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ABSTRACT

Analytical solutions are described to represent the impact of mnet
withdrawal from an aquifer on water table elevations and on induced
seepage (negative return flow) from a river in hydraunlic connection with
the aguifer., These analytical solutions afe prereguisite to the formu—
lation and solution of a conjunctive opfimal strategy of use of surface
and ground waters for irrigation purposes. Optimal continuous time
solutions are sought for rates of release from an upstream surface
reservoir, for diversion rates of streamflows downstream from the dam
and upstream of an irrigation area and for rates of pumping in the irpi~
gation zone via the classical techmiques of Calculus of Variations.

However instead of leading to an Buler-Lagrange system of partial
differential equations the formulation leads to a system of Fredholm
linear integral equations of the second kind. The clear economic mean—
jng for the optimal strategy ijs a trade—off between two marginal costs:
immediate value of not jncurring a pemnalty for failing to meet a down—
stream legal right versus the capitalized cost of additional 1ift as a

result of early pumping in the season.



FOREWORD

Maximum benefit from water use in irrigation is obtained by minim-—
jzing the cost of water (assuming cropping practices are fixed). The
cost of groundwater is greater than the cost of surface water due to
pumping costs. If surface supply js inadequate to meet full water
requirements, some groundwater use is necessary. Furthermore, groundwa—
ter use may be a mandatory element in an efficient water—cycle system
such as occurs in the South Platte River Basin. The management guestion
which this research addresses is, ''What is the correct mix of the two
sources to optimize returns from the available water?''

A two-pronged approach was used in this study: (1) modify and adapt
a hydrologic simeulation technology developed with Department of
Interior's partial support in a prior matching grant project (CR87) and,
(2) develop the theory and procedure for jncorporating optimization
analysis into the hydrologic model.

The hydrologic system of interest is the South Platte River Basin
ijn Colorado. Water in an alluvial aquifer in good hydraulic connection
with the river is managed conjunctively with surface water. Groundwater
pumping is permitted only if its impacts om surface stream flow is
offset by augmentation water. Water users contemplate a mzin—-stem
storage TeServoir and need new technology to find the best conjunctive
reservoir and groundwater management strategy.

A previously developed hydrologic simulation model was modified to
incorporate the presence of an upstream storage reservoir. Possible
combinations of storage capacity, release rules for the reservoir and
pumping rules for downstream aquifer were jnvestigated with the model.

The operational capability of the model to simulate this system on &



weekly time scale was demonstrated. Its utility for testing and
evaluating conjunctive management options was likewise demonstrated to
be excellent.

A dissertation on the conjunctive surface—groundwater simulation
model will be available from Colorado State University (Restrepo, 1984)
ijn the future. A table of contents is appended at the end of this
report. Technical details for an earlier version of model were previ-—
ously reported in Completion Report No. 87 available from the Colorado
Water Resources Research Imnstitute and are not repeated in this report.
More advanced modeling features were developed for the Colorado Commis-—
sion of Higher Education, the Groundwater Users Association of the South
Platte and the Ministry of Agriculture and Water of the Kingdom of Saudi
Arabia (Illangasekare and Morel-Seytoux, 1983a,b; Morel-Seytoux and
Il1langasekare, 1983).

The second approach to meeting water user need for mnew technology
is development of innovative methodology for incorporating optimization
capability into the hydrologic model. A theory and procedure for find-
ing an optimal strategy for managing surface storage conjunctively with
groundwater pumping has been developed, This report gives details of
the theory and the procedure. A hypothetical, jdealized case is used to
illustrate its application.

The next step in development of this new combined hydrologic
simulation-optimization technology will be to incorporate the optimiza-—
tion procedure with the simulation model. With this combination optimal
reservoir release and groundwater pumping decisions can be made continu-
ously throughout the season of operation, Of course, the new technology

will be equally valuable for jnitial planning of project operatioms.



