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ABSTRACT

A general methodology for modeling a groundwater system with
complex boundary conditions by using the discrete kernel approach is
developed. This methodeology is applied in modeling a stream—aquifer
system where the stream—aquifer relationship is in permanent hydraulic
connection. Based on the fact that the interaction flux between
stream and aquifer, i.e., return flow, is proportional to the
difference between water levels in the river and in the aquifer, the
stream-aquifer system is modeled as a boundary-value problem with a
time~dependent third type boundary, which, in definition, is a kind of
boundary condition where a linear combination of the piezometric head
and its normal derivative is prescribed.

This stream-aquifer model includes two parts. The first part is
a discrete kernel generator, which generates drawdown discrete kernels
and return flow discrete kernels by a finite difference model for the
case of homogeneous initial conditions and homogeneous boundary
conditions of the third type. These discrete kernels are calculated
only once and saved. They are the characteristic coefficients which
represent the linear relationship between excitations and responses
for a particular physical system. The second part is a simulator,
which simulate the responses of the system due to any kind of
activities imposed on the system, such as pumping, recharge,
irrigation, non-equilibrium of the initial conditions and variation of
river stages, in terms of the discrete kernels.

A numerical calculation procedure for the finite difference model
is developed for the generation of discrete kernels in a groundwater
system with different types of boundary conditions, such as prescribed
head boundary and third type boundary. Techniques of "moving
subsystem” and "sequential reinitialization" are further improved and
used in the generation of discrete kernels and in the simulation
procedures respectively, in order to increase the efficiency.

The computer codes have been developed for the finite difference
model and for the simulation model. They have been thoroughly tested
for accuracy, flexibility and cost. They have performed well in all
categories. '

Since the relationships between excitations and aquifer responses
as well as return flow responses are explicit, the model can easily be
used to couple a stream—aquifer system with any kind of policy
evaluation or management model for simulation or mathematical
optimization. The model has been applied to a part of the South
Platte River Basin in Colorado from Denver to Greeley for the purpose
of evaluating institutional alternatives for managing that highly
interrelated stream-aquifer system from an econcmic standpoint while
accounting for agronomic practices and legal constraints.
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Chapter 1
INTRODUCTION

NTRODUCTION

I
INTRODUCTION
With the development of industry, agriculture and the increase of the

population, many places in the world are facing the problem of lack of
water resources, especially those arid or semi-arid areas. One of the
critically water scarce regions is the northeastern part of China.
Studies have_shown that the total amount of surface and ground waters is
not enough for all the demand from cities and agricultural areas. Similar
serious water resources problems both in quantity and quality are
threatening many big cities along the east coast of China where the
population, industries and business are highly concentrated.

Such critically increasing demand for a sufficient quantity and
quality of water, properly distributed in time and space, has forced
engineers and planners to propose more comprehensive and complex plans for
water resources systems. Such plans include the regulation of natural
water supplies and the transportation of water between watersheds, river
basins, etc. One of the surface water regulation techniques is to build
dams to hold water during the wet season (also prevent flood) and to
release water during the dry periods. As needs grow and water supply
remains constant, larger and larger storages are required. In many cases

it is impossible to find proper dam sites and to obtain the large amount



2

essary capital. The environment concerns are also often difficult
of nec

to resolve.
An alternative management strategy is to use aquifers, the natural

underground reservoirs, which contain ten or hundred times more water than
is held in storage in a river or in surface reservoirs. These underground
reservoirs are naturally to filtering water and regulating water to some
degree. Large amounts of water from precipitation or irrigation percolate
down into water table as an input to aquifer. The releases from the
aquifer are either flow to a river as return flow or flow downstream in
the aguifer. Since groundwater flow is much slower, aquifer does behave
as a reservoir to hold water a relatively long time. However, while this
kind of regulation is not following man’s desire, it does show that the
aquifer has the capability to regulate water, to redistribute water and
to reuse water as long as we provide good management.

| For arid or semi-arid areas, where the permanent hydraulic connection
does exist between stream and aquifer, the interaction between surface and
ground waters provides favorable conditions for development of the water
resources. An aquifef is both a vast natural storage reservoir and a
conveyance system, and ground water is an alternative water supply.
However, without proper management of the stream-aquifer system, those
édvantages cannot be effectively exploited. The distinct characteristics
of water in river and aquifer, which bring- advantages to water resource
development planning, also create difficulties in understanding their
interaction and in simulation of this interaction. The difficulties are
also due to the fact that there are so many problems associated with the

regulation of water supplies. They are usually problems of hydrology, law,
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economics and politics and must be resolved on the basis of broader
decision making.

In the past two decades, many studies have been undertaken in the
field of conjunctive management of surface and ground waters and great
development have been achieved. However the demand for more efficient and
cost effective tools still exist because the conjunctive management
problems are always associated with a large scale physical system and a
Tong time horizon. In addition, the demand of constant updating of
methods still exist because of the variation of management purposes and

operation levels.

REVIEW OF LITERATURE

The conjunctive management of surface and ground waters is a subject
of great practical, economic and political importance in the field of
water resources. Numerous developments associated with this subject have
been obtained during last two decades. One of the major development is the
technique of the response function approach (discrete kernel approach),
which makes the distributed parameter groundwater management practically
availabie. Among the other developments an important branch is the
simulation technique of the interaction between stream and aquifer. In
order to focus on the literature relevant to this study, this review will
primarily cover two aspects: the stream-aquifer interaction and the
modeling of stream-aquifer system suited for conjunctive management

studies.



Stream-Aquifer Interaction

For the subject of stream-aquifer interaction, I1langasekare (1978)
and Peters (1978) have already given an extensive literature review. For
completion of this literature review a summarization is presented here for
reader’s convenience.

The earliest study on the interaction of river and aquifer was
develobed by Theis (1941). Theis derived an analytical solution for
estimation of the flow from a stream to an aquifer caused by pumping near
the stream. The ratio of flux from the river and the amount of water
pumped from a single well was given under the ideal condition of a
homogeneous and isotropic aquifer with an infinitely long straight and
fully penetrating river. By placing an image recharge well of equal
discharge on the opposite side of river with an equal distance, Theis
considered river as a constant head boundary.

Glover and Balmer (1954) used the relationship derived by Carslaw
(1921) between quantity pumped and aquifer drawdown to obtain an
expression for the ratio of the flux from the river and the flux from the
pump under an ideal condition similar to the condition for Theis solution.
Glover’s method has been used and further developed for many extensive
applications.

Jenkins (1968) summarized the relations between the pumping time and
stream depletion for an idealized system, which have been derived by
several investigators (Theis, 1941; Conover, 1954; Glover and Balmer,
1954; Glover, 1960; Theis and Conover, 1963; and Hantush, 1964, 1965). He
generated a set of dimensionless curves and tables which could be employed
to estimate the rate of stream depletion. He introduced the stream

depletion factor (sdf) which reflects the effects of the hydraulic
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properties of the aquifer and the distance between the pumping well and

stream. In his later study (1969) this descriptor sdf was evaluated for

complex heterogeneous aquifers by using electric analog and finite

difference digital models.
these studies, the changes in stage in the stream were not

In all
taken into consideration. Bouwer (1969) discussed the case of flow from
a trapezoidal channel, un&er]ain, but not extending to, an impermeable
boundary. He calculated seepage by using the piezometric head difference
of the channel and water table. The results indicate that the interaction
flux between stream and aquifer is proportional to the head difference of
the channel and the water table a fey river widths away from the channel.

Hornberger (1970) numerically ‘solved the problem of groundwater
recession and groundwater flow in response to changes in stream stage in
a simple system of a fully penetrating stream in an isotropic homogeneous
aquifer. The Boussinesq’s equation in one dimension was solved using a
finite difference scheme. Zeta and Wiggert (1971) considered the stage
change in the stream both in space and time. The dynamic equation
describing one-dimensional open channel flow and the equation of one
dimensional transient groundwater flow were solved numerically for a fully
penetrating stream. Pinder and Sauer (1971) used a §imi1ar approach except
the head in the aquifer was obtained by solving a two-dimensional
transient horizontal flow equation. The differential equations of channel
flow and aquifer flow were solved simultaneously, coupled by an expression
for flow through the wetted perimeter. The coupling equation was the

Darcy’s law applied for flow across the thickness of wetted sediment for

a partially penetrating rectangular stream.
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These works are pioneering efforts in the simulation of stream-
aquifer relations. The analytical solutions or numerical models are
focused on simulation of the physical characteristics of the interaction
between stream and aquifer. However, similar to many groundwater
simulation models they are designed to predict the hydrologic behavior of
the system in response to a particular set of numerical values of the
excitation, such as pumping rates at a given well over several time
periods or fluctuation in the river stage over several time periods,
rather than provide a functional relation between the response and the
excitation.

The increasing demand for managing groundwater system or stream-
aquifer system found those groundwater simulation models are difficult to
couple explicitly with management models especially for large scale
problems with long time horizon. The necessity for siﬁu]ation of stream-

aquifer system suited for management has been gradually realized.

Stream-Aquifer Simulation Suited for Management
Maddock (1972) proposed an efficient method to generate a set of

aquifer response functions under the condition that the aquifer system is
nonhomogeneous and with irregularly shaped boundaries. He obtained
drawdown of the aquifer by taking the convolution integration of input
pumping rates through this set of response functions, which he called an
"algebraic technological function”.

With the introduction of response function to groundwater field, the
distributed parameter groundwater modeling methods for management have
been developed greatly. Groundwater policy evaluation models based on

repeated simulation with response functions have been much more efficient
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than using conventional groundwater hydraulic models. In addition, the
explicit mathematical expression, as the system responses, have been able
used to couple the physical system with the various formulation of
management model for different purposes.

Maddock (1974) extended this response function concept to a combined
stream-aquifer system and showed the applicability of the method to
conjunctive use problems. He assumed that the interaction between the
stream and the aquifer "to be such that the stream acts as a constant head
boundary to the aquifer; i.e., there is sufficient flow in the stream at

‘a11 times so that withdrawal directly from the stream or losses from the
stream to the aquifer do not affect the head levels in the stream". He
period due to pumping by calculation of the difference between the
accumulated quantity of water removed from aquifer storage and the
accumulated quantity of water pumped from the Qe]ls.

Based on Maddock’s work, Dreizin and Haimes (1977) developed a model
with multiunit aquifers and interconnected streams. The system responds
~to pumpage or recharge in two ways: as drawdown in the aquifer or as flow
between streams and aquifers. Correspondingly two sets of response
functions are calculated. This model 1is applied to a conjunctive
management of groundwater and surface water system with a network of
streams and reservoirs all interacting with one another. In this model
stream was still assumed as constant head boundary of the system, however
to determine the stream-aquifer induced flow due to pumpage from wells,
fraction functions relating infiltration to pumpage are developed.

Morel-Seytoux (Morel-Seytoux, et al. 1973) presented a similar

procedure for stream-aquifer interaction where the response function was
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named "discrete kernel". The reason was described by the paper (More]i
Seytoux, et al. 1980) that:
ngecause the Green’s function is generated at discrete points in time
and space and because the Green’s function is the kernel of the
resolvent integral equation of the boundary value problem".

