located east of Colorado Interstate 25 had a fish consumption advisory 255 

associated with it.  Similar to testing non-apex predators, testing fish east of Colorado 256 

Interstate 25 had essentially a 0 probability of triggering a fish consumption advisory.  It 257 

is important to note that although error was not calculated for these covariates, system 258 

location showed the highest correlation with fish consumption advisories, followed by the 259 

testing of apex predators (Table 2). 260 

Using the model averaged coefficients we determined point estimates of fish 261 

consumption advisories across a range of chlorophyll a values.  Using these values we 262 

were able to predict the probability that a fish tested would trigger a fish consumption 263 

advisory based on mean summer chlorophyll a concentration which varied from 0.5 – 264 

117.5 µg/L empirically (Figure 1).  The Hosmer and Lemeshow Goodness-of-Fit test of 265 

the most parameterized model showed that there was not significant lack-of-fit (chi-266 

square = 3.21, d.f. = 7, p = 0.86). 267 

 268 

Model set 2 269 

Pearson product-moment correlation coefficients showed significant relationships 270 

between several covariates.  System location was correlated to three other covariates and 271 

system elevation was correlated to three other covariates (Table 4).  System location and 272 

system elevation were removed from further analyses.   273 
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The model with the most support from the data included apex and PCA (Table 5).  274 

Apex had a cumulative weight of 0.86 while PCA and surface area had cumulative 275 

weights of 0.72 and 0.27 respectively.  Surface area appeared to be a “pretending” 276 

variable, (ΔAICc of approximately 2, signifying little information was gained by adding 277 

the covariate; Burnham and Anderson 2002) having small coefficients, low cumulative 278 

weight and was not found in the heavily supported top model.  Thus, surface area was not 279 

considered in model averaged estimates.   280 

The model averaged (models with ΔAICc ≤ 6) coefficients and unconditional 281 

standard errors for the intercept (-0.66 ± 0.39) and PCA (-0.46 ± 0.43) were estimated; 282 

however, the same situation was encountered as in the first model set where there was 283 

never a case where a fish consumption advisory was in place due to a non-apex predator.  284 

Thus, realistic unconditional standard error around the model averaged coefficient of 285 

apex (-16.15) using logistic regression was not calculable unless one or more non-apex 286 

predators had triggered fish consumption advisories.  As in model set 1, unconditional 287 

error of system location was not realistically calculable.  Again, although error was not 288 

calculated for these covariates, system location showed the highest correlation with fish 289 

consumption advisories, followed by apex (Table 4). 290 

Using the model averaged coefficients we determined point estimates of fish 291 

consumption advisories across a range of PCA values.  Using these values we were able 292 

to predict the probability that a fish tested would trigger a fish consumption advisory 293 

based on calculations of PCA values which varied from -2.5 – 4.5 empirically (Figure 2).  294 

The Hosmer and Lemeshow Goodness-of-Fit test of the most parameterized model 295 

showed that there was not significant lack-of-fit (chi-square = 2.75, d.f. = 7, p = 0.91). 296 
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 297 

Discussion 298 

Our data showed that only apex predators from systems west of Colorado Interstate 25 299 

had the potential to exceed Hg concentrations of 0.5 ppm.  Furthermore, system 300 

productivity was an important predictor of fish consumption advisories, where apex 301 

predators from systems with low productivity had a higher probability of being 302 

contaminated than those from high productivity systems.  This trend is likely related to 303 

growth and/or bloom dilution (biomass dilution) of Hg, and suggests  that nutrient 304 

subsidies could be a means to reduce  reduce Hg concentrations in sport fish.  More 305 

importantly, our results could aid in the development of relatively easy to understand fish 306 

consumption advisories to better protect human health in the western US. 307 

Covariates excluded from analyses were removed because of significant 308 

correlations with other covariates.  The high level of correlation between covariates 309 

suggests that they are not independent.  Systems west of Colorado Interstate 25 tend to be 310 

in more mountainous terrain than those in the east, relating this factor to elevation due to 311 

the north-south orientation of the Rocky Mountains.  Systems west of Colorado Interstate 312 

