Mercury Concentrations in Fish from Berkeley Lake

Water Quality Control Division

Colorado Department of Public Health and Environment

March 2006

Mercury Concentrations in Fish

from Berkeley Lake
by Lucia Machado
Monitoring Unit, Water Quality Control Division

March 2006

This report is available on the CDPHE website at:
www.cdphe.state.co.us/wq/wqhom.asp
For additional information regarding this report please contact the Colorado Department of Public Health and Environment, Water Quality Control Division.

4300 Cherry Creek Drive South
Denver CO 80246-1530
Phone: 303 692-3585

Water Body Identification (WBID): COSPUS17a
Berkeley Lake

Table of Contents

Page number
Summary 4
Introduction 5
Methods 7
Sampling Strategy 7
Lake Selection 7
Fish Collection 7
Table 1 - Fish Collected From Berkeley Lake 8
Tissue Type 8
Sample Composition 8
Sample Design 9
Tissue Analysis 10
Fish Processing 10
Mercury Analysis 10
Data Validation and Verification 11
Results 12
Figure 1 - Mercury Concentration in Fish Fillets 13
Discussion 14
Conclusion 14
Acknowledgement 14
References 14
Appendix 1 - Fish Field Data
Appendix 2 - Table of Submitted Samples (Individual and Composited)
Appendix 3 - Table of Laboratory Results

Summary

The Colorado Department of Public Health and Environment's Water Quality Control Division (Division) investigated the concentrations of mercury in edible portion (fillets) of fish collected in Berkeley Lake. The Division collected 21 bluegill, 29 largemouth bass, and 8 carp with the assistance of the Colorado Division of Wildlife, in May 2004. Composite samples of fillets from each species were analyzed by the Department of Public Health and Environment's laboratory.

The Division analyzed 1 composited and 6 individual samples of bluegills; 7 composited, one duplicate composited sample and 7 individual samples of largemouth bass and 4 individual samples of common carp. All sample concentrations for bluegill and for carp were below the laboratory's reporting level for mercury of $<0.3 \mathrm{mg} / \mathrm{kg}$. Two largemouth bass composited samples had mercury concentrations above $0.5 \mathrm{mg} / \mathrm{kg}$, and 1 had mercury concentrations above $0.3 \mathrm{mg} / \mathrm{kg}$.

The information gathered from this study was used to assess the potential health risk from mercury to the public consuming those fish. At this time, the Division is recommending that restrictions be issued on the consumption of largemouth bass caught in this lake, due to mercury.

At Berkeley Lake, the Division also investigated the usefulness and applicability of collecting fish tissue plugs. Several fish specimens had a small tissue plug carefully removed from the dorsal area, other fish specimens had the fillet extracted from one side and a plug extracted from the opposite side; individual and composite samples were submitted for analysis. No significant differences in mercury concentration results were found between fillets and plugs. Uncertainty remains to the fish's survival rates due to their small sizes in most cases and to the roughness of the procedure. There was no apparent benefit in the time spent collecting fish tissue samples.

Introduction

Mercury enters the environment as a result of natural events such as erosion of soils, volcanoes, fires and surface degassing and from anthropogenic sources such as industrial processes, commercial products and the combustion of fuels. It is found everywhere, transported in the atmosphere, deposited over land and water surfaces, and eventually finds its way into rivers and lakes. Since the $19^{\text {th }}$ century, the total amount of mercury in the environment has increased by a factor of two to five above pre-industrial levels. (EPA Mercury Research Strategy, Sept. 2000)

Because mercury and its compounds are persistent and bioaccumulative, they pose risks of mercury poisoning to humans and animals. The organic form of mercury, methylmercury, is the most toxic form and most readily bioaccumulates in the tissues of animals and humans. Inorganic mercury, which is less efficiently absorbed and more readily eliminated from the body than methylmercury, does not tend to bioaccumulate.

Mercury bioaccumulates most efficiently in the aquatic food web, especially in fish, which bioaccumulate high concentrations of mercury. Nearly all of the mercury that accumulates in fish tissue is methylmercury. Because consumption of fish is the major source of mercury to humans, the monitoring of mercury in fish can provide the most direct indication of the potential risks.