Morel-Seytoux and Daly (1975) presented a paper to demonstrate the
discrete kernel approach in conjunctive management of stream and aquifer.
The distinction of their work compared to Maddock’s paper (Maddock, 1974)
was, instead of treating stream as a constant head boundary of aquifer,
they introduced the research result by Bouwer (1969) that return flow was
proportional to the difference in the drawdowns in the stream'surface
level and in the aquifer water table a few stream widths away from the
stream. Therefore this stream-aquifer model is more reasonable, in terms
of physical sense, in the simulation of interaction between stream and
aquifer which have permanent hydraulic connection with each other. The
further study on calculation of return flow by Peter (1978) showed that
the result by this method had a reasonable agreement with the one by mass
balance approach on the South Platte River, Colorado, U.S.A.

A combined model of water table and river stage evolution was
presented by Morel-Seytoux (1975). By an integral equation it completely
characterizes the interaction between a stream and an alluvial aquifer.
Four physical characteristics were taken into account in this model. They
were initial river drawdowns, initial aquifer drawdowns, upstream inflows
and pumping rates. Both dynamics for river and aquifer were considered.
The initial conditions for both stream and aquifer were taken into
consideration as natural redistribution. I11angasekare (1978) in his

dissertation, rederived all those influence coefficients. There are, in



9
all, 35 kinds of influence coefficients for a complete model of a stream-
aquifer system. The major ideas were also described very clearly in the
paper (I11angasekare and Morel-Seytoux, 1982) that the discrete kernel
approach for an isolated aquifer and the discrete kernel approach for an
jsolated stream are combined to derived the influence coefficients for a

combined stream-aquifer system. The isolated aquifer and the isolated

stream are coupled by using a linear relationship for the stream-aquifer

interaction.

SCOPE_OF PRESENT STUDY

The primary purpose of this study is to develop a stream-aquifer
model for the case in which stream and aquifer are in hydraulic
connection. This model should be suited for cost-effective simulation or
formal optimization in the study of conjunctive management of surface and
ground waters.

For the purpose of conjunctive management, it has been realized that
the response function approach must be adopted in this model. The
significant meaning of generation of the response functions is not only
because they represent the physical characteristics of an aquifer or a
stream-aquifer system so that all kinds of simulation results may be
obtained efficiently by simply using convolution integration through these
response functions and any kinds of excitations. An other fundamental
significance is that these response functions represent the _explicit
relationship between huge input and output vectors, so that the efficient
tools of mathematical structure for optimization can be utilized for
management of conjunctive use of surface and ground waters or coupling a

hydrologic model with any social, economical, political or legal model.
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It has been also realized that in the literature there are two

.cal ways in modeling the stream-aquifer interaction. One is to simply
typ

treat the stream as a constant head boundary to an aquifer (Maddock, 1974;
r

Dreizin and Haimes, 1977). The other is to couple stream and aquifer by
2 1inear relationship (Morel-Seytoux, et al. 1973; Morel-Seytoux and Daly,
1975; Morel-Seytoux, 1975; Peter, 1978; I1langasekare, 1978; I1langasekare
and Morel-Seytoux, 1982). Comparing these two, the author thinks the
treatment of stream as a constant head boundary is limited in certain
cases. In practical problems, there are only probably very few big
rivers, such as the Mississippi River in U.S.A. or the Yangtze Ri?er in
China, which can be considered with sufficient flow at all times so that
the interaction flux between stream and aquifer is not affected by the
variation of river stage. Therefore this assumption is not suitable in
most cases where rivers are usually wide and shallow, partially
penetrating an aquifer. The second problem is, in the numerical model,
the river is simulated by constant head cells (as in a finite difference
model) (Dreizin and Haimes, 1977), the scale of which (usually 1 mile is
detailed enough) are much Targer than the real width of the river (several
hundred feet) so that thig- simulation is not reasonable in scales.
However with the assumption for river as constant head boundary, the
solution of the problem is not complex.

A linear relationship between difference in the drawdowns in the
stream level and in the aquifer water table is used to simulate the
stream-aquifer interaction in the work of Morel-Seytoux and his
colleagues. This relationship is based on physical characteristics in the

stream-aquifer system. However the generation of so many influence

coefficients makes the solution procedures of the problem not so easy.
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In this study it has been found that the linear relationship between
stream and aquifer is as same as the third type boundary condition in a
bound-value problem in mathematics. Therefore a river is treated as a
third type boundary to an aquifer. This treatment follows the physical
characteristics of the stream-aquifer interaction but makes the solution
procedures much easier. The solution is obtained direct]y by solving a
boundary-value problem in two steps. First, two kinds of discrete kernels
are generated, which are drawdown discrete kernels and return flow
discrete kernels. They are only qenerated once. Then in the simulation
stage, four types of external excitations to the system are considered.
They are initial river drawdown<. initial aquifer drawdowns, variation of
river stages and net withdrawals to the aquifer.

The objectives of this study are: (1) to develop the methodology for
solutions of a boundary-value problem with different time-dependent
boundary conditions; (2) to develop an efficient numerical procedures; (3)
to develop a computer program; (4) to test the computer program for
accuracy and cost; (5) to apply this model to a real system, a portion of
the South Platte stream-aquifer system.

This dissertation consists of six chapters. Chapter 2 discusses
different type boundary conditions including the stream-aquifer
relationship. It also develops the general methodology for solutions for
the fundamental boundary-value problem with diffgrent boundary conditions
by discrete kernel approach, including solution for stream-aquifer system.
The numerical procedures for generation of discrete kernels by a finite
difference model, and for simulation are presented in Chapter 3. The
accuracy and efficiency of the methodology and of the calculation

procedures are presented in Chapter 4. In Chapter 5 the application to
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a portion of the South Platte stream-aquifer system and its result are

presented. The dissertation is completed with the summary and conclusions

in the final chapter.



Chapter 2
THE FUNDAMENTAL BOUNDARY VALUE PROBLEM

The purpose of this chapter is to discuss the solution for the
fundamental boundary-value probiem by the discrete kernel approach in
order to model a stream-aquifer system or any groundwater systems with
complex boundary conditions. This chapter includes three sections. The
first section is the background, which gives the background for the
stream-aqﬁifer relationship, the linear system approaches and the typical
types of boundary conditions. The second section explains how to solve a
complex boundary-value problem by principle of superposition and discrete
kernels approach for a prescribed head boundary-value problem. The last
section explains how this methodology is applied to a stream-aquifer
system, which is conceptualized as a boundary-value problem with a third

type boundary.

BACKGROUND

In order to model a system , it is important to have a thorough
understanding about the physical characteristics of that system. The
stream-aquifer relationship therefore is discussed before the discussion

of the solution procedures.

13
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The Stream-A uifer Relationshi
1t is now a well recognized fact that surface and ground waters
ct with each other. For example, consider a river in hydraulic

intera
ith an alluvial aquifer. If the water level in the river is

connection W
higher than in the aquifer, water will flow from the river into the
aquifer and vice versa. By definition, baseflow in the stream is provided
by depletion of the ground water storaae.

The interactive relationship between a stream and an aquifer may
display varied characteristics under different geographic or geologic
conditions. The most common case is that of a river which partially
penetrates the aquifer and is in permanent hydraulic connection with it,
as shown in Figure 2.1. There is always water exchange between the river
and the aquifer. This is qualitatively reasonable and the real question
js: what is the physical law which governs this exchange? Bouwer (1969)
has shown that the discharge at the interface between the river and the
aquifer is proportional to the difference in the heads in the river and
in the aquifer a few streams width away from the stream (e.g. Morel-
Seytoux, 1985). Figure 2.1 illustrates this interaction schematically.

This relationship, simply an integrated form of Darcy’s law, can be

expressed symbolically as:
Q=T (h-y) (2.1)

where Q, is the return flow between the stream and the aquifer. Q, is
algebraically defined as positive when the direction of the flow is from
aquifer towards river and negative otherwise, h is the water table

elevation in the aquifer, y is the stage in the river (both measured from
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mon datum), and T, the coefficient of proportionality, is the river
a com ’

reach) transmissivity (area per unit time) which is a function of the
(or

fluid aquifer and geometric river cross section properties. An
uia,

pproximate expression for I' is obtained from the method of nets (e.q.
a T
M;fel Seytoux, 1985):

W, + 2e (2.2)

where L is the Tength of the reach, W, is the wetted perimeter of the

reach (in practice W, is essentially the width of the reach, W), A is the
distance from the center of the river to the point where h is evaluated
for use in Eq. (2.1). The theoretical and experimental work of Bouwer
(1978) (e.g. Morel-Seytoux, 1985) has shown that A should be of the order
of 5W. T is the Tocal horizontal transmissivity and e is a mean saturated
thickness within the distance of SW, on each side of the river center.

Thus approximately the expression for the river transmissivity T is:

- L [ew + 2e - KL Lw + 2e (2.3.5)

Equation (2.3.a) was derived under the assumption that the aquifer is
isotronic. In many situations fhis is not the case and the hydraulic
conductivity in the horizontal and vertical directions are quite
different. Usually the horizontal conductivity K, is much larger than
the vertical one Ky. Under such conditions the method of flow nets yields
the more general formula:

Ty W, + 2e

=t Lk 2.3.b
e [1owp+pm,e ] ( )
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Jhere T, is horizontal aquifer transmissivity (i.e. eK)) and gy = K/K, is

a measure of anisotropy. Eq. (2.3.b) reduces to Eq. (2.3.a) when Py =1

(isotropic case). In addition the streambed is often clogged. Over a
thickness Z, the hydraulic conductivity is K. In such a situation a

more general formula, again developed from the method of flow nets,

yields:
T T !
¢ . zT (2.3.c)
+ —
pr K.

where in this équation T is given by Eq. (2.3.b). In the absence of a
clogged layer, z. = 0 and Eq. (2.3.c) reduces to T, = T. On the other hand
when the clogging is severe, Kt'Vs very small ana I, reduces practically
to _ng&;_ , which means that the entire hydraulic head drop occurs
across® the clogged layer. In the remainder of this report it is
understood that T stands for T, and the symbol T will be used exclusively
for horizontal aquifer transmissivity.

Finally it may happen on occasions that the aquifer heads five widths
away from river center are different on the left bank and on the right

~bank. In this case h in Eq. (2.1) represents the average of the two

values.

Linear System Approaches

In this chapter the basic governing equation is Tlinear (being a
linearized form of an originally nonlinear equation) and time-invariant.

Therefore linear system theory is applicable for the solution of the
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plem Before the discussion of the solutions, it is necessary to
pro .

review the pbasic linear system theory.
principle of Superposition. For a linear system, a powerful tool -

the principle of superposition is applicable. As described by Bear

(1979) the princip]é of superpositions states that if g, = g, (x,y,t) and
" ,‘&(x,y,t) are two general solutions of a homogeneous linear partial
differential equation L(x) = 0, where L vepresents a linear operator, then

their sum j, + i, Or in general, any linear combination of g, and g,

“ = cl”l + cz“z (2‘4)
where C, and C, are constants, is also a solution of L(g) = 0. Or, in
generai, if p = m(x,y,t), i =1,2,...,n, are particular solutions of L(u)

= 0, then

n
b=z e (2.5)
where C's are constants, is also a solution of this equation. The
constants are determined by requiring that px should also satisfy the
prescribed boundary conditions and prescribed initia] conditions. The
solution g in Eqs. (2.4) or (2.5), with coefficients determined so that
the boundary conditions and initial conditions are satisfied, is called
complete solution of the homogeneous equationé.

The principle of superposition can be used to decompose a single
complex system into several or many linear homogenous simple systems, the
Superposition of those solutions from simple systems is just the solution
of the complex system. The interpretation of this principle is (1) the

presence of one boundary condition does not affect the response produced
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e of other boundary conditions (and, of the initial
b
conditions as well),
4 by the different boundary conditions. Therefore, to determine the
ce

y the preseﬂc
and (2) there are no interactions among the responses

rodu
p . o4 effect of a number of boundary conditions, it is possible to
comb1in R

jve the effect of each individual boundary first and then combine the
solve

1ts. The advantage of the decomposition into subproblems is that the
results. _
solution of each subproblem is simpler in general.

Quhamel’s Method. Another useful tool is the Duhamel’s method. As
by Necati Ozisik (1968) that Duhamel’s method relates the

mentioned
solution of a boundary-value problem with time-dependent boundary
conditions and/or sources to the solution of a similar problem with time-
independent boundary conditions and/or sources by means of a simple
relation. Since it is often easier to obtain the solution of the latter
problem, Duhamel’s hethod is a useful tool for obtainina the solution of
a problem with time-dependent boundary conditions and/or saurces whenever
the solution of a similar problem with time-independent boundary
conditions and/or sources is available.

Green’s Function Theory. Green’s function theory is a powerful
theory in solution of boundary-value problem of linear system. It is used
as a basic approach for this sthdy. The basic idea of the Green’s function
theory is, as stated by Necati Ozisik (1968):

"The solution of a boundary-value problem of heat conduction with

distributed heat sourceﬁ, nonhomogeneous boundary conditions and a

prescribed initial condition can be represented in the integral form

by means of a Green’s function which is the solution of a similar

prablem for zero initial condition, homogeneous boundary conditions,
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and an jnstantaneous heat source of unit strength situated at a
single Jocation within the region."

piscrete kernel is just the Green’s function in a discrete form both

in space and in time. A complex boundary-vaiue problem of a linear and

time-invariant system with distributed excitations can be solved in two

cteps. In a discrete form, first, to obtain the solution of a similar but

homogeneous problem, which means, except a single unit excitation only

during the first unit time period, either within the area or on the

all other part of the area or boundary are with no excitations

boundary,
and the initial conditions are zero. This solution is called discrete
kernel. Repeat this processes for as many times as needed, one can get all
sets of discrete kerne1;. For the second step, using the principle o%
superposition and Duhamel’s method to obtain the solution for the original
complex problem in terms of discrete kernels and- any combination of

different time-dependent excitations.

Types Of Boundary Conditions
Mostly three types of boundary conditions occur naturally in ground

water problems.

When an aquifer is in hydraulic connection with a major body of water
such as a large size lake or reservoir, the lake imposes its head on the
aquifer. The boundary condition is thus one of a prescribed head at the
interface between the lake and the aquifer. If the lake level remains
constant ir time the prescribed head is constant.

At a boundary where the aquifer terminates as when, for example, a
permeable alluvium encounters solid bedrock, the boundary condition at

« the interface is one of no flow. This natural boundary condition is a
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1ar case of the more general mathematical boundary condition which
articu :

p Jates @ prescribed flux at the boundary. An example of a prescribed
stipu

as a boundary condition is that of injection of water from high
flux

sure wells or through a recharge trench with very good permeability.
pres 3

when a river intersects the aquifer, as illustrated in Figure 2.1,
the boundary condition described by Eq. (2.1), is one that stipulates a
linear re1_ationsh1'p between the flux, Q,, and the head, h, in the aquifer.
of boundary condition is typical in the presence of a stream and

This type
is therefore called a "stream-aquifer" boundary condition. It is also
known _in the literature as either a boundary condition of the third type
Qr a "radiation" boundary condition or a Fourier or a Cauchy boundary
condition. Typically in ground water studies one is interested in only
a part of an aquifer. Thus the boundary for the study is not a natural
boundary but an artificial one which separates the part of the aquifer of
interest from that which is of less interest. Typically, then, the
division is artificial and at the boundary the condition cannot be one of
a prescribed head or of a prescribed flux. The flux at this artificial
interface will depend on what happens internally (i.e. in the aquifer part
of ﬂﬁerest) describgdmpy_the”headﬂhnin Eq. (2.1); and what happens
extLr\al_l_y (i.e. in the river or in the aquifer part of less interest)
d_e;cribeq by thg__stage y in Eq. (2.1). ‘Under such artificial divisions
the typical bound;;;'~§ondition will be of the third (or Fourier, or

Cauchy, or radiation, or stream-aquifer) type.

PRESCRIBED HFAD BOUNDARY VALUE PROBLEM

To introduce the procedures for solution of the boundary value

Problem in the general case, it will be convenient to start with the
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simplest case, that of a prescribed head over all boundaries. The

governing equation 1s:

4 g; . div(TVs) = q(x,¥,t) (2.6)

shere ¢ is effective porosity, s is drawdown, T is horizontal
transmissivity and q is volumetric withdrawal rate per unit horizontal
area. The domain of applicability of Eq. (2.6) is a spatial domain, D,
with a boundary domain (which can be a surface or a Tine or a combination)
denoted B. The boundary condition is a prescribed drawdown s®(x,y,t) on

g. Initially the drawdown in the domain is a spatial function, s'(x,y).

Decomposition of the Problem.

The principle of superposition provides a convenient method to
construct solutions to complex problems from simple solutions to

elementary problems. The original boundary value problem, namely:

¢ 5 - div(TVs) = g in D (2.7.a)
subject to boundary condition:

s(x,y,t) = s®(x,y,t) on B (2.7.b)
and initial condition:

s(x,y,0) = s'(x,y) in D (2.7.¢)
is decomposed into several subproblems. For each subprolem, there is only

One non-homogeneous term.

For the first subproblem the governing equation is:
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s ;f_ - div(TVs) = q in D (2.8.3)

subject to the boundary condition:

S(x,yat) =0 on B (z.a.b)
and jpitial condition:
serd) 2 "o (2.8.0)

The subproblem. system is strictly excited by the sink term g, only. For
thi; reason the subproblem will be referred to as the "pure sink"
excitation problem. The classical Theis solution is the simple solution
of that subproblem when there is only one well present in the system and
the rate of pumping is steady.

For the second subproblem, the governing equation is of the

homogeneous type (i.e. has no right-hand side forcing term) namely:

¢ g%— - div(TVs) = 0 inD (2.9.a)

with boundary condition:

s(x,¥,t) = s®(x,y,t) on B » (2.9.b)
and initial condition:

s(x,y,0) = 0 inD (2.9.¢)
This is a "pure boundary" - excitation problem (initially the system is
at rest and there are no sink terms). A typical problem of this type is
one of a lake-aquifer system initially at rest and the lake level starts
to fluctuate. One wishes to study the aquifer response to the lake level
fluctuations.

For the third subproblem the governing equation is of the homogeneous

type again (i.e. no sink term):
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- div (TVs) = 0 inD (2.10.a)

with boundary condition:

e o " (2.10.b)
put initial condition:

s(9,0) = $x.) # 0 in D (2.10.c)
This is a "pure initial condition" - excitation problem (or "pure

relaxation" problem). Were the aquifer initially at rest nothing would
happen. Ultimately if no external excitations were to be imposed (pumping
wells or change in head at boundaries) the system would return to rest
(i.e. relax).

One can verify readily that the sum of the solutions to the three
subproblems (i.e. the "pure sink"- solution, the "pure boundary" solution
and the "pure relaxation" - solution) is a solution to the original

complex problem.

Convolution Form of the Solution

Let k®(x,y;€,m;5t) be a very special solution to the "pure boundary" -
excitation problem, where the prescribed drawdown on the boundary is

uniformly a unit impulse in time along the boundary (a uniform unit

impulse drawdown excitation on the entire boundary). Then it is known
from linear system theory (i.e. Green’s functions, Duhamel’s theorem) that
for a general prescribed drawdown on the boundary, s®, the drawdown
solution evefxghere, expressed in terms of the unit impulse boundary

response (or kernel) function is:
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t
S(x,¥»t) .g{ s2(€,m57) K(x,¥3€,n;t-7)drdédn (2.11)

similarly the general solution to a "pure sink" - excitation problem
can be expressed in terms of a special solution, the response (kernel) to

a unit impulse withdrawal excitation at the location of the sinks, in the

convolution form:
t W
s(x,y,t) = £ J WémsT) k (x,¥:€,n;t-7)drdédn (2.12)
0

In Eq. (2.12) k¥() is the unit-impulse kerne] of drawdown resporse—at
lTocation of coordinates (x,y) due to volumetric withdrawal rate excitation

Q(r) at singular withdrawal location of coordinates (¢,n).

Discrete Form of the Solution

By superposition of solutions given by Egqs. (2.11) and (2.12) and
discretjzatibn in time and in space (Morel-Seytoux and Daly, 1975) one
obtains for drawdown at a location indexed g (which may refer to a point
or to an area, e.g. a typical cell in a finite-difference discretization)

the expression:

P n N; n
s(n) =3 3 &% (n-v+1) Q,(v) + > 3 &%, (n-v+1)sB(v) (2.13)
p=1 v=1 b=1 v=1

In Eq. (2.13) sg(n) is the drawdown at location indexed g at the end of
time period n, 8“;, is the drawdown discrete kernel at cell g due to
Withdrawal at Tocation indexed p (with dimension of Tength per discharge),

Q,(v) is the mean pumping rate at location p during time period v, §%,.()
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is the drawdown discrete kernel at location g }a point or a cell) due to
prescribed drawdown at boundary location b {which is dimensionless), sS(v)
is the mean prescribed drawdown at boundary site b during time period w.
p §s the number of total withdrawal sites, and N; is the total number of

poundary sites with prescribed drawdown.

Artificial Pumping Rate Equivalent to Initial Conditions

The "pure initial condition" - excitation problem is different from

the other two subproblems. There is no time-dependent external excitation
included in this subproblem. The only excitation is the prescribed
initial drawdown in the aquifer. Due to the existing head gradients in
the domain, water tends to flow. The effect of this flow due to the
prescribed initial head gradients can also be considered due to an
equivalent "pumping rate" under the homogeneous initial conditions. This
equivalent “pumping rate" can be called artificial pumping rate. The

relationship of this equivalence can be expressed as:
-div (TVs') = q*(x,y) (2.14)
where q*(x,y) is the artificial pumping.rate. Since s''is known everywhere

the values of ¢ can be obtained by solving Eq. (2.14) .
Substraction of Eq.(2.14) from Eq.(2.10.a) yields:

é _‘% (s-s) - div [TV(s-s))] = -q* (2.15.a)
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as' is a dummy item which equals zero. Th
oticing that ¢ i y q e boundary
lue problem for (s-s') is homogeneous with respect to the initial
va

ot homogeneous with respect to the boundary condition or the sinks.
n

n because at time zero, very evidently, s-s' = 0. However it is

problem (2.10) is therefore deduced into Eq.(2.15.a), Eq.(2.15.b) and

£q.(2.15.¢) 3S following.

s -s=-¢ on B (2.15.b)
s-s=0 inD (2.15.¢c)

problem (2.15) can be further decomposed into two subproblems, one as a
"pure sink" - excitation problem with the artificial pumping as the only
excitation term, and the other including the non-homogenous boundary
condition as a "pure boundary" - excitation problem. The solution for (s-
s'), and thus s, is deduced from Eqs. (2.11) and (2.12) for s-s' with a

boundary condition (-s’) and sink distribution (-@*) or explicitly:

, t
s(x,y,t) = s + Df I KY(x,y:6,m5t-1)[- Q(€,m)] drdédn +
0

t
Bf of K3 (x,y;€,m5t-7) [- s'(€,n)] drdédn (2.16)

The discrete form of Eq. (2.16) is:

Ng n
Z &5, (n-v+l)s, (2.17)
=]

G
U =5 -3 3 6% (n-v41)

-3
7=1 = b=1

[
—t
<
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Q, is the artificial pumping rate at location v, and s,’, prescribed
where Yq

itial drawdown at location b.
n

Egmnlggg_§glﬂligﬂ

By superposition the complete solution is of the form:

P n N; n
s(n) = s 2 5‘:p(n-ll+1) QP(V) + 2 3 ‘Szb (n-V+l) sll;, )
' p=1 v=l b=1 v=1
(2.18)
G n NB n
+si- 2 2 S(n4l) Q-3 = 88, (n-vel) ¢
‘Y:l VII b'l y'l

On the right hand side of this equation, the first term is the drawdown
due strictly to pumping, the second term is the incremental drawdown due
strictly to the prescribed drawdown on the boundary, and the last three
terms represent the drawdown contribution strictly due to relaxation. One
can notice that if the prescribed drawdown is constant (independent of
time), sy = si, the second term and the last term will cancel each other.
Of course Eq. (2.18) can be written in the more coﬁcise and meaningful

form:

. G
s(n) = st + 1§1 vgl 8%y (n-v+1)[Q,(¥) -Q2 ] (2.19)

£ 2R a () [20)-¢ )
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.~atjon_of the Discrete Kernels
petermindtl

The only unknowns for the general solution are the discrete

.w .

cernels 8%5p(*)s §3,(¢) and &7 ,(-). Each of these looks different from the

ther, but actually as long as p, b or v represent the same site in a
0 ’

'finite difference model, they are the same or easily deduced from each

other. The beauty of the discrete kernels approach (a discrete
application of Green’s functions) lies essentially in this remark! No
matter what kinds of pumping pattern, what kinds of outer region drawdown
patterns or initial conditions, the discrete kernels need to be calculated
only once for only one sinqle auxiliary problem, which is time-
independent, with homogeneons initial conditions and with homogeneous

boundary conditions of the proper type (i.e. the same as for the system

of concern). This auxiliary boundary-value problem is:

¢ 25 - div(TVs) = Ds(x,y:€,m;t) in D (2.20.a)
$(x,y,0) = 0 in D (2.20.b)
s(x,y,t) =0 on B (2.20.c)

where D;(.) is the Dirac delta function singular at x=£, y=n and t=0.
The analytical solution of this problem is the Green’s function or unit-
impulse kernel function kw(x,y;f,n;t). Physically this Green’s function
is the drawdown response of the aquifer at (x.y.t) due to a unit impulse
of -pumping at singular site of coordinates (€,m) at time zero.

Due to the heterogeneous nature of the aquifer, its finite extent
and complex boundary shape, it is difficult to find the Green’s function
by analytical approaches. The numerical technique can be used to generate

the discrete form of Green’s function -- the so-called "discrete kernel".
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3 w .
he physical significance of the drawdown discrete kernel, §° (n), is the
" of drawdown of the aquifer at cell g at time n due to a unit
response

f pumping at site p during the first time period. The formulation
ulse 0
p he finite difference model for this auxiliary problem as well as the
of the:

ical procedures for the calculations are given in the next chapter.
numer

SOLUTION FOR_A STREAM-AQUIFER SYSTEM

As seen previously the boundary condition of a stream-aquifer is of

the third type (Fourier). The third type boundary condition is defined
as one for which neither the head nor the flux but a linear relationship
between them is prescribed. As described by Carslaw and Jaeger (1959),
if the normal outward flux across the boundary q, is proportional to the

head difference between the boundary and the surrounding medium, so that

it is given by
q =C (h - hy) (2.21)

where h, is the water level in the surrounding medium (which can be an
aquifer, a river or a lake, etc.), h is the water level right on the
aquifer side of the boundary of the flow domain (or in 1its close
neighborhood), and € is a constant. The quantity C can be called "outer"
-conductivity or ‘"outer" conductance, and it has the dimension of
transmissivity. In the limit as C tends to 0, g, tends to 0 and the third
type boundary condition feduces to the no flow boundary condition. In
the 1imit as C tends to o, (h - hy) tends to 0, and the third type boundary
condition reduces to the prescribed head boundary condition.

Comparing Eq. (2.1) with Eq. (2.21) shows that the stream-aquifer

relationship is of course a third type (Fourier) boundary condition,
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t that Qo return flow, is a flux from aquifer to river from both
excep r

and the river need not be at the boundary. Of course gn

sides of river,

t now develop a better understanding of the term boundary. A boundary
mus JL_-————-iL""

any site where a_ boundary condition is applied. It must not be
is

understood in the restricted Tayman sense of outer limit of a domain. The
stream-aquifer interaction problem can be solved by solving a two-
dimensional boundary value problem treating the stream as a special time-
dependent "houndary" of the third type.

The mutual interaction means that river stages and water levels in
the aquifer depend on each other. The river stage is » function of return
flow and the water level of the aquifer is also a function of return flow.
The return flow is an important link between the surface and subsurface
systems which will tend to equalize the water leyels.

The complete stream-aquifer model should include the dynamics of both
conveyance systems (river and aquifer) and their mutual interactions,
especially for a stream with limited discharge. However at the current
level of model development, the assumption is (temporarily) made that the
river exerts full control over the aquifer. In other words river stage
is a function of time and space but independent of aquifer water level.
The river imposes a boundary condition on the groundwater and the dynamics
of the river are not considered.

The influence of the river with a prescribed stage is described by
a third type boundary-condition for the aquifer. The methodology for
solving a boundary-value problem can be directly used for a stream-aquifer
system,

Considering an aquifer domain with a stream passing through it (as

shown in Figure 2.2), given initial drawdowns of the aquifer, the drawdown
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he river stages are prescribed with time and the pumping rates also
of the ’

in time. The special boundary conditions for the aquifer shown in
vary 1

pigure 2.2 AT€
conditions on the upper and lower boundaries are not specified at this
e

no flow ones on the left and right sides of the aquifer.

Th

at. In 2 finite difference model, the flow domain is divided into
point-

11s and the river is divided into reaches according to cells, as shown
ce

.n Figure 2.2. The mathematical description of the problem is:
1

¢ g%_ - div (TVs) = q in D (2.22.a)
s(x,y,0) = s'(x,¥) in D (2.22.b)
Q +TIs = To on stream (2.22.c)
L(s) = f(x,y,t) on external boundary(2.22.d)

where 0 i$ the drawdown of the river stage relative to the same high datum
as aquifer drawdown, T is the reach transmissivity, Q, is the return flow
(discharge) between aquifer and river. In Figure 2.2, the river is inside
the domain. It could be on the boundary or partially on the boundary.
L(s) = f(x,y,t) is any kind of linear boundary condition on the external
boundary of the aquifer. In order to concentrate on the solution of the
stream-aquifer problem, a discussion of the external boundary condition

is postponed until the section on the numerical procedures.
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yifer. The discrete kernel form of the solution to this latter "pure
aq .

w_excitation problem, including the stream-aquifer interaction, is:

sink

p
s,(n) = 2, }5-1 8% (n-v+1) Q,(v) (2.26)

where 854p() 18 the pumping (withdrawal) drawdown discrete kernel

(including the stream-aquifer interaction effect).

For the second subproblem ("pure stream"-problem), the governing

equation is homogeneous:

$ 5 - div (TVs) = 0 in D (2.27.a)
the initial condition is homogeneous:

s(x,y,0) = 0 inD (2.27.b)
the only excitation is the stream stage fluctuation:

Q+TIs= To on stream (2.27.c)
One could also treat the return flow as a sink, then the governing

equation can be written in the form:

as .
¢ 5 - div(TUs) = q (2.28)

or, given the nature of q:

¢ .g%. - div(TVs) + I's = T''g (2.29)
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wﬂwmﬂm

Follawing the decompasition methad previously described, the stream-
0

fer prablem can be similarly decomposed into three Subproblems. For
aquite

the first subproblem ("pure sink"-problem),the governing equation is:

6 55 - div (TVs) = a in D (2.23.3)

the initial condition is homogeneous:

s{x,y,0) = 0 in D (2.23.b)
and so is the stream boundary condition:

Q+Is=0 on stream (2.23.¢)
One could treat the return flow as a sink and instead of specifying a
boundary condition along the stream, write the governing equation as:

% - div (19s) 2.24
¢ 5 - div (TVs) = g + g, (2.24)

{g, is return flow per unit stream horizontal plane area), or_instead,
given the relation between return flow and drawdown, Eq. (2.24) takes the

alternative form:

8% - div (T9s) + I's = g (2.25)

where I {s peach tr nsmissivit r.unit horizontal area. On may notice

that on the left-hand side one more item appears, that means the governing

Equation has included the effect of interaction between stream and
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Equation (2.29), is the same as Eq. (2.25) by identification of the sink

term q S F'o. Consequently the solution for the "pure stream"-

excitation problem, including the stream-aquifer interaction, is:

sin) = ;fl yﬂ_'l 8%,(n-v+1) T, 0,(v) (2.30)

where SZﬁ() is the drawdown discrete kernel due to withdrawal at site p
(in this case a reach site). These §() are the same as in Eq. (26) except
for specific sites involved.

It remains to discuss the subproblem for the nonhomogeneous initial

conditions in aquifer drawdowns.

é %i— - div (TVs) = 0 in D (2.31.a)
s(x,y,0) = s'(x,y) inD (2.31.b)
Q +Is= 0 on stream (2.31.c)

One should pay more attention to the difference between the equivalent
transformation of initial conditions with or without the presence of the
stream. If without the presence of the river, such as problem (2.10), the
only excitation of the system is the flow due to initial non-equilibrium
of the aquifer. However, with the presence of the river, the difference
between the initial aquifer drawdown and river stage drawdown (0 = 0 in
this subproblem) will cause additional internal excitation -- return flow,

which can be calculated by Eq.(2.31.c):
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g = - I8 on stream (2.32)

4

rherefore in 2 stream-aquifer problem, the initial conditions are
equivalent to two kinds of artificial discharge rates: (1) artificial
pumping rate, and (2) artificial return flow rate. The derivation of the
solution is as following. Teat the return flow as a sink term and put it

at the left-hand side in the governing equation, so that:

¢ff__ - div(TVs) + 's = 0 (2.33)
at

subtraction of Egs. (2.14) and (2.32) from Eq. (2.33) yields:

as-s) 4 e Meocl) o - At s
¢'81_— div [TV(s-s')] + T’ (s-s') q* + q, (2.34.a)

with the corresponding change in initial and boundary conditions:
s -5 =0 | _ (2.34.b)
Q-Q*+T(s-5s')y=0 (2.34.c)
Problem (2.34) is equivalent to problem (2.31). The initial condition and

the boundary condition are all homogeneous in problem (2.34), the only

excitation is (Q - @*). Therefore the solution in a discretized form will
be:
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G n
s,(n) = §+ 2 I 8g(nwel) (- Q)+ Q) (2.35)
=1 v=]

By superposition of solutions for these three subproblems, Eqs. (2.26),

(2.30) and (2.35), the soldtion to the original stream-aquifer problem is:

G n
s,(n) =§+ 2 T &5(n-v41) (Q(v) + To,(v) - QF + Q) (2.36)
v=1 y=1

Discrete Kernel Generation

The oﬁ]y discrete kernels that need to be generated are the
ﬂ; (n). For simplicity in writing the superscript W will be dropped.
These discrete kernels represent the drawdowns at site g due to a unit
pulse of withdrawal at site y 'in a finite difference solution of Eq.
(2.25) with homogeneous initial and boundary conditions.

In the case of a stream-aquifer system, the discrete kernels of
return flows are also of inferest. It is necessary to find the return
flow discrete kernel, ¢,,(n,, which, by definition, is the mean return
flow rate in reach p during time period n due to a unit pulse of pumping
at cell p. When o(t) = 0 on the stream boundary, the return flow at time
t is simply, in this special case, -I's(t). In most cases, the return flow
volume during each time period is needed. Thus the return flow discrete
kernel during time period n for reach p due to a urit pulse of pumping at

cell p is:
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o A O 0.3
= 2 r i = - S ti .
) =2y e Mn) 7 =1 %" M(n) )
3 At 2 A
i=] j=1

where At, is the time interval for time step i, M(n, is the total number
of time steps within the nth time period, Q,,,(t;) is the point return flow
in reach p at time t, due to pumping at p. Sy,,(t) is the point drawdown
gt cell g, which contains reach p, at time t, due to unit pulse of pumping
at p, and I, is the reach transmissivity of reach p-

From Eq. (2.37) one can see that the calculation of the return flow
discrete kernels follows the integrated form of Darcy’s law. The absence
of the river stage drawdown is due to the fact that the river stage
drawdown is always zero in the auxiliary problem. The calculation of the
return flow discrete kernels is done simultaneously with the calculation
of the drawdown discrete kernels. As it was the case for the drawdown
discrete kernels, the return flow discrete kernels need only be calculated
once.

One has to notice that there is difference between these two kinds
of discrete kernels. The drawdown discrete kernel is a point value at
the end of the time period, while the return flow discrete kernel is the
return flow volume increment during the time period. For this reason,
use of Eq. (2.37) will give more accurate results than the simpler

approximation: €,,(n) = -T, §,,.(n).

General Discrete Form Expression for Return Flows

By definition the mean return flow rate in reach j is:
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Q,(n) = T; [o(n) - s;(n)] _ (2.38)

The drawdown %(n) is deduced from Eq. (2.37) with g = j, thus, with v(J)

being the index of the cell in which reach j is located,

Q,(n) = Tyloi(n) - ;4]

G
L E 36, () QW) +TA0) - @ 400 (2.39)

For the case of a unit pulse of pumping at site indexed y and homogeneous

conditions Eq. (2.39) reduces to:
Q(n) = -T; &, (n) = ¢, (n) (2.40)

In terms of the €() Eq. (2.39) can be written as:

Q,(n) = Tg;(n) - Tys (2.41)

‘4 1§1 ugl €,(n-v+1) [Q,(v) + T,o,(v) - Q; + Q. ]
The physical significance of Eq. (2.36) is that the drawdown at cell
g at the end nf time period n is a superposition of several influences
coming from: initial drawdown at cell g, drawdown due to net withdrawal
Q,(v), drawdown due to river stage variation o,(v) and drawdown due to the
non-equilibrium initial condition (Q°,- @, ).
The physical significance of Eq. (2.41) is that the return flow at

reach j during time period n is simply equal to:

Q,;(n) = T,[g;(n) - s,5(n) ] (2.41.3)
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- where g(Jj) represents cell g which contains reach j. Since s, (n) is
caused by three kinds of possible excitations, the return flow as given

by Eq. (2.41) reflects this fact.



Chapter 3
NUMERICAL PROCEDURES

The simulation of the behavior of a stream-aquifer system is secured
in two stages. First a finite difference model generates the discrete
kernels by solving an auxiliary problem with homogeneous initial
conditions and homogeneous boundary conditions. Second a simulation model
combines the discrete kernels and the relevant excitations for the probiem

at hand to compute the solution.

FINITE DIFFERENCE MODEL FOR GENERATING DISCRETE KERNELS

The auxiliary problem is described by the governing equation where
U(¢,n5t) is a unit pulse of volume withdrawal rate per unit horizontal

~area at location (&,n):

9s _ 45 - . : :
[ —=F div(TVs) = U(§,n;t) in domain D (3.1.a)

with initial condition

s{x,y,0) =0 in domain D (3.1.b)

stream boundary condition

Q+Is=0 along the stream (3.1.¢)

and boundary conditions

s=0orgq=20 on the outer boundary of the domain (3.1.d)

42
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In practical cases, the aquifer and river parameters vary in space,
and the boundary configurations are irregular. Numerical methods must be
employed to obtain approximate solutions. A fully implicit finite

difference scheme is used to solve the problem.

Discretization of a Stream-Aquifer System.

Figure 3.1 shows a spatial discretization of a hypothetical stream-
aquifer system into cells and reaches. A rectangular or sguare mesh

system (Figure 3.1 illustrates only the case of squares) is superimposed

on a hypothetical stream-aquifer system. To conform with computer array
conventions, an i, j coordinate system is used, where i is the row index,
i=1,2,....Ng, J is the column index, j=1,2....,N., (N; represents the
number of rows and N. represents the number of columns). The width of the
cells along rows is designated as Ax; and the width of the cells along the
columns is designated as Ay,. The size of the cells is not necessarily the
same for all the cells. The value of drawdown s or the aquifer hydraulic
properties such as T, transmissivity, and ¢, effective porosity,
associated with the index of each cell, in concept, represent average
values over the extent of the cell. A unit pulse of withdrawal excitation

corresponds to a withdrawal of a unit volume, withdrawn uniformly from a

single cell during the first time period only, and no excitations in any

other cells at any time.

The river is discretized by the finite difference cells into reaches.
Another set of indices, p = 1,2,3,..., represents the river reach system.
Thus in a cell that contains a reach, there are two indices. For example

in Figure 3.1 cell (2,3), i.e. cell for which i=2 and j=3, contains
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reach(2). The river stage drawdown o and the reach transmissivity T
represent average values for the reach.

For illustrative purposes all types of boundary condition cells are
“included in this hypothetical system. They are classified as active
cells, prescribed head cell, constant heaa cells, no-flow cells, reach
cells or third type boundary cells and active cells with (withdrawal)
excitation. Notice that prescribed flux cells are not mentioned because
they are essentially as same as active cells with withdrawal excitation.
For this reason, the prescribed flux boundary condition will not be

particularly mentioned in the rest text.

Formulation of the Finite Difference Equations.

From the mass balance principle, the sum of all flows into and
out of a cell must be equal to the rate of change of storage within the
cell. Symbolically, if we consider a cell as a control volume, such as

cell (i,j) in Figure 3.2, then:
QW -QF + QS - QN = -¢ £° Axay (3.2)

where QW is the flow rate into the cell from the west side, QS is the flow
rate into the cell from the south side, QN is the flow rate out of the
cell from the north side, QE is the flow rate out of the cell from the
east side, Ax .and Ay are spatial distances of the cell, At 1is the
calculation time step, As is the change in average drawdown in the cell
over the time interval At and ¢ is the average effective porosity of the

cell.
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Considering cell (i,j) which is an active cell without excitation,

the flows into or out of the cell, are appruximately given by the

expression:
(5i54-54) A,
Z
(S-- - s"+1) A.V‘
E=0Qipn = -Ti, N b : 3.3.b
QE = Q.12 ij+1/2 B+ B%,.,) ( )
Z
(s~ Si;) Ax
QS = Quypp; = ~Tiapy (Aiyl."_,_ Al:jy.l) j (3.3.¢)
<l
QN = Qg = ~Tiarpy (S~ Siny) 4% (3.3.d)

(Ay; + Ay,,,)
Z

where Tiins Tieyzr Tiajys Ty are interblock transmissivities for each
side of cell (i,]).

Using a fully-implicit finite difference scheme and applying Eq.
(3.2) to cell (i,j), with the substitution of the expressions for the Q
- from Egs. (3.3.a), (3.3.b), (3.3.c) and (3.3.d) into Eq. (3.2) yields

after change in sign:

ZTi.i-l/Z (sli,.j-l - s‘i’.j)Ayi Z-Ti,ju/z (Slil.j - Sli’,jn)A.yi
ij-l + Exi AY,-H +ij
v v

2Miapny (Siaj - Siy)8X, 2Minpi(Siy Siny)8%)
by, + ABy; Ay, + AY;

- S..
= ¢i~i Lj AtI.J ijA-yi
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where s” is the average drawdown at the end of a time step (new value) and
s® is the average drawdown at the beginning of a time step (old value).
By placing all the unknowns on the left-hand side and the known

quantities on the right hand side, the previous equation takes the form:

v oo v Voo v
- Al.jshj’l Bi_jsl,yo-l ciJSH.J Dld si"'lvj

+ (A+B+C+D+E)sy=E;sy (3.4)
where
A = %If"’iAy‘ij_l (3.4.2)
By = gj”‘fwixj,l (3.4.b)
C; = i:,*i"’zf"i v (3.4.c)
D, = i;:*"i"&xgym (3.4.d)
and E; = _?EA_’E""Q_"_ (3.4.¢)

Equation (3.4) is the final form of the finite difference equation

for an interior point. It is a fully-implicit finite difference

v

v
i1 i

equation containing five unknowns: s e

14 14 v
Sijs1» Sij» Sisrj and s
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An equation of this type is written for each active cell in the system.
The total number of unknowns is equal to the total number of equations.
In the system of equations each equation may contain as much as 5 unknowns
and the equations must be solved simultaneously.

The coefficients A, B, C, and D are functions of the interblock
transmissivities and of the size of the cells. They are calculated once
for all to define the system of equations.

The interblock transmissivities may be calculated in several ways.
With the harmonic averaging procedure the interblock transmissivity has

the form:

T. - 42 (TLj) (TLj-l) 'I
12 Ty + T J

whereas with the geometric averaging procedure the expression is:

Tje = 4 Tylya

where Ny is the total number of rows and N. is the total number of columns

in the finite difference model.

Finite Difference Equations Applied to Different Cells.

Equations have to be written for all the active cells in the study
domain. Basically there are six types of cells used to represent various
types of boundary conditions, as shown in Figure 3.1.

An (interior) active cell is a cell in which the drawdown varies but

includes no boundary. A reach cell is a cell which contains a reach.
The drawdown difference between river and aquifer causes a return flow.

A copstant head cell is a cell with drawdown prescribed to remain zero all
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the time. A no-flow cell is an inactive cell, actually outside the
aquifer. The transmissivity of a no-flow cell is zero. An active cel]
with excitation is a cell where withdrawal may potentially occur, or flux
may be prescribed. The physical nature of the excitation may be ignored.
Actually the excitation may result from withdrawal (sink), return flow,
prescribed flux. A prescribed head cell js a cell with drawdown
prescribed in time.

For noninterior cells, i.e. cells within which a boundary condition
is to be imposed, Eq. (3.4) does not apply strictly in that form.
Different finite difference equations should be properly written for
different cells.

Reach Cells. The finite difference equation for reach cells (or
third type boundary cells) requires the presence of the return flow on the
right hand side of the finite difference form of Eq. (3.4). However,
because this return flow depends upon the unknown drawdown (Q, = T's), that

term is actually placed on the left hand side, namely:

v 14 v 14
= AySip - BisSijer = CySiay = DySivy (3.5)

+ (A+B+C+D+E)sy+ Isy=Es;

B2

In some cases if the time step At is not small enough, then using

average return flow during a time step, namely

Q=-1/2T (s, + 5°) (3.6)

on the right hand side would be better. Hence an alternative equation

for a reach cell is:



51

14 1 4 v v
" Agsin - BySia - CySiyy - DySiay

(3.7)

+ (A+B+C+D+E)sy+ 1/2 Tsy; = Egsy- 1/2 Tyjs5

Equation (3.7) is no Tonger a purely fully-implicit finite difference
equation, since the average return flow during the time step is expressed
via a Crank-Nicolson type scheme. If there are third type boundary cells,
beside the reach cells, in the study area, the finite difference equations
are the same as Eq. (3.7) except that the symbol [ refers to the
appropriate conductance for the boundary. Equations.(3.5) and (3.7) are

for the reach cells where there is no ootential external excitations.

Active Cells with Excitation. In a cell that contains a sink

excitation, the finite difference equation (for the generation of the
discrete kernels) includes a unit pulse on the right-hand side, thus is

of the form:

- AgSia - BuSien -GSty - DSty
(3.8)

+ (A+B+C+D+ E)s{=E;sy + U(n)

where U(n) is a pulse function (i.e. of value one for 0 < n < 1 and zero
for n > 1) and n is the number of time periods.

Constant Head Cells. For a constant drawdown cell (at value zero)
the general interior equation, Eq. (3.4), can be used with the special
trick (Trescott, et al., 1976) of assigning a very large value to the
effective porosity, say ¢;; = 1.0E+20 (to reprgsent ¢; = ©, so that E; ~ =),

in order to keep s;; = s{;. This will cause the drawdown in the cell to
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remain unchanged. There is flow exchange with the adjacent cells but
si= Su = 0.

No-Flow Cells. For a no-flow cell the general interior equation

applies but the interblock transmissivities are equal to zero in a no-flow
cell. The coefficients A,B,C,D in Eq. (3.4) will have values zero. Thus
there is no flow exchange with the surrounding cells. If on one or two
sides of a cell there is a no-flow boundary, such as cell (1,1), then some
terms are dropped automatically in Eq. (3.4). For cell (1,1) in Figure
3.1, since left and bottom sides of the cell are no flow boundaries, the
coefficients A and C would be equal to zero (T,,, =0, T,, = 0).

Prescribed Head Cells. For a prescribed head cell the general
interior equation Eq.(3.4) is applied,

- AySip - BySia - Cysty - DySiy

(3.4)

+ (A+B+C+D+E)sy = Egsj
However, if cell (i,j) is the excitation cell, the drawdowns s;; at both
time 0 and v remain value of 1.0 for the first time period, and zero for
all the rest time periods. And in all the other brescribed head cells
drawdown keeps zero all the time.
Determination of the Drawdown Discrete Kernels

In a finite difference model, different finite difference equations
are applied on different cells. According to the definition, the drawdown
discrete kernels, are the solutions for a system of finite difference
equations under such an excitation pattern that every time there is only

one unit pulse of pumping in one cell during the first time period and no
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pumping in any other ¢ells all the time. If this unit pulse of pumping
happens at reach cell, U(n) should be added at the right-hand-side of Eq.
(3.5) or (3.7). It must be mentioned that for a prescribed head cell, the
unit pulse of excitation is a unit depth of drawdown. That means the
drawdown in that particular cell keeps one for the first time period and
zero for all rest time periods, and the drawdowns in all other prescribed
head cells keep zero all the time. Changing the excitation pattern to have
a unit pulse of pumping in another cell, another set of drawdown discrete
kernels are obtained. According to the need, a unit pulse excitation can
be imposed on any cell which might have any kind of physical activities
previously discussed (e.g. sink, reach, etc.).

There are many techniques for solving a system of linear-equations.
Here the subroutine UDU, developed by Erik Thompson, professor of Civil
Engineering at CSU, is used to solve the system of finite~differenqe

equations.

Time Period and Time Step

Before the calculation of the discrete kernels, a time period must
be selected. The time period should be chosen according to the simulation
or optimization purpose. Usually, the time period is chosen as one week;
two weeks or one month because the groundwater flow in the aquifer is
pretty slow. The time period selected for the discrete kernels should be
the same as the desired simulation output interval.

In fhe solution of the finite difference equations theitime step At
is selected to meet specified requirements of accuracy. Since the
excitation applied to the system is a unit pulse, the discrete kernels

within the first two time periods are much more sensitive to the time step
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than during the later periods. When the excitation is applied and
immediately after it is stopped, the system responds dramatically, whereas
after that the system responds more gradually, relaxing itself into an
equilibrium condition. For this reason, a small time step, At_,, is used
for the first step calculation. A time step multiplying factor K is
chosen. The subsequent time steps are increased by the multiplying factor
K. (At,,,= KAt,) until a maximum time step At_,, is reached. This procedure
is used for the first two periods. A full period is used as the time step
for the remaining periods of calculation. The time step is defined as a
dimensionless parameter, which is always equal to a certain fraction of
one time period, such as 0.01, 0.2, .... To avoid confusion the symbol DT

is used to represent the time step as a fraction of one time period.

Solution for Return Flow Discrete Kernels

The calculation of the return flow discrete kernels is carried out
at the same time as the calculation of the drawdown discrete kernels. In
the auxiliary problem, the river stage drawdown in each reach cell stays
zero all the time. Where there is a unit pulse of excitation in one of
the cells, the return flow in any reach is only a function of the response

drawdown in that cell which contains the reach, i.e.,

Qr,p(t) = - rpap(t) (39)

where p is the index of the reach. The average return flow during the

m® time step, ending at time t_, and of duration DT, is:

Q,,(ty) = -1/2 T, [Spe (tw-DTw) + Spjep (L)l (3.10)
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where [1,3](p) is the index pair of the cell that contains reach p, t_  is
time relative to beginning of period expressed in units of periods.

The return flow discrete kernel during a time period or in reach p,
included in cell (i,j), is the cumulative volume of return flow during the

whole time period, symbolically:

M(n) M(n)
€, (n) = 2 Q, (t) 0T, = -T, I sy (ta) DT, (3.11)
m=] m=1

where M(n) is the number of time steps within the time period n, t_ is
M(n)

time at the end of time stepm, t, = Z DT,, Q,(t,) is the point
A=]

value of return flow at reach p at time t, and s, (t,) is the point

value of drawdown in cell (i,j) at time t_.

The mean return flow discrete kernel during time period n in reach
pis:

M(n)
€, (n) = -1/2 T, m§1 [Spie (ta) + Spgem (ta0Ta)1 DT, (3.12)

Unlike the drawdown discrete kernels §() which have to be calculated for
all the active cells, the return flow discrete kernels need only be

calculated for the cells that contain reaches.

Moving Subsystem

Based on the fact that the responses (aquifer drawdown or return

flow) due to a unit pulse of excitation at one cell are significant only
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within a relatively small region around the excitation (a much larger
region for confined aquifers), the moving subsystem procedure is
introduced in the generation of the discrete kernels in the case of an
unconfined aquifer.

The size of the subsystem is determined by the aquifer properties and
the total number of time periods for generation. The principle is that
during the calculation horizon the responses outside of the subsystem
should be practically zero. The size of the subsystem can be decided by
trial tests or by an approximate formula (Verdin, et al., 1981). Since
the unit pulse excitation must be located at the center of the subsystem,
the number of cells in a subsystem is always odd, such as 3 by 3 cells,
5 by 5 cells and so on. To avoid a mass balance error, the external
boundary condition for the subsystesn is a no-flow boundary.

Figure 3.3 illustrates the manner in which the moving subsystem
concept works. Having chosen a 3 by 3 subsystem size, based on the
aquifer properties, if there is a unit pulse of pumping at cell (2,2) then
the subsystem covers the surrounding 9 cells as shown in Figure 3.3. If
there is another unit pulse of pumping at cell (4,3), then the subsystem
with its 9 cells wi]] be centered at cell (4,3).

For each subsystem, the number nf finite difference equations is
equal to the number of cells within the subsystem. Let us consider a
system of interest with 400 cells. For each set of discrete kernels (that
is for all the responses due to a unit pulse of pumping), a system of 400

finite difference equations must be solved simultaneously if a moving
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subsystem is not used. On the other hand for a 3 by 3 moving subsystem,
only 9 finite difference equations need to be solved simuitaneously. Only
the 9 drawdown discrete kernels which are practically non-zero
aregenerated for each time period. At the same time return flow discrete
kernels are calculated. The number of return flow discrete kernels in a
subsystem is equal to the number of reaches in it.

After the discrete kernels in one subsystem for all the time periods
required are generated, the subsystem is moved to the center of the next
cell. One after another, the moving subsystem has to be centered to all
the active cells with potential excitations. It is important to note that
if the initial conditions will be taken care during simulation, all the
active cells must be treated as active cells with potential withdrawal
excitations. Again let the total number of cells in the system be 400.
The discrete kernels can be generated for the system as a whole or by
using the moving subsystem procedure. Using the system as a whole (400)2
drawdown discrete kernels for one time period must be generated while with
the moving subsystem procedure only 9 (400) drawdown discrete kernels need
to be generated.

The conclusion is quite clear that with the moving subsystem, the
cost for the generation of the discrete kernels is reduced tremendously,
especially for a large-scale system. However, two points must be made.
First, for a confined aquifer, since the response to an excitation is felt
almost instantaneously throughout the aquifer, it is not suitable to use
a moving subsystem except a large one. Second, since the moving subsystem
is only proper to generate the discrete kernels for a limited time

horizon, during long time simulations, the sequential reinitialization
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technique must be used, together with the generation of the discrete

kernels using the moving subsystem procedure, for practical problems.

SIMULATION MODEL

Once 511 the discrete kernels have been generated and saved, major
investigations can be pursued by running the simulation mndel under a
variety of different circumstances and with various patterns and types of
excitations.

The simulation model is based on a series of algebraic formulae. The
equation for calculation of drawdown in the aquifer was developed
previously as Eq. (2.36) which represents a linear superposition over
space and time for different excitations. The drawdown of aquifer in cell

z"é}at the end of the time period n due to all kinds of excitations in an

(i,J) system is:

Nz N n '
s(n) = §+ 3 T 8(n-vel) [Q,(v) + Tyo,(v) + Q- Q) (3.13)
i=]l j=1 y=1

where g is an index for a particular cell, which can be characterized
alternatively by pair of indices (a, B) representing the cell center
coorainates. In Eq. (3.13), the discrete kernels 6.(.) are already
obtained from the generation model. The initial drawdown of the aquifer
s;, the pumping rate Q,;(.) and the river stage o,(.) are provided as

“inputs. The artificial pumping rates are calculated by an integrated

finite difference form of the steady-state governing equation:
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Application of Eq. (3.13) for period 3 and beyond is not possible since
§(3) and 6(4) are not known. However taking sg(2) as the new initial
drawdown_and in addition recalculating the artificial pumping rate Q,* and
the artificial return flow rate Q,;* since they depend upon the initial
conditions which are now different at time 2 than they were at time zero,
Eq; (3.13) can be reused for calculation of drawdowns for perioa 3 and 4,
and so on. That means limited number of discrete kernels can be used for
unlimited number of time periods (as long as the system is time-invariant)
through sequential reinitialization technique.

The propagation in space can also be explained by some illustrative
examples. One may wonder how it is possible to make a simulation for a
large scale area, such as several hundreds of cells, by using the discrete
kernels generated within a limited "moving subsystem" such as 3 by 3
cells. One can argue very reasonably that within a certain number of time
periods such as two months, the drawdowns outside of the subsystem due to
pumping at the center may practically be zero. However it is certainly not
true after 10 years! This argument is correct and it is accounted for by
the reinitialization technique because there is spatial propagation beyond
the boundaries of the moving subsystem.

Consider the example of the stream-aquifer system shown in Figure
3.4. During the generation procedure, all the cells in it are considered
as potential excitation cells. Using a finite difference model, 25 sets
of drawdown and return flow discrete kernels are generated for only one
time period, by moving a subsystem of 3 by 3 cells from cell (1,1) up to
cell (5,5). In the simulation, the initial aquifer and river stage

drawdowns everywhere, for this example, are assumed to be zero. The only
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excitation is a lone pumping in cell (4,2) for the first time period.
After that there are no excitations at all.

The responses at the end of the first time period are certainly
Timited within the subsystem indicated on Figure 3.4 by the dashed line.
In the case of Figure 3.4 the s(I,J,1), drawdowns in cell of coordinates
I and J, at time period 1, are different from zero only for I > 3_and for
J € 3. Similarly the return flows Q,(p,1) in reach p during period 1 are
different from zero only for p=3 and 4. Even though pumping has stopped
after the first period, the drawdowns at the end of the first period will
cause a flow out of the 3 by 3 box. This is due to the fact that
artificial pumping rate is a function of the drawdowns of the four
neighboring cells. After the first period, for example, the qrtificia]
pumping rate in cell (2,3), which is outside the box, is not zero, because
one of the neighboring drawdowns, such as drawdown in cell (3,3), is no
longer zero. Thus during the second period, cell (2,3) is excited by a
Q* in that very cell and a Q" in cell (2,2), (3,2), (3,3) and (3,4).
Therefore in all the cells, except the bottom right corner cell (1,5),
the responses, either drawdowns or return flows are different from zero
at the end of the second period.

One can see that in this way, a large scale system can.be simulated
by those discrete kernels generated within many small "moving subsystems".
This is the essential reason for the cost effectiveness of the whole
calculation procedures. From these two examples, one may develop
an intuitive feeling about the paropagation in time and in space for the

approach behind the name "sequential reinitialization."
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Formulas for Sequential Reinitialization. The basic procedures of

sequential reinitialization is to predict drawdowns using Eq. (3.13), for
as many periods as there are discrete kernels available from the
generation step. Let us say that a total of N discrete kernels i.e. §(1),
§(2), ..... ,6(N) are available. Then with Eq. (3.13) drawdowns can be
predicted at period times 1, 2, ..., N. At timg N one has run out of
discrete kernels to proceed further. However, the predicted drawdowns at
time N can be thought of as initial drawdowns for the future times. Then
Eq. (3.13) can be used again. However since the initial conditions are
different at time N than they were at time zero, the artificial withdrawal
rates must be recalculated. Once done, it suffices to use Eq. (3.13) to
predict drawdowns for another stretch of N periods, etc. Let Q* (Nk)
refers to the value of that rate after k reinitializations have occurred.
‘Thus at time zero and during the first N periods k=0. After the first
reinitialization k=1, etc... Let s,(Nk) denote the initial drawdown after
k reinitializations have occurred. .The generalization of Eq. (3.13) for

the stretch of time from Nk+l to N(k+l) is:

- No Nc n
sg(Nktn) = s,(Nk) + 2 Z I & (n-v+l)
: i=] j=1 v=1 :
{Q; (Nk+v) - Q;(Nk) + réaﬁ(Nk+v) + QLK) } (3.17)

valid for n=1,2,...,N and k=0,1,2,....

Even though many discrete kernels may be available one may wish to
reinitialize before one runs out of kernels. More correctly then, N

represents the number of periods within a "reinitialization stretch." It
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cannot exceed the number of available discrete kernels. One could
conceive of reinitialization stretches of different sizes. In Eq. (3.17)
it would suffice to replace every product Nk by t(k) defined as:

k
t(k) = 2 N(x) (3.18)

k=0
where IN(x) is the number of periods within the k™ reinitialization stretch
and t(k) is the moment at which the k™ reinitialization occurs. The
stretch befare reinitialization first occurs is the zero® stretch. Again
§I(Nk) represents the initial condition for the k™ .reinitialization
stretch. It represents the real initial condition only for k = 0.
Similarly, Od; (Nk) and Q{ (Nk) are the artificial return flow rates and
artificial pumping rates during the k™ reinitialization stretch.
Therefore all these initial conditions have to be updated at the beginning
of each new reinitialization period. Equation (3.17) shows that the
drawdowns at any period time can be computed by using previously computed
drawdowns as initial conditions and the same set of discrete kernels can

be used over and over again. Similarly the reinitialization formula for

return flows can be obtained by modifying Eq. (3.16) in the form:

Q,,(Nk+n) = -T s, (Nk) + T,0,(Nk+n)

R C

pX
=] y=1

Mo

+
i

L 7 4

€,5(n-v+1) [Qu(Nk+v) + Q5 (Nk) + Tyo,(Nk+v)-Q% (Nk)]

1]

(3.19)
for n=1,2,..., N and k=0,1,2,....

The reinitialization formulae given by Eqs. (3.17) and (3.19) provide

a very useful tool in simulation for a large-scale and long time horizon

e
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problem. First, with reinitialization, only a few discrete kernels need
to be generated while the total simulation horizon can be as long as
desired. The computations are very cost-effective. Secondiy. oecause the
generation of the discrete kernels within a moving subsystem is limited
in space, it is also limited in _time. After several time periods, the
responses dﬁe to any kind of excitation will not be confined within the
borders of the subsystem. The reinitialization technique is the necessary
tool to propagate responses over space (across the boundary of the moving
subsystem) and to extend the responses over time, i.e., to achieve the
natural redistribution. This effect can be seen clearly from the
examples. In most cases the moving subsystem procedure and {ye
subsystem is selected large enough and the simulation time horizon is not
too long.

One should notice that whenever the movin§ subsystem and the
sequential reinitialization are used, the discrete kernels..must be
generated with a unit pulse withdrawal excitatior for all the active

ce]}s, one after another.

SUMMARY OF NUMERICAL PROCEDURES

In order to summarize the numerical procedures, several flow charts
are provided. One is the conceptual flow chart for the general two-step
procedure. The other twa are the procedures for the generation of the
discrete kernels and the procedures for the simulation, respectively. The
computer programs for generation, KERGEN, and for simulation, KERSIM, are

developed following the flow charts.
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Flow Chart for General Two-Step Procedure

Tﬁe flow chart for the general procedure (Figure 3.5) only reflects
one of the‘ways to conduct a conjunctive management study, which is
evaluation by simulation. It shows that as long as the discrete kernels
are generated and saved, one can evaluate results of the policy variation
by repeated simulations in terms of those discrete kernels and the
relavent excitations.

In a stream-aquifer system, there are usually three kinds of
excitations, which might cause aquifer drawdowns and return flows. The
first kind of excitation is direct withdrawal understood in an algebraic
sense from the aquifer, as may be caused by pumping, irrigation,
artificial recharge, precipitation,.... The algebraic summation of these
rates from different _causes is called the net withdrawal rate.

The second kind of excitation is the fluctuation in river stage. The
drawdowns of the river stage in different reaches will usually vary during
different time periods. If one visualizes a river reach as a long and
narrow' "pumping ditch," then effect of a drawdown in river stage is
equivalent to that of pumping. Therefore it seems logical that this
excitation of river stage variation can be converted to an equivalent one
of net withdrawal.

The third excitation is caused by the 1nitial non-equilibrium
conditions. If the initial drawdowns of the aquifer and the initial

drawdowns of the river are not zero everywhere relative to steady state,
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even if there are no external excitations, the water table everywhere will
change. These non-zero initial drawdowns will cause evolution of
drawdowns and return flows. The influence of the non-equilibrium initial
conditions excitation types can also be viewed as that resulting from
equivalent net withdrawal rates by a proper correspondence.

Since the three kinds of excitations can be replaced by equivalent
net withdrawal excitation types, only the generation of the discrete
kernels for that type of excitation is necessary. They are generated once
and saved. During the simulation, the overall response of the system to
various kinds of excitations, reduced to one equivalent kind, is obtained

by superposition in time and in space.

Flow Chart for Discrete Kernel Generation Procedures

The flow chart for the discrete kernel generation procedure shows
the structure of the computer program KERGEN, which is developed by the
author. There are several options available in the computer program. One
option (Figure 3.6) is that the program can be used either for a stream-
aquifer system or for ap iselated aquifer. Another computer code option
can generate the discrete kernels with the moving subsystem procedure (for

an unconfined aquifer) or not using it (e.g. for a confined aquifer).

Flow Chart for Simulation Procedures

The flow chart for simulation procedures in Figure 3.7 shows the
structure of the computer program KERSIM, which is also developed by the
author. It shows the procedures for using the sequential reinitialization

techniques for a stream-aquifer system.
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Procedures for optimization will depend on the kind of mathematical
programming selected for use and upon the type of objective function and

constraints pertinent to the problem at hand.



72

FLOW CHART SHOWING DISCRETE KERNEL GENERATION PROCEDURES

Set the values 1
for program parameters

2
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~and options
+ 3
Read aquifer parameters and
cell Index, CALL READIN
Is there a river 4

in the system?

+ Yes 5

Read reach parameters and
reach index, CALL READRH

v .

Calculate interblock
transmissivity, CALL TAVG

‘ v i

Caicuiate coefficients for artificial

pumping rates equations and
save them on tape, CALL STEADY

Is moving subsystem

procedure called for?

9A 9B

Figure 3.6.a Path of Information and Calculations for Program KERGEN.
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FLOW CHART SHOWING DISCRETE KERNEL GENERATION PROCEDURES

(Continued)

Y

Set the coefficlent matrix for
system of finite difference equations
for the entire system, CALL MATRX

Next Cell

SA

———

10A

No Is this an active

Is this the
last celil?

Yes

cell with excitation?

Caiculate time~dependent coefficients
of equations and soive them to get
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Figure 3.6.b. Path of Information and Calculations for Program KERGEN.
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FLOW CHART SHOWING DISCRETE KERNEL GENERATION PROCEDURES
(Continued)

98

108
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active cell?
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Center moving subsystem on it
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Figure 3.6.c. Path of Information and Calculations for Program KERGEN.
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FLOW CHART SHOWING SIMULATION PROCED:JRES

Set values for program parameters

f

- 2
Read number of total simulation
time periods NPERIOD

Y

Read initlal condition of aquifer

!

Read cell index, discrete kernels and

€

artificial pumping rate coefficients
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Y

Figure 3.7.a. Procedures to Carry a Simulation by Program KERSIM.
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(Continued)

Calculate number of reinitialization
needed, NRI = NPERIOD/NTIME

FLOW CHART SHOWING SIMULATION PROCEDURES

r

Read pumping pattern for all the time
periods within reinitialization period

Y
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CALL SUBPROQ
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Update initial
conditions

A

Procedures to Carry a Simulation by Program KERSIM.




Chapter 4
ACCURACY AND EFFICIENCY OF THE METHODOLOGY
AND OF THE CALCULATION PROCEDURES

The purposes of the methodology tests were to check the correctness
of the methodology and computer codes and to demonstrate their efficiency.
The tests are based on two very simple hypothetical cases and one more
realistic hypothetical case. The computer codes KERNEL, KERGEN AND KERSIM
are developed by the author. The procedures for use of these computer

codes are described in a separate report (Zhang and Morel-Seytoux, 1989).

COMPARISON OF RESULTS WITH AN EARLIER PROCEDURE
In the early work of Morel-Seytoux (Morel-Seytoux et al., 1973;

Morel-Seytoux, 1975; Morel-Seytoux and Daly, 1975) the procedure for the
generation of the discrete kernels of drawdown and of return flows was
different than the one presented in this report. In this early procedure
the discrete kernels of drawdown were first generated without the presence
of the stream. Then in a second step the presence of the stream was
considered and the discrete kernels of return flow generated, and if
desired, the discrete kernels of drawdown, including the influence of the
stream, are calculated. Because the calculation procedures are different
but the results should be the same, the comparison verifies the

correctness of the new procedure presented in this research.

77
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Description of Test Case

Figure 4.1 displays the hypothetical stream-aquifer configuration and
the grid system used for the comparison. The cell size is uniform with
Ax = Ay = 1600 m. The aquifer transmissivity has value 50,000 ar/period.
The effective porosity has value 0.2. The river passing through the area
is divided into five reaches. The river reach transmissivity is uniform
of value equal to 100,000 n’/period. The number of periods selected for
the generation of the discrete kernels is four with the month being the
period. There is pumping in only one cell of coordinates (2,2). The
boundary condition is one of no flow along the four sides and initially

the water table is horizontal.

Comparison of the Discrete Kernels of Return Flow

The comparison is made by running two different programs KERNEL (for
the early procedure) and KERGEN (for the new procedure). Two runs are
made for two sets of time parameters, that is the initial calculation time
step At,,, the multiplication time step factor K, and the maximum time step
At_,.. In one run At = At =1 period = 1 month. The comparison for that
run is displayed in Table 4.1. The results are exactly the same. This
indicates that the two methods are strictly equivalent (which is a
theoretical result) even as numerically implemented. This comparison
indicates that the new procedure was programmed correctly for the

computer.
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Table 4.1
Comparison of Return Flow Discrete Kernels by wa Methods

(At,, = At,,, = 1 period)
Uniform Unit Pulse of Withdrawal Occurs in Cell (2,2)

a) Early Procedure (e.g. Morel-Seytoux and Daly, 1975)

Period
Reach 1 2 . 3 4
1 -0.00007 -0.00028 -0.00056 -0.0085
2 -0.0031 -0.00090 -0.00138 ~-0.0068
3 -0.06451 -0.01025 -0.01138 -0.0167
4 -0.06691 -0.10925 -0.06988 -0.0405
5 -0.00481 -0.01113 -0.01270 -0.0122

(b) New Procedure

Time = 1 Time =2 Time=3 Time =4
REACH 1 - -.00007 -.00028 -.00056 -.00085
REACH 2 -.00031 -.00090 -.00138 -.00168
REACH 3 -~ -.00451 -.01025 -.01138 -.01067
REACH 4 -.06691 -.10925 -.06988 -.04605
REACH 5 -.00481 -.01113 -.01270 -.01222
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In a second run At , was set at a value of 0.01, At_, at 0.10 and K
was equal to 1.5. Figure 4.2 displays the time response of return flow
rates due to a unit pulse of pumping in cell (2,2) for reaches 3, 4 and
5. There is very 1little difference between the procedures, the
differences being due to differences in numerical errors of the two

procedures.

Comparison of the Discrete Kernels of Drawdowns

The same aquifer configuration (see Figure 4.1) is used with the same
aquifer and stream parameter values. In one run the time parameters are
At = At . = 1 period = 1 month. The results are shown in Table 4.2. The
results are identical, again as they theoretically should be. .This
comparison provides further assurance that the new procedure
implementation on the computer is correct.

In a second run the time parameters were: At = 0.01, At,, = 0.10
and k, (AFAC in computer code) = 1.5. Figure 4.3 shows the results for
cells (1,2), (2,2) and (3,2). Figure 4.3 also shows the drawdown response
due to a unit pulse of pumping without the presence of the stream, denoted
the isolated aquifer discrete kernels. Again there are no differences
between the two methods. The drawdowns when the river is present are less
than when it is not, the river providing a partial replacement for the

water taken out of aquifer storage by pumping.
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Table 4.2.

Comparison of Drawdown Discrete Kernels by Two Methods
(At,, = At = 1 period)

a
Period Time = 1
J=1
.16915E-07

1
2 .10358E-06
3 .16315E-07

I
I
I

Period Time = 2

J= 1
I= 1 .3857E-07
I= 2 .14971E-06
=3 .36211E-07

Period Time = 3
J= 1

1 .59316E-07
2 .16598E-06
3

I
I
I .54268E-07

Period Time = 4

J= 1
I=1 .76826E-07
I= 2 .16731E-06
I= 3 .68628E-07

arly Procedure

J= 2

.10346E-06
.13381E-05
.96112E-07

J= 2

.14928E-06
.84677E-06
.12645E-06

J= 2

.16501E-06
.55087E-06
.12746E-06

J= 2

.16564E-06
.37013E-06
.11699E-06

J= 3

.14731E-07
.90105E-07
.14182E-07

J= 3

.31660E-07
.11499E-06
.29534E-07

J= 3

.45990€-07
.11264E-06
.41567E-07

J= 3

.56437E-07
.10070E-06
.49443E-07

J= 4

.14772E-08
.61429E-08
.15477E-08

J= 4

.40589E-08
.11913E-07
.43733E-08

J= 4

.70578E-08
.15750E-07
.78132E-08

J= 4

.99434E-08
.17785E-07
.11297E-07

J= 5

.16061E-09
.48866E-09
.16637E-09

J= 5

.57768E-09
.13673E-08
.60818E-09

J= 5

.12596E-08
.24439E-08
.13468E-08

J= 5

.21581E-08
.35733E-08
.23417E-08
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Table 4.2 (continued)

b) New Procedure

Location of Pumping is: [ =2 J =2
Period Time = 1

J= 1 J= 2 J= 3
I= 1 .16915E-07 .10346E-06 .14731E-07
I= 2 .10358E-06 .13381E-05 .90105E-07
I= 3 .16315E-07 .96112E-07 .14182E-07
Period Time = 2

J= 1 J= 2 J= 3
I= 1 .38578E-07 .14928E-06 .31660E-07
I= 2 .14971E-06 .84677E-06 .11499E-06
I= 3 .36211E-07 .12645E-06 .29534E-07
Period Time = 3

J= 1 J= 2 J= 3
I= 1 .59316E-07 .16501E-06 .45990E-07
I= 2 .16598E-06 .55087E-06 .11264E-06
I= 3 .54268E-07 .12746E-06 .41567E-07
Period Time = 4

J=1 J= 2 J= 3
I= 1 .76826E-07 .16564E-06 .56437E-07
I= 2 .16731E-06 .37012E-06 .10070E-06
I= 3 .68628E-07 .11699E-06 .49443E-07

J= 4

.14772E-08
.61429£-08
.15477E-08

J= 4

.40589E-08
.11913E-07
.43733E-08

J= 4

.70579E-08
.15750E-07
.78132E-08

J= 4

.99434E-08
.17785E-07
.11297E-07

J= 5

.16061E-09
.48866E-09
.16637E-09

J= 5

.57768E-09
.13673E-08
.60818E-09

J= 5

.12596E-08
.24439E-08
.13468E-08

J= 5

.21581E-08
.35733E-08
.23417E-08
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Figure 4.3. Comparison of Drawdown Discrete Kernels by Two Methods
of Generation
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Conclusion of Comparisons

The new procedure has been implemented correctly as it yields the
same results as for the early procedure. The new procedure is simpler
as it requires only one step: generation of discrete kernels by a finite
difference procedure. Jn the early procedure, following the first step,
which generates drawdown discrete kernels as if the aquifer was isolated,
two systems of linear equations must be solved to obtain the discrete
kernels of return flows and then of drawdowns in the presence of the
stream. The new procedure is also more cost effective as shown by the

comparison given in Table 4.3.

Table 4.3

Generation Cost of Discrete Kernels

Time Parameter Early Procedure New Procedure

At = At = month 0.589 cp sec. 0.251 cp sec.
At = 0.01, At = 0.10 1.188 cp sec. 0.358 cp sec.

Also the new procedu