25 tend not to be in agricultural areas relative to those in the east, potentially relating this 313 

factor to indicators of productivity.  Systems at higher elevations are generally stocked 314 

with coldwater species (generally non-apex predators) while warmwater species are 315 

stocked at lower elevations, influencing the presence or absence of apex predators 316 

available for Hg testing.  All of these are potential causes for correlation and these factors 317 

could be contributing to sport fish Hg concentrations through multiple mechanisms.  318 

Thus, these factors all represent potentially important predictors of fish consumption 319 
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advisories in the West.  We believe other important predictors of Hg contamination in 320 

fish exist and we encourage further exploration of relationships and characterization of 321 

western systems. 322 

System productivity was inversely related to the probability of a fish consumption 323 

advisory.  The high level of correlation between productivity indicators suggests that they 324 

are informing the prediction of fish consumption advisories similarly.  A principal 325 

component analysis is attractive to avoid removing informative data for predictions of 326 

fish consumption advisories and identifying important areas for future research.  327 

Unfortunately, coefficients estimated for principal components are difficult to interpret.  328 

However, principal components analyses may provide a way to combine correlated 329 

simple metrics of system productivity that are commonly gathered by agencies to 330 

improve prediction of fish consumption advisories and focus future data collection 331 

efforts.  332 

Our findings related to system productivity and fish consumption advisories 333 

support the findings of previous studies (Essington and Houser 2003; Sorensen et al. 334 

2005).   However, elevated system productivity has been shown to increase hypoxia (by 335 

increasing Hg methylation) and could result in higher, rather than lower Hg 336 

concentrations in freshwater biota including sport fish (Bodaly et al. 1984; Driscoll et al. 337 

1994; Slotton et al. 1995).  These types of interactions should be considered carefully and 338 

we point out that Hg methylation, cycling, uptake and bioaccumulation are poorly 339 

characterized in western systems of North America.  We note that during routine 340 

sampling in summer 2008 we detected hypoxia in two Colorado reservoirs (Chatfield and 341 

Union) that contain walleye (Sander vitreus) with low (< 0.15 ppm) Hg concentrations 342 
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while we did not detect hypoxia in two Colorado reservoirs (Carter and Horsetooth) that 343 

contain walleye with relatively high (> 0.75 ppm) Hg concentrations.  This contradicts 344 

findings in eastern systems and indicates that Hg is being methylated in systems with and 345 

without detectable hypoxia and further research is required to understand mechanisms 346 

influencing Hg bioaccumulation in the arid west. 347 

System location and elevation were the covariates most highly correlated to others 348 

and were removed from further analyses.  System location was significantly correlated to 349 

all system productivity indicators and elevation and surface area.  However, there were 350 

no fish consumption advisories in systems east of Colorado Interstate 25.  Although we 351 

could not include this factor in our analyses, it represents an important result CDPHE 352 

could use to provide a relatively simple and understandable guideline regarding fish 353 

consumption and the likelihood of mercury contamination.  Similarly, we never observed 354 

a case where a non-apex predator triggered a fish consumption advisory.  These types of 355 

straightforward, binary factors can help anglers identify potential health risks associated 356 

with sport fish consumption. 357 

Current fish consumption advisories can be difficult to understand, even in areas 358 

where Hg has been studied for decades and advisories have been in place nearly as long.  359 

For example, in the US the seven northeastern states have seven different definitions of 360 

populations that are “sensitive” to consumption of Hg contaminated fish (Lepak et al. 361 

2009b).  Simplifying, standardizing and creating fish consumption advisories that target 362 

sensitive human populations have been recognized as some of the most important steps 363 

towards developing effective fish consumption advisories (Knuth 1995; Knuth et al. 364 

2003; Burger and Gochfeld 2008).  In this study we identified two important, yet 365 
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simplistic predictors of fish consumption advisories associated with Hg contamination in 366 