This study of Berkeley Lake is part of a larger Water Quality Control Division (Division) study that started in 2004 to quantify the levels of mercury in fish in selected reservoirs throughout the state. Berkeley Lake was selected for evaluation because of the high angler use and the abundance of species that are known to bioaccumulate mercury at levels that pose health risks and are harvested by the public.

Berkeley Lake is a Denver urban lake, managed and maintained by Denver Parks and Recreation. It is located just south of I-70, between Sheridan Boulevard and Tennyson Street. It is a 40 -acre waterbody, heavily used for recreation, with picnic sites and playgrounds. It holds several fish species that are sought after by the angler population, such as largemouth bass, orangespotted sunfish, sucker, green sunfish, bluegill, bullhead, carp, channel catfish, crappie, and rainbow trout (catchable-size stocked in spring).

The objective of this study is to assess whether concentrations of mercury in fish found in Berkeley Lake are above the Department's action level of 0.5 mg of mercury per kilogram of fish (wet weight). Based on the assessment, the Department can decide whether to take further action, including conduct targeted studies (as time and resources allow), or issue fish consumption advisories. The assessment may also help in evaluating the potential risk that these contaminants may pose to wildlife that consume these fish.

At Berkeley Lake, the Division also investigated the usefulness and applicability of collecting fish tissue plugs. Collecting fish tissue plugs might be a way of minimizing the loss of fish, with the idea that they might heal from the wound and survive.

This study targeted fish that are most likely to be caught and consumed by the public. The selection of the target fish species in a reservoir is a site-specific decision based on the Division of Wildlife biologist's knowledge of the relative abundance of species and angler harvest. For Berkeley Lake, the target species was largemouth bass (Micropterus salmoides); bluegills (Lepomis macrochirus) and carp (Cyprinus carpio) were collected as ancillary data because they are very abundant in this reservoir and also highly desirable to anglers.

Methods

Sampling Strategy

Lake Selection

The Division developed a monitoring and assessment plan to investigate levels of mercury in fish in almost 100 lakes, reservoirs and rivers in Colorado, over a five-year period, starting in 2004. Waterbodies to be sampled were chosen from among the entire population in the state based on the following criteria:

- If there are no historical data on contaminants in fish tissue;
- A high harvest of fish from the waterbody
- The need to update existing fish consumption advisories;
- Any on-going collaborative studies of contaminants in any media, with other entities such as the U.S. Geological Survey, U.S. Fish and Wildlife Service, universities, etc. and
- If there are concerns or questions about health risks for a specific lake or reservoir.

Berkeley Lake was included in the monitoring plan because of the lack of information about mercury levels in the fish, the abundance of certain types of sport fish that are likely caught, and the high levels of angler use.

Fish Collection

Fish were collected during the Division of Wildlife's regularly scheduled fish population survey of Berkeley Lake on May 10, 2004. Fish were captured by boat electrofishing. The Division coordinated its fish collection with the Division of Wildlife's regular fish population survey in order to minimize negative impacts on the fish populations that could result from multiple sampling events and also to optimize resources. Fish collection and field processing followed the Division's Standard Operating Procedures. Fish contamination was minimized by not allowing fish slated for inclusion in the sample to rest on the bottom of the boat, or to be handled by the person operating the boat. Fish were kept in buckets with water until brought on shore.

All fish selected for inclusion in the study were measured to the nearest 1 mm ; some fish were killed and filleted and some fish had a small dorsal plug of tissue removed, an antibiotic salve applied to the wound and then they were released back in the lake. The fish that were killed had the fillet removed from one side and a plug removed from the opposite side. Each fillet was individually labeled and wrapped in aluminum foil. Each fish tissue plug was placed in a labeled unused Nalgene 50 ml vial. Fish fillets and plugs were placed in ice for immediate transportation to the laboratory where they were placed in freezers for subsequent processing.