TABLE OF CONTENTS

Page
RESEARCH OBJECTIVES .......... I — R T G e 8 § 8§ e 1
PART I - DRAWDOWN AND RETURN FLOW RESPONSES TO UNIFORM
WITHDRAWAL IN A ONE-DIMENSIONAL HOMOGENEOUS

SEMI-INFINITE AQUIFER ..... R e T T R T R R R E . 2

INITIAL CONDITIONS ....cvevvecennsnansnsnannsns e & & b B B 2

BOUNDARY CONDITIONS ....ccceecccenansnane P TP — 2

WITHDRAWAL EXCITATION .......... e v . n o w aRR TR & B s EEEe — 2

DRAWDOWN RESPONSE TO UNIFORM WITHDRAWAL ..... oimn R s E S E R N 2

Verification ...eeecesssccscsssasssnsssssnnssanns . o e R RS i 3

Drawdown Response to a General Excitation Rate per Unit Area, 3

RETURN FLOW RATE ....ccvecevssanssascanssnanasavasns 5 W B G . . 4
Return Flow Rate Due to a General Withdrawal Pattern

over the Irrigated Area ......csveeeee- . e e e nd § B & 4

CUMULATIVE RETURN FLOW VOLUME .......c0cccvctesreccansanonasnccnnces 5
SIMPLIFICATION IN NOTATIONS ...ceveceecnnnrrsoccsosncrcsannnanccsss 3
SUMMARY OF FORMULAE .....cccenveceacansonnancs o R & % W e o 6
Drawdown Unit Impuse Kernel Due to Uniform Withdrawal
Rate per Unit ATE8 ..i.eeeesrenarccsssasessasannsensaannns 6
Representative Drawdown Due to a General Pattern
Of Withdrawal ...ceveeesecsscacesssssssssssscassassnscnscs 6
Return Flow Rate Unit Impulse Kernel Due to Uniform
Withdrawal Rate per Unit ATEa ....cceevsrccesanssccccuonns 6
Return Flow Rate from River Reach Due to a General
Pattern of Withdrawal ....... 0000000 B S 7
REFERENCES ....cittteconsoccansnsans N TE TR ——— L L 7

PART II - FORMULATION OF THE MINIMIZATION PROBLEM OF COST OPERATIONS
FROM PUMPING AND SURFACE WATER DIVERSIONS FOR IRRIGATION.. 8

INTRODUCTION .....cccvcvonnvasncannns S s S PP R
WATER: COSTS s o s v amsacans s sssswemameviessssssssssagesieiossesnns ce. 8
CONSTRAINTS v vrspmimmnisisais sonaesasssessseen sanmabsmaezasasessoe 11
OPTIMIZATION FORMULATION .....cceoccannnes .aiieieies R oA 12

FORMULATION SUMMARY ......ccc00ve-e R e IR P TR S RN



SIMPLE SPECIAL CASE ....ccuienseecnoccccssssssscssassnnsrsasnacccsnns

Full Pumping Need Taken at End of Season .......ccieievecnennss
Full Pumping Need Taken at Beginning of Season .........ccue.n
Use of Groundwater after Exhaustion of Surface Water

Supply (last TeSOTL) ..u.vveveeeccsncnsvcnenccsnsansnsnsnns
Pumping as Last Resort but with Continuous

Satisfaction of Water Right ......ccivverrenccassosronscnnns
Pumping as Supplement to Surface Diversion with

Continuous Satisfaction of Water Right ......cccevvecnnncns
General Procedure (for still the simple case) ....cceevscanens

CONCLUSIONS ....ccvvveesnnss T R R
REFERENCES ...vvceevscasssssnnsssasccsassssasnnsaassssssassansnsnasss

APPENDIX Table of Contents of Restrepo’s Dissertation........ccnse

16

17
7

19

20

22
30

31

33



RESEARCH OBJECTIVES

The overall objective of the research was the development of a
methodology to demonstrate the value of conjunctive management of an
upstream surface reservoir with a downstream aquifer as water supplies,
The methodology must incorporat properly the physical interactions
between the stream, the agquifer and the wells as well as account for the
agronomic (irrigation) and legal constraints. The methodology must be
cost—effective so that it can be used for actual operations by various
local groups of water users.

In this report only a brief review of a promising method of attack
will be given. Generally speaking the thrust of the research has been
in the direction of development of new and imaginative methods that will
greatly reduce the cost of management studies of conjunctive use of sur—
face and ground waters when in hydraulic connection without significant
reduction in accuracy. In this regard the project was successful.