Colorado.  In our dataset, in order for a given fish to trigger a fish consumption advisory 367 

one must have: 1) obtained the fish from a system west of Colorado Interstate 25 and 2) 368 

captured a species of fish defined here as an apex predator.   While we believe there are a 369 

number of mechanistic predictors yet to be discovered that will be informative to 370 

management, most anglers that harvest fish for consumption will understand these two 371 

factors and be able to identify when they have the potential of harvesting a fish with a Hg 372 

concentration exceeding 0.5 ppm.  373 
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Table 1. Apex predator and non-apex predator species list. 519 
 520 
 521 
 522 
 523 
 524 
 525 
 526 
 527 
 528 
 529 
 530 
 531 
 532 
 533 
 534 
 535 
 536 
 537 
 538 
 539 
 540 
 541 
 542 
 543 
 544 
 545 
 546 
 547 
 548 
 549 

 550 
 551 

Apex predators
Largemouth bass Micropterus salmoides
Lake trout Salvelinus namaycush
Northern pike Esox lucius
Saugeye Sander vitreus/canadense
Striped bass Morone saxatilis
Smallmouth bass Micropterus dolomieui
Spotted bass Micropterus punctulatus
Wiper Morone saxatilis X M. chrysops
Tiger muskie Esox lucius X E. masquinongy
Walleye Sander vitreus
Non apex predators
Black bullhead Ameiurus melas
Black crappie Pomoxis nigromaculatus
Bluegill Lepomis macrochirus
Brook trout Salvelinus fontinalis
Channel catfish Ictalurus punctatus
Common carp Cyprinus carpio
Drum Aplodinotus grunniens
Gizzard shad Dorosoma cepedianum
Flannelmouth sucker Catostomus latipinnis
Kokanee salmon Oncorhynchus nerka
Longnose sucker Catastomus catastomus
Brown trout Salmo trutta
Pumpkinseed Lepomis gibbosus
Rainbow trout Oncorhynchus mykiss
Green sunfish Lepomis cyanellus
Splake Salvelinus fontinalis X S. namaycush
White bass Morone chrysops
White crappie Pomoxis annularis
White sucker Catastomas commersoni
Yellow perch Perca flavescens
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Table 2. Pearson product-moment correlation coefficients (followed by parenthetical p-values) between all independent and dependent 552 
variables used to develop model set 1.  Advis. is whether or not a given system had a fish consumption advisory, Apex is whether or 553 
not apex predators were analyzed for Hg, I-25 is system location (east or west of Colorado Interstate 25), secchi is mean summer 554 
secchi depth, Chl a is mean summer chlorophyll a, TP is mean summer total phosphorus, Elev. is system elevation and Area is surface 555 
area. 556 
 557 

 558 
Advis. Apex I-25 Secchi Chl a TP Elev. Area

Advis. 1 NA NA NA NA NA NA NA
Apex -0.26 (0.09) 1 NA NA NA NA NA NA
I-25 -0.35 (0.02) -0.20 (0.17) 1 NA NA NA NA NA

Secchi 0.14 (0.34) 0.35 (0.02) -0.43 (<0.01) 1 NA NA NA NA
Chl a -0.25 (0.10) -0.07 (0.64) 0.61 (<0.01) -0.51 (<0.01) 1 NA NA NA
TP -0.16 (0.30) -0.07 (0.66) 0.49 (<0.01) -0.35 (0.02) 0.66 (<0.01) 1 NA NA

Elev. 0.13 (0.40) 0.65 (<0.01) -0.59 (<0.01) 0.67 (<0.01) -0.38 (0.01) -0.24 (0.11) 1 NA
Area -0.04 (0.79) -0.18 (0.23) 0.34 (0.02) 0.01 (0.95) 011 (<0.45) -0.02 (0.91) -0.09 (0.54) 1
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Table 3. AICc results for model set 1.  Coefficients and AICc results are reported.  Apex 559 
is whether or not apex predators were analyzed for Hg, Chl a is mean summer 560 
chlorophyll a and Area is system surface area. 561 
 562 