Table 1 lists the species collected, the total numbers collected and the range in lengths. Largemouth bass were selected as target species principally because they are found in this lake in large numbers and are highly desirable by anglers. They are also at the top of the food web for this waterbody, which makes them good indicators of mercury bioaccumulation. Other fish species that were analyzed for mercury provide valuable supplemental data about mercury bioaccumulation in the lake. Appendix 1 presents the data about all fish specimens sampled from the reservoir and used in the study. The table includes the unique identifier number for each fish specimen, the species abbreviation and the length. The unique identifier number was later used to create the table of samples (individual and composited) (see Appendix 2).

Table 1. Fish collected from Berkeley Lake in May 2004.

Species	Number collected	Length Range (mm)
Bluegill (Lepomis macrochirus)	21	137 to 170
Largemouth Bass (Micropterus salmoides)	29	187 to 460
Common Carp (Cyprinus carpio)	8	620 to 705

Tissue Type

Because the main concern of this study is to evaluate potential risks associated with consuming potentially contaminated fish, the edible portion or fish fillets (or plugs of edible portion) were used for analyses. Skinless fillets from each fish were collected according to the Division's Standard Operating Procedures. Skin was removed from the fillets to provide the most conservative (highest concentrations) assessment of mercury.

Sample Composition

One of the first issues addressed in the statewide sampling plan was whether to analyze tissue samples from individual fish or to analyze composite samples of tissues from several fish. This is an important study consideration that requires the balancing of the desire for precise estimates of variability in tissue concentration with the analytical costs. The Division followed the EPA (2000) recommendation to use composite samples of the edible portion (fillets) when evaluating the mean concentration of mercury in the target population of fish. Composite samples are homogeneous mixtures of samples from two or more individual organisms, analyzed as a single sample. The main advantage of using composite samples is the reduced analytical costs, as compared to the costs of acquiring and handling the samples. The disadvantage of using composite samples is that individual extreme concentrations are lost in the mix of the composite.

Composite samples in this study met the following criteria:

- All specimens in a composite are of the same species;
- The smallest specimen in the composite is not smaller than 85 percent of the length of the largest specimen in the composite;
- And the fish are collected during the same sampling event.

Composite tables were generated by ranking all fish specimens per species by length, from the largest to the smallest. Then, they were grouped according to the statistical design, as calculated for each waterbody, which depends on how many fish specimens are actually captured per sampling event.

Appendix 2 presents the table of samples submitted which was created using the fish specimens' unique identifier numbers. Some samples are of individual fish specimens and some of several fish specimens, composited.

Sample Design

The Division' objectives in the statewide monitoring plan are to collect sufficient samples to estimate the mean mercury concentration in each population of fish with a known statistical certainty and to statistically test whether the mercury concentration of the samples for each species and size group exceeded the action level of $0.5 \mathrm{mg} / \mathrm{kg}$. The Division followed the statistical sampling design, rationale, and calculations recommended in EPA (2000) for an optimal monitoring design. Optimal designs require prior information about population standard deviation and the actual difference between the mean mercury concentrations and the action level. For situations where this information is lacking, EPA (2000) provides guidance in Table 6.1 and 6.2 for estimating sufficient sample size. The Division consulted these tables and selected the following specifications in its sampling design:

- A detectable difference of 50 percent between the site-specific mean mercury concentrations and the action level;
- A probability of detecting a true difference between the mean and the action level of 70 to 80 percent (statistical power);
- A level of statistical significance of 0.05 (commonly used in biological sampling);
- The need to minimize the costs associated with analysis of the samples because of a fixed analytical budget;
- The decision to assign a maximum estimated population standard deviation of 0.024 as the target for attaining the desired statistical power.

The resultant design is conservative in that it likely requires more samples to be collected than actually are required to achieve the desired statistical power. It calls for the collection of 120 fish per waterbody with 60 fish collected per species from two different species and 30 fish collected for each of 2 size classes within each species. The desired number of fish per composite is 6 and the number of replicate composite samples is 5 . When it is not possible to collect this combination of fish for a particular waterbody, sample size is modified by adjusting the number of fish per composite and the number of composites so that the estimated standard error remains less than or equal to 0.024 . For these situations, the new estimated standard error is calculated and supplied with the results.

For Berkeley Lake, 28 largemouth bass were composited in 7 samples of four fish each. This combination generated an estimated standard error of 0.021 , which provides a level of precision close to the goal of 0.024 . Seven largemouth bass fish were also analyzed as individual samples. The other fish species collected were analyzed as individual or composited samples, but the data were used as supplemental information only, not for decision-making. More details about the sampling scheme are provided below.

Tissue Analysis

Fish Processing

Fish specimens were prepared for mercury analysis at the state's laboratory in accordance with the Division's Standard Operating Procedures. In the laboratory, all fish specimens were held frozen prior to processing and were processed as soon as possible after collection, depending on staff time availability.

Fish were processed in two steps. First, all fish fillets were removed from the foil wraps that were prepared in the field, inserted in labeled containers and frozen. Fish were only partially thawed during processing to preserve the integrity of the tissue and the cells. Second, the sample compositing scheme was generated (see Appendix 2) and the composite samples were made up.

Prior to use, all fish processing equipment was washed with detergent and rinsed with tap water. Fish were placed on plastic cutting boards and whole fillets or a significant portion of a fillet were removed with high quality stainless steel knives. The skin was removed from the underlying muscle tissue after filleting. Sufficient mass of tissue was removed to meet the analytical detection requirements and the remainder saved as archived material. Fish tissue was transferred to unused 50 ml Nalgene vials, which were labeled individually and kept frozen as archived material.

After the sample compositing scheme was generated, it was used to allocate fillets or plugs that make up each composite, using the same fish processing equipment that was used for fish filleting. The vials containing fish tissue or fish plugs were taken from the freezer and grouped according to the prepared compositing scheme. A small portion of tissue was extracted from each fillet or from the fish plugs and placed in another unused and labeled 50 ml Nalgene vial. Each small portion extracted from the fillet or plug was of approximate equal size. The vial was first weighed empty and then with the fish material and the net weight of the fish sample was calculated. All the information was captured on a laboratory sheet form that was submitted to the state laboratory with the samples and with the chain of custody document. Samples were analyzed within the recommended holding time for mercury of 6 months.

Mercury Analysis

All samples were analyzed for total mercury using US EPA Method 245.6 for cold vapor atomic absorption spectrometry. Total mercury was the analytical method chosen
because it provides a comparable estimate of methylmercury, which is the main form of mercury accumulated in fish and it is much less costly to analyze than methylmercury. This is consistent with the EPA (1995a) that recommends that fish contaminant monitoring programs measure total mercury and make the conservative assumption that all mercury is present as methylmercury in order to be most protective of human health. In addition to mercury, the concentrations of selenium and arsenic in fish tissue were determined as part of this study, but are not reported here.

The concentration of total mercury was expressed in units of $\mathrm{mg} / \mathrm{kg}$ (wet weight). The method detection limit (MDL) for mercury analysis in fish tissue for the state laboratory was $0.0001 \mathrm{mg} / \mathrm{kg}$ for the 2004 analyses, but the reporting limit was $0.3 \mathrm{mg} / \mathrm{kg}$.

Data Validation and Verification

Several quality assurance steps were taken to ensure that data quality and data integrity met the data objectives for the study. Fish collection, processing and compositing were done following Division protocols. The compositing scheme was created taking in consideration the range of fish lengths, so that the composite was made with fish of comparable sizes. Proper documentation was prepared to document all the steps in the process, to include chain of custody documentation. The results of the laboratory analysis and all field data are stored in an Access database. A complete set of field and laboratory data can be found in Appendix 3.

Data results and chain of custody documentation were received and reviewed for completeness by the project manager. All data documentation was complete, and there were no apparent problems or anomalies.

Results

Seven bluegill samples were submitted for analysis: one composite sample and six individual fish samples; all had mercury concentrations less than $0.3 \mathrm{mg} / \mathrm{kg}$. Four carp individual samples were submitted for analysis and all had mercury concentrations less than $0.3 \mathrm{mg} / \mathrm{kg}$.

Fifteen largemouth bass samples were submitted for analysis: 8 samples of composited fish material, 7 using fish tissue plugs and 1 using fish fillets; and 7 samples using fish material from individual fish specimens. Two composited samples of plug material had mercury concentrations of $0.5 \mathrm{mg} / \mathrm{kg}$ or higher, 1 had mercury concentration higher than $0.3 \mathrm{mg} / \mathrm{kg}$ and the rest were below laboratory's reporting limits. The composited sample using fish fillets also had mercury concentration higher than $0.5 \mathrm{mg} / \mathrm{kg}$. Of the individual samples, 3 had mercury concentrations of $0.5 \mathrm{mg} / \mathrm{kg}$ or higher, 2 had mercury concentrations higher than $0.3 \mathrm{mg} / \mathrm{kg}$ and the rest were below laboratory's reporting limits. Because it is incorrect to compare individual fish results with composited samples results, only the results from the 7 composited samples using plug material were used to make a decision about whether this waterbody had high levels of mercury concentrations in fish tissue or not.

Based on laboratory results from each waterbody, the Department makes a decision to either issue or rescind a fish consumption advisory or do nothing. Because there are so many data results about each waterbody, the decision was made that just one sample exceedance (above the action level of $0.5 \mathrm{mg} / \mathrm{kg}$) was sufficient information to cause the waterbody to be under consumption restrictions.

Please consult Appendix 3 for detailed laboratory results.

Figure 1

Discussion

Berkeley Lake was sampled in order to evaluate the potential risk to the public from consuming fish that may be potentially contaminated with mercury. Mercury bioaccumulates as it moves up the food web and in the case of Berkeley Lake, largemouth bass are the species at the top of the food web. By investigating largemouth bass, this study looked at not only the very desirable species, but also took in consideration the greatest opportunity for mercury to be found in fish in the lake.

The mercury results indicate that the lake does have a mercury problem. This statement is made based on two important indicators: first, because a top predator species was used for the study and second because several (2 out of 7) data results were above the action level of $0.5 \mathrm{mg} / \mathrm{kg}$. This action level was used by the state as the threshold for issuing fish consumption advisories at four other waterbodies in the Colorado. The lake might be re-sampled during the next 5 -year cycle, depending on available resources.

Conclusion

Mercury was found at levels above the Department's action level of $0.5 \mathrm{mg} / \mathrm{kg}$ in several fish collected and analyzed from Berkeley Lake. At this time, the Division is recommending that restrictions be placed on the consumption of largemouth bass caught in this lake due to mercury.

Acknowledgments

The Division appreciates the assistance of Paul Winkle and his crew from the Colorado Division of Wildlife and Alan Polonski and his crew from City of Denver Department of Health who conducted fish sampling for this study. Thanks to James Dominguez, a staff member for the Division, who participated in sampling, processing and, in general, handling every step of the study.

References

U.S.EPA's Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume I: Fish Sampling and Analysis, Third Edition (USEPA 2000).
U.S.EPA Office of Research and Development: Mercury Research Strategy, EPA/600/R00/073, September 2000.

Appendix 1

Fish Field Data

Field Data Sheet - 05/10/2004 - Boat Electrofishing

Sample ID
BERK001
BERK002
BERK003
BERK004
BERK005
BERK006
BERK007
BERK008
BERK009
BERK010
BERK011
BERK012
BERK013
BERK014
BERK015
BERK016
BERK017
BERK018
BERK019
BERK020
BERK021
BERK022
BERK023
BERK024
BERK025
BERK026
BERK027
BERK028
BERK029
BERK030
BERK031
BERK032
BERK033
BERK034
BERK035
BERK036
BERK037
BERK038
BERK039
BERK040

Species
BGL
BGL 153
-168
BGL 148
BGL 157
BGL
165
BGL 165
BGL
152
BGL 152
BGL 168
BGL 165
BGL 137
BGL 157
BGL 147
BGL 159
BGL 164
BGL 163
BGL 157
BGL 170
SNF 139
BGL 152
LMB 396
LMB 430
LMB 435
LMB 405
LMB 402
LMB 338
LMB 360
LMB 342
LMB 279
LMB 398
LMB 195
LMB 168
LMB 420
LMB 418
LMB 393
LMB 460
LMB 356
LMB 340
LMB 312
LMB 191

BERK041	LMB	258
BERK042	LMB	214
BERK043	CPP	222
BERK044	LMB	379
BERK045	LMB	247
BERK046	LMB	176
BERK047	LMB	204
BERK048	LMB	195
BERK049	LMB	214
BERK050	LMB	198
BERK051	LMB	187
BERK052	CPP	652
BERK053	CPP	680
BERK054	CPP	650
BERK055	CPP	670
BERK056	CPP	620
BERK057	CPP	650
BERK058	CPP	705
BERK059	BGL	147
BERK060	BGL	152

Abbreviations:

LMB $=$ Largemouth Bass
BGL = Bluegill

$$
\begin{aligned}
& \text { CPP }=\text { Common Carp } \\
& \text { SNF }=\text { Green sunfish }
\end{aligned}
$$

Notes:

1) Although 29 largemouth bass were collected, only 28 were analyzed, with the smallest discarded.
2) The green sunfish was not analyzed.

Appendix 2

Table of Submitted Samples (Individual and Composited)

Table of Samples Submitted for Berkeley Lake
 (Individual and Composited)

Sample ID Individual Fish IDs

BERKBLG08F (*)	005	+ 006	+ 008	
BERKLMB09 P (*)	$=021$	+ 023	+ 022	+ 027
BERKLMB10 P (*)	$=034$	+ 024	+ 025	+ 030
BERKLMB11 P ${ }^{*}$)	$=036$	+ 035	+ 044	+ 033
BERKLMB12 P (*)	037	+ 028	+ 038	+ 026
BERKLMB13 P (*)	$=039$	+ 041	+ 029	+ 045
BERKLMB14 P (*)	$=042$	+ 049	+ 047	+ 050
BERKLMB15 P (*)	031	+ 040	+ 048	+ 004
BERKLMB16F (*)	$=021$	+ 022	+ 023	+ 027
BERKCCP27P (**)	$=058$			
BERKCCP28P (**)	$=056$			
BERKCCP29P (**)	$=054$			
BERKCCP30P (**)	$=057$			
BERKLMB31F (**)	$=021$			
BERKLMB32F (**)	$=022$			
BERKLMB33F (**)	$=023$			
BERKLMB34F (**)	$=024$			
BERKLMB35F (**)	$=025$			
BERKLMB36F (**)	$=026$			
BERKLMB37F (**)	$=027$			

Notes:
(*) $=$ Composited Samples
(**) = Individual Samples
P indicates a sample of fish tissue plugs.
F indicates a sample of fish fillets.
In many cases, material from plugs and fillets may have come from the same fish specimen. For example, fish specimen 024 was part of the composite sample ID BERKLMB10P and BERKLMB34F

Appendix 3

Table of Laboratory Results

Table of Laboratory Results for Berkeley Lake Mercury Concentrations in mg/kg (wet weight)

Samples ID
BERKBGL08F
BERKLMB09P
BERKLMB10P
BERKLMB11P
BERKLMB12P
BERKLMB13P
BERKLMB14P
BERKLMB15P
BERKLMB16F
BERKBGL21F
BERKBGL22F
BERKBGL23F
BERKBGL24F
BERKBGL25F
BERKBGL26F
BERKCPP27P
BERKCPP28P
BERKCPP29P
BERKCPP30P
BERKLMB31F
BERKLMB32F
BERKLMB33F
BERKLMB34F
BERKLMB35F
BERKLMB36F
BERKLMB37F

LSD Analyzed
in June 2004
<0.3
0.56
0.36
0.50
<0.3
<0.3
<0.3
<0.3
0.58
<0.3
<0.3
<0.3
<0.3
<0.3
<0.3
<0.3
<0.3
<0.3
<0.3
0.31
0.52
0.55
0.34
0.53
<0.3
<0.3

Fish Species Abbreviations:

LMB $=$ Largemouth Bass
$\mathrm{BGL}=$ Bluegill
CPP = Common Carp

Notes:

1) P indicates a sample using fish tissue plugs.
2) F indicates a sample using fish fillets.