In a separate document, a dissertation (Restrepo, 1984) a more
fully developed classical approach is used to provide specific quantita-—
tive answers to problems of management for a reach of the South Platte
River, It addresses the problem of finding the optimal capacity and
release rules of an upstream reservoir as well as the withdrawal rules
for the downstream aquifer storage. A table of conten.s is appended at

the end of this report.



PART 1
DRAWDOWN AND RETURN FLOW RESPONSES

TO UNIFORM WITHDRAWAL IN A ONE-DIMENSIONAL
HOMOGENEOUS SEMI-INFINITE AQUIFER

INITIAL CONDITIONS

At time zero drawdown, s, is z€ro everywhere (i.e., for 0 { x £ w).

BOUNDARY CONDITIONS

At the river bank of a fully penetrating river drawdown remains
zero at all times, i.e., s=0 at x=0 for all times. Abscissa X is meas—
ured in a direction perpendicular to river course with origin at river

bank.

WITHDRAWAL EXCITATION

Withdrawal occurs uniformly over an interval of length a on each
side of the fully penetrating river. The river reach length is Lr‘
Thus the area of withdrawal (which is also the cultivated irrigated
area) is A= aLr. The excitation (withdrawal) rate for the area Ais Q
(volume per unit time) or the excitation rate per unit area is g (depth

per unit time). Naturally @ and q are related by the equation: 0=Aq.

DRAWDOWN RESPONSE TO UNIFORM WITHDRAWAL

The drawdown respomnse due to a unit impulse of uniform withdrawal
per unit area Over the interval (o,a) satisfying the initial condition
of zero drawdown everywhere and zero drawdown at all times at the river
bank is easily derived {(e.g., Morel-Seytoux, 1977) from the knowledge of
the Green's function for the one—dimensional linear Boussinesq equation,

The solution is:



k,  (x.8) =55 {erf(—22%) - erf(-2XE) + 2erf(—2—)) [1]

1
29 2 \[7t 2 \[7t 27t

where ¢ is effective porosity, ¥ = % is aquifer diffusivity and T is

transmissivity.

Verification

For any x in the interval (o,a) at time zero (plus) Eq. [1] yields

for drawdown the value:

ks’q(x,,o) = f%{erf(w) - erf(=) + 2erf(«)} = f%[1—1+2] =

which is correct, representing the instantaneous drawdown to an impulse

® =

of withdrawal of one unit volume per unit area. For any x > a at time

zero (plus) Eq. [1] yields for drawdown the value:

'-—L —c0 —_ @ =—l- —-1- =
ks,q(x,o) - zp{erf( ) erf(=) + 2erf(=)} 2¢[ 1-1+2] 0
which is correct since water table is jnitially horizontal,.

For any time at the river bank (2=0) Eq. [1] yields for drawdown

the value:

a a

) + 2erf(o)] = ~erf(o) = 0

) — erf( P

2 \[vt 2 vt

k (o,t) = “L{erf(
$,4

. T2
which again checks. Thus Eq. [1] provides correctly the response of

drawdown to a uniform unit impulse withdrawal excitation over the inter—

val (Oja)-

Drawdown Response to a Gemeral Excitatiom (withdrawal) Rate per Unit Aresa

The general solutiom is as usual (Morel-Seytoux, 1979, p.16) of the

form:

atx

t
S ) = ffL{erf( 8-X ) _ erf( ) + 2erf(—=2—)} qlx)dr
57 2 dy(t—t) 2 “Y(t—T) 2 QV(t-r) [2]



One obtains the response to the withdrawal discharge Q(t) (volume per

Q(x)
A

time) by simply replacing q(t) by in Eq. [2] or explicitly:

t
s(x,t) = —1—I[erf{—a—"-¥———}—erf{«———aix—~}+2erf{———"———}]amd-u

2A¢o[ 2 \[y (t—1) 2 \[y (t-7) 2 qy(t—T) 1 [31

RETURN FLOW RATE

The return flow response per unit lemgth of river reach (from ome
side of the river) due to 2 uniform unit impulse withdrawal rate per
unit area is obtained as usual (e.g., Morel-Seytoux, 1979, p.53) by cal-
culating the flux of water across the saturated thickness at river bank

(x=0), namely:

g
_Twl - x (t)z_\l?._(L;_e_if_t_) [4]
ax x=0 9.4 n wz

Derivations of this result have been provided previously (Morel-Seytoux,

1977) .

Return Flow Rate Due to a General Withdrawal Pattern Over the Irrigated Are

Again use of the comvolution equation yields for the return flow

along the river reach the expression:

2

R
1t 5 4y (t—t)
Qr(t) . EJ'J%: Q(z)dr
o L \I t-t ] [5]




CUMULATIVE RETURN FLOW VOLUME

The cumulative return flow volume up to time t is defined as:

t
Wr = £Qr(1)d1 [61

The unit impulse response of cumulative return flow is obtained as usual

(Morel-Seytoux, 1979, p.58) by integrating Eq. [4] with respect to time,

namely:
2
_a
1 t _ 4yt
kw Q(t) = - ;\l% f (‘1_""§=—"'_—_) dr [7]
E 0 r
or equivalently:
2
a2
m t 4y
(t) =-L J_-f (1 - @ ) dv [8]
kwr,q T 7 o \l?

SIMPLIFICATION IN NOTATIONS

In general drawdown will be evaluated only at 2 characteristic dis-—
tance from the river where drawdown is roughly the average drawdown in
the aquifer below the jrrigated area, The unit impulse given by Eq. [1]

when evaluated at that abscissa is denoted simply:

k(1) = 2—1,&[“«:( “\'If_) — erf( a\*‘f_) + 2erf( :!‘,_)1 [9]
2 vt 2 \jrt 2 Nt



where x has a particular value (a8 %) and the excitation is that per
unit area. Thus the representative (average) drawdown at the selected

abscissa is given by the equation:

t

— t
s(t) = fks(t—t)q(r)dr = %fks(twr)a(t)dr [10]
(o] o]

Similarly the unit impulse kernel of return flow rate is simply

denoted kr(t) and defined by the equation:

2
. A
4yt
l=8 ok
kr(t)=-%;\EL 1 il- . [11]
t
and the return flow rate is given in general by the expression:
t
Qr(tJ = | kr(t't)Q(T)dT [12]

0

SUMMARY OF FORMULAE

Drawdown Unit Impulse Kernel Due to Uniform Withdrawal Rate per Unit Area

k (1) = Lrerf(—2=%-) - erf( BYE ) 4 2erf(

- ) (131
P 2 \[vt 2 \[yt 2 d?¥

Representative {mean) Drawdown Due to a General Pattern of Withdrawal

o t
() =17k (t-mamar [14]
0

Return Flow Rate Unit Impulse Kernel Due to Uniform Withdrawal Rate
Per Unit Area




2

__a

. 4yt
kr(t)=—'1a-\E'(—‘——"“"'l e ) [15]

\'t

Return Flow Rate from River Reach Due to a General Pattern of Withdrawal

t
Q_(t) = [ E (t-v)Q(v)ds [16]
0
REFERENCES
Morel-Seytoux, H. J. 19717. ""Natural Redistribution of Water Table

Levels in a One-Dimensiomal Semi-Infinite Aquifer,’’ Handout No.
14, Class Notes for Course CE 632 Optimal Ground Water Management,
Department of Civil Engineering, Colorado State University, Fall
1977, 6 pages.

Morel-Seytoux, H. J. 1979. "Cost-Effective Methodology for Stream—
Aquifer Interaction Modeling and Use in Management of Large Scale
Systems, '’ HYDROWAR Program, Colorado State University, Fort Col-
lins, CO 80523, December 1979, 75 pages.



PART 2

FORMULATION OF THE MINIMIZATION PROBLEM OF COST OPERATIONS
FROM PUMPING AND SURFACE WATER DIVERSIONS FOR IRRIGATION

INTRODUCTION

For a system already constructed (i.e., with existing reservoirs,
canals, wells, etc.) and capable of delivering enough water from com—
bined surface and underground supply to meet crop need for optimal crop
yield, the maximization of profits from water use is simply obtained by
minimization of the cost of water acquisition. In this case the income
from the sale of the crops is fixed. It is the sum of the products of
price by optimal yield for the various crops. Generally the cost of
groundwater is greater than that of surface water as 2 result of the
energy cost for lifting the water. Thms profit can be maximized by
minimizing the cost of water. This 4is achieved by using the right
amount of surface and ground waters at the right time in order not to
drawdown the aquifer too much. This is of course accomplished by msing
the surface supply whenever available and groundwater only as a supple—
mental source. However surface water availability may be limited by the
demand of senior downstream surface water rights. The minimization

problem arises as 2 result of such constraints.

WATER COSTS

Diversion amounts per unit time will be expressed either as
discharges or velocities (i.e., depths per unit time, which is volume
per unit area per umit time). The function D(t) represents the diver—
sion rate (expressed as depth per unit time) from the stream at a diver-

sion point upstream of the irrigation area. Figure 1 displays the
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overall configuration of the system. Water is released at a rate (velo-
city) x(t) at point U (upstream point of system of interest). Without
any loss this flow reaches point D (diversion point) where a certain
amount D(t) (velocity) is diverted. The remaining flow in the river
(i.e., x(t)-D(t)) will then continue through the irrigation area.
Through the reach of length Lr the river is in hydraulic comnectionm with
the aquifer. As a result the outgoing flow rate at point R will have
increased (algebraically) by the return flow for the reach, qr(t)
expressed as a velocity. Naturally =all discharges are conmverted to
velocities by dividing them by the total irrigation area, A,

If e denotes the unit cost of surface water diversion then instan—
taneous cost of diversion is cSD(t)A and the total cost over the irriga-—
tion season is its integral over the irrigation season. The umit cost
¢  does not vary within the season (an assumption).

The cost of groundwater is more complex, as it depends on the 1ift.
Drawdown being measured from the initial position of the water table at
beginning of irrigation season, used as origin of time, the lifting cost
depends on the total 1ift, which is the initial 1ift plus the additional
lift due to further drawdown during the season, If ¢, Tepresents the
initial  wuwnit cost of pumping and cm the marginal cost of pumping (i.e.,
cost per unit pumped volume per additional unit of drawdown) then the
total groundwater cost during the irrigation season of duration T plus

the total surface diversion cost, is given by the expression:

T N T
Z=/ [co + e s(t)] a(t)dt + [ ¢ _AD(t)dt [1]
(0] 0 :
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where s(t) is a representative drawdown for the area and Q(t) is the
pumped discharge. The drawdown 's(t) being a linear function of pumped
discharges, it is clear from Eq. [1] that the total water cost will be a
quadratic function of pumping rates and a linear one of surface diver—

sion rates.

CONSTRAINTS

There are limitations to the availability of water from the surface
reservoir. Denoting by XT the total available volume of water for the
season from the reservoir per unit of irrigation area then clearly the
total volume of release cannot be greater than that amount. However,
because cost of surface water is relatively cheap, that total wvolume

will indeed be used. Consequently the constraint takes the form:

T
[ x(t)dt = X [21

A T
where T is the duratiom of the irrigation seasoD. There is a downstream
water right which is a total volumetric right for the season, denoted WT
when expressed per unit area of jrrigation. Consequently since river
outflow from the irrigation area is instantaneously x(t)-D(t) + qr(t),
the mathematical expression of the required total satisfaction of water
right is:
1)
[ [x(t) = D(t) + qr(t)]dt = Wy [3]
o

The equality is justified by the fact that the upstream users have 00

interest in losing cheap water to downstream uSers.
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To produce a crop abundantly and of good quality, a proper amount
of water has to be delivered to the crop. This amount varies and is
denoted e(t) (for evapotranspiration need). This function is a known
function of time. Not all the water diverted will reach the plant (in
its specific location in a furrow, etc.). Some of it is lost by seepage
before it gets to the field. The fraction of diverted water that will
actually reach the fields is denoted Ef. Of that amount which reaches
the fields only a fraction denoted Ep will actually reach the plant and
be transpired. In other words to meet the plant mneed e(t) an amount
D(t) is to be diverted which is e(t)/EfEP, an amount which can be sub-
stantially greater than the plant need. Pumped water can also be used
to meet that mneed. Being withdrawn right on the field, pumped water
suffers only one inefficiency. The constraint (requirement) that plant

need be met takes the mathematical form:

BED() + Eja(t) = e(t) 41

OPTIMIZATION FORMULATION

The optimization problem is one of minimization of the objective
function defined by Eq. [1]. This objective function is not fully
explicited because s(t) is a function of the net withdrawal rate (per
unit area). This net withdrawal rate is the difference between pumped
rate and aquifer recharge from water application, The mnet withdrawal

rate (velocity) is thus:

a,(t) = a(t) = (1-E )q(t) — (1-EGE )D(¢) -
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or defining for simplicity Efp = Epr and Er = 1—Efp, which is the

recharge efficiency of the surface diversion:

a, () = Ea(t) = ED(t) Lel

From the theory of linear systems the drawdown s(t) is expressed as a

convolution integral:

_ t
s(t) = [ ks(t—t)qn(t)dr [71
0

The specific form of the kernel depends upon the representation of the
aquifer behavior and its characteristics. For a very simple sitnation
the kermnel ks(-) was derived earlier (see Eq. [13] in Part I). Substi-
tution of Eg. [7] into the objective function transforms the optimiza—

tion problem in the explicit form:

T t T
Minimize {£ le*e { k_(t-1) [qu(r}—ErD(t)]}q(t)dt 6, £ D(t)dt]} [8]

subject to the various constraints defined by Egqs. [2], [31 and [4].
There are three decision functions: x(t), D(t), and q(t). Two of them
are not really independent due to constraint Eq. [4]. That equation can

be used to express D(t) in terms of gq(t) and e(t), namely:

pey = L - i) 2
fp £

and in turn Eq. [9] can be used to eliminate D(t) from the objective
function in Eq. [8]. After substitution the objective function takes

the form:



T 4 T t
z=c fa(t)dt + ¢ /p(t)at + ¢ f {fk (t-7)
¢] [¢]
E e(r) E
r + =Zg(
[qu(r) = IE_ Ef ]dr]q(t)dt
or:
T T T % B
z = ¢ fq(t)dt + ¢ /D(t)dt +c_[ {Jk (t*t)[u-* = f(r)]aﬂq(t) dt
s m s
o o o o L °f ] [10]
E

where for simplicity the known function e(-) has been redefined,

by
1-E
- T
temporarily, as f(:). Thus the optimization of the objective function
depends now explicitly on two arbitrary functioms: x(t) and q(t). To
complete the elimination of D(t) from the objective function its

integral has to be rewritten in the form:

T T T
[ D(t)atr = f eltddt _ y a(t)dt
e} o Efp o Ef

Substitution of this expression into the objective function yields:

c T o
z=(c_ - —) [ q(t)at + =— f e(t)dt +
o E
f 0 fp o
T t
c [ {] x (t-7) [ﬂi!l - f(t)]dt} q(t)dt [11]
moy s ] Ef

The problem, once more, is to minimize this objective function with
respect to the wunknown functions q(t) and x(t) subject to the con—
straints defined by Egs. [2] and [3]. After elimination of D(t) from

Eq. [3] that constraint takes the form:
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T
J {xtt) - {%&%l = gill] - qr(t)} dt = W

0 L f Ef ] T

or, defining the total depths of evapotranspiration crop need, of water

right and of pumpage as:

T
ET - £ e(t)dt

i
Q. = J q(t)dt

0
T

and W..= J w(t)dt
(8]

where w(t) is the downstream surface water right rate (velocity),

finally:
T 1 T
= Ef [ q(t)dt - B / {kr(t—t)q(r)dr}dt = Xp - ¥y
o fo
1 T t
- 75 Bp -/ U k (t=0) f(z)drldt [12]
£ o o

Note that the kermel of return flow due to withdrawal is a megative
function so that the second term on the left hand side is actually posi-

tive. The same comment applies for the last term on the right hand

side.

FORMULATION SUMMARY

The minimization problem involves the objective function:

cg T cg T T % [ () Ere(r)]
z = (¢ - =) [fq(t)dt + fe(t)dt + o [ (Jx_(t-0) |35 - = dt}q(t)dt
o E E_E m s E 1-E

f o fpo o o B 4 J[13]
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and the equality comnstraint:

E T Tt {q(r) Ere(t)]
oW T+ B S attdat + [ x (¢-0) |55 - p—lanlat = 0
T o o0 L °f rl

There are two unknmown functions, q(t) and ‘x(t), but only one appears in
Egs. [13] and [14]. The problem appears to be one in classical Calculus
of Variations. 1In order to discover (hopefully) a general method of

solution a simple limiting case will be investigated first.

SIMPLE SPECIAL CASE:
Let us assume:-that .the cost of surface water is very cheap (i.e.,
s = 0 for practical purposes), that initial cost of pumping is very

small (i.e., Bl = 0), and that efficiencies E, and Ep are both one.

Then in this case the objective function reduces to:

T %
z, = c_ ¥ &f k (t-t)q(r)dclq(t)dt [15]
0 o

and the equality comnstraint reduces to:

T T 4
XieWaRa + £ q(t)dt + £ {£ k_(t-t)q(r)dtldt = 0 [16]

One possible strategy of operation is not to pump at all, In that case
the cost is minimal (zero). However such strategy is feasible only if
XT—WTrET > 0 that is if the irrigation requirement ET and WT can botk be
met by seasonal surface storage availability XT. If such volume is mnot
sufficient then the need will have to be supplied by depleting the

aquifer somewhat, Thus in the situation of a deficit in surface water
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availability (i.e., XT ¢ Eq + WT) it will be mnecessary to draw water
from the aquifer. In order to get a feeling about the problem and its
‘sblution. let us consider the effect of different strategies: for exam—
ple, withdrawal of full pumping need at beginning of seasomn, at the end

of the season Or continuously throughout the seasomn.

FnllfPumping Need Taken at End of Season
In this case the withdrawal is a unit impulse of magnitude QT

(expressed as a depth). The objective function of Eq. [15] becomes:

T t
2z =c_ T ) ks(t—r)QTDB(T—T)dr}QTDB(T>t)dt [17]
0 0

se

(The subscript e refers to the strategy of pumping at end of season)
where DS(') is the Dirac delta function singular at time T. The inner
integral is zero except at T=t=T, whe#g it takes the value %ks(o)QT, and

the total pumping cost is:

(7]

2 [18]

1.2
Zse = _-c k (0 QT 2 QT

A2

In this Ggﬁp;QT = ET&WTPXT so that the total cost is explicitly:

c
°m 2 [191
Bag = 2p (Ep+¥pXp)

Full Pumping Need Taken at Beginning of Seaéon--:

The withdrawal is a unit impulse of magnitude QT but occurring at

time 0. The objective function of Eq. [15] takes the form:
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T t
Zg = Cp £ {£ks(t—t)QTD8(t)dt]QTD6(t)dt

or
T4
Zg = ¢ ' 2 Qk (t)QD (t)dt [20]
[a]

or

2
Cm 2 chT

o - [21]
Zsb T 2 kS(O)QT T2

(The subscript b refers to the strategy of pumping at beginning of sea-

son,) QT is now given by the constraint equation [16], namely:

: 4
X =W Ep+Qp + £ QTkr(t)dt =0

or

T
1+ f k_(t)dt [22]
(o]

Since kx(-) is a negative function QT in Eq. [22] exceeds the strict
need ET&WTrXT. The cost in this strategy of early pumping is larger
than for the case of pumping at the last minute. Naturally pumping at
the 1last minute is not a feasible strategy because the crop need e(t)
must be satisfied at all times. Similarly the early pumping strategy is
not feasible unless the water is stored and delivered as needed during

the season.
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Use of Groundwater After Exhaustion of Surface Water Supply (last resort)

Until the time t0 such that:

[ e(t)dt =X_- W [24]

then clearly (?) the optimal policy is (might be) to meet the crop need
from the reservoir release and by diversion of surface water. Past time
to one must pump from the aquifer but then again just to meet the mneed

or in this case:

q(t) = e(t) for t; L% (T k23]
The minimum cost will be attained for a value:
T t
24 = ¢y g' {g' ks(t-r) e(t)dr} e(t)dt (261
(s} (s}

(The subscript 1 refers to fact that groundwater is used as last
resort.) However, one comstraint, Eq. [16] is not satisfied, because the

last term introduces a lack of balance, namely the integral:

T £
I & kr(t—r) e(r)dr) dt
tO tO

Enough surface water is available to meet the downstream water right in
the interval to to T but not to compensate for the seepage induced by

pumping.



Pumping as Last Resort but with Continuous Satisfaction of Water Right

The water right function is actually wusually defined as a rate
w(t). The continuous (permanent) satisfaction of the water right

requires that:

z(t) = D(t) + g (t) = w(t)
A strategy that would meet irrigation need and water right without pump-
ing until surface storage is exhausted will dry the river beyond that
point, If drying of the river is not acceptable, which will now be
assumed, pumping will have to occur before the seasonal surface storage
availability is depleted. The time of initiation of pumping tp is now
an unknown. Until the time tP the strategy is to release water to meet

consumptive use and water right, that is:

x(t) = e(t) + w(t) o<t <t [28]

Let the integrals of x(+), e(+) and w(-) up to that time tp be denoted
Xp, Ep and Wp. Beyond that time the reservoir release is used solely to

meet the water right and to compensate for the seepage rate induced by

pumping, that is:

x(t) = wlt) - q_(1) t [29]

[ELS
~
|~
3

whereas the pumping rate is determined by the consumptive use require-

ment, namely:

q(t) = e(t) t [30]

|~
-+
|~
=



The return flow qr(t) is related to the pumping rate, in this case e(t),

by the relation:

t
qr(t) = g' kr(t'T)B(t)dT [31]
P

Substitution in Eq. [29] yields the explicit constraint:

t
x(t) = w(t) = [ kr(t-t)e(t)dt [32]

t
P

The objective function to be minimized is:

T %
Bea = Oy g'{g' ks(t—t)E(T)dT} e(t)dt [33]
P P

(The subscript ¢ refers to the fact that water right is satisfied con—
tinuously.) The problem is reduced to ome of minimization with respect
to one unknown parametier tp. Redefining the origin of time at the
beginning of pumping and the pumping duration time 'I‘--tp as Tp, then Eq.

[33] takes the slightly simﬁler form:

s
p 't
T, = Oy £ {£ ks(t—r)e(r)dr} e(t)dt [34]

The minimization of Egq [34] for Tp ijs subject to the constraint over the

irrigation season that:

i
p

:
X ~WyEp Qp + £ {£ kr(t—-'c)e(-r)]dt =0 [35]
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Defining for convenience the excess need over seasomal storage water
availability, namely E#WpXp as Ny, Eq. [35] takes the form:

[36]

Tp[ t ?
I I-e(t) + [ kr(t—r)e(r)dtJdt = Np
o]

o

Actually Eq. [36] determines Tp since kr(-), e(:) and Np are given.
Then once Ts is calculated from Eq. [36], substitution of the numerieal
value of Tp in Eq. [34] yields the value of pumping cost for the season.
Prior to time tp = TLIh the release rate is given by Eq. [28] and after
t it is given by Eq. [32]. The diversion rate is e(t) before t_ and

p P

zero afterward.

Pumping as Supplement to Surface Diversion with Continuous Satisfaction
of Water Right
In the previous strategy need was met solely by surface water up to

initiation of pumping and thereafter solely by pumping. An alternative
(more general) would initiate pumping while surface diversion continues.
It is rather intuwitively clear that such a strategy would induce seepage

from river earlier and consequently require a larger fractiom of X_ to

T
meet downstream water rights, A smaller fraction of XT would be used
for irrigation and as a result a greater pumped volume would be required
to meet the consumptive use, Altogether the strategy would cost more.
Nevertheless it is instructive to consider this strategy. In this case

the release rate is related to need, water right and pumping by the

relation:

t
z(t) = e(t) + w(t) — q(t) - f kr(t—t)q(r)dt [37]
o

whereas the objective still is:



23

- - ks(t—t)q(t)dr} q(t)dt [38]

™
I
(]
o —H
~—
Q =t

(The second subscript s refers to the fact that in this strategy ground—
water is used as 2 supplement not entire replacement for surface water.)
The global form of Eq. [37] for the jrrigation season 1is written moIe

generally:

T T t
[ q(t)dt + [ kr(t—t)q(t)dt)dt > Np
o o ©

This inequality expresses the fact that the downstream flow must meet OT

exceed the water right. The inequality may be rewritten in the form:

T T t
- [ q(t)dt - [ kr(t—r)q(t)dt)dt + Np £ 0 [39]
0 o ©

which is the standard form to exXpress the constraint toO write the
Lagrangian function (for example to derive the Kuhn-Tucker theorem) . Imn
particular jt is known that at the minimum the Lagrange