Intercept Apex Chl a Area k Dev. AIC AICc Δ Weight 
-0.08 -18.06 -0.05  3.00 47.21 53.21 53.78 0.00 0.46 
-0.62 -16.95   2.00 51.80 55.80 56.07 2.29 0.15 
-0.01 -18.11 -0.05 -4.9x10-5 4.00 47.10 55.10 56.08 2.30 0.15 
-0.33  -0.05  2.00 52.35 56.35 56.63 2.85 0.11 
-0.48 -17.05  -8.6x10-5 3.00 51.44 57.44 58.02 4.23 0.06 
-0.83    1.00 56.53 58.53 58.63 4.84 0.04 
-0.33  -0.05 -2.8x10-6 3.00 52.35 58.35 58.92 5.14 0.04 
-0.77     -4.9x10-5 2.00 56.46 60.46 60.47 6.96 0.01 
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 564 
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Table 4. Pearson product-moment correlation coefficients (followed by parenthetical p-596 
values) between all independent and dependent variables used to develop model set 2.  597 
Advis. is whether or not a given system has a fish consumption advisory, Apex is 598 
whether or not apex predators were analyzed for Hg, I-25 is system location (east or west 599 
of Colorado Interstate 25), PCA is the multivariate index developed from the productivity 600 
indicators using a principal component analysis, Elev. is system elevation and Area is 601 
system surface area. 602 
 603 
 604 

 605 
 606 
 607 
 608 
 609 
 610 
 611 
 612 
 613 
 614 
 615 
 616 
 617 
 618 
 619 
 620 
 621 
 622 
 623 
 624 
 625 
 626 
 627 
 628 
 629 
 630 
 631 
 632 
 633 
 634 

Advis. Apex I-25 PCA Elev. Area
Advis. 1 NA NA NA NA NA
Apex -0.26 (0.09) 1 NA NA NA NA
I-25 -0.35 (0.02) -0.20 (0.17) 1 NA NA NA
PCA -0.22 (0.13) -0.19 (0.22) 0.63 (<0.01) 1 NA NA
Elev. 0.13 (0.40) 0.65 (<0.01) -0.59 (<0.01) -0.50 (<0.01) 1 NA
Area -0.04 (0.79) -0.18 (0.23) 0.34 (0.02) 0.04 (0.79) -0.09 (0.54) 1
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Table 5.  AICc results for model set 2.  Coefficients and AICc results are reported.  Apex 635 
is whether or not apex predators were analyzed for Hg, PCA is the multivariate index 636 
developed from the productivity indicators using a principal component analysis and 637 
Area is system surface area. 638 
 639 

Intercept Apex PCA Area k Dev. AIC AICc Δ Weight 
-0.70 -18.45 -0.65  3.00 47.37 53.37 53.94 0.00 0.47 
-0.55 -18.58 -0.66 -9.6x10-5 4.00 46.97 54.97 55.94 2.00 0.17 
-0.62 -16.95   2.00 51.80 55.80 56.07 2.13 0.16 
-0.48 -17.05  -8.6x10-5 3.00 51.44 57.44 58.02 4.07 0.06 
-0.91  -0.45  2.00 53.81 57.81 58.09 4.15 0.06 
-0.83    1.00 56.53 58.53 58.63 4.68 0.05 
-0.86  -0.45 -3.3x10-5 3.00 53.76 59.76 60.33 6.39 0.02 
-0.77     -3.9x10-5 2.00 56.46 60.46 60.74 6.79 0.02 
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Figure captions 673 
Figure 1. Point estimates of the probability of a fish consumption advisory given an apex 674 
predator was tested as a function of chlorophyll a (µg/L). 675 
 676 
Figure 2. Point estimates of the probability of a fish consumption advisory given an apex 677 
predator was tested as a function of PCA (unitless).  The coefficients of the multivariate 678 
index (PCA) are difficult to interpret but in general, increasing PCA suggests higher 679 
system primary productivity and lower probabilities of apex predators being 680 
contaminated with Hg. 681 
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Figure 1. 719 
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Figure 2. 748 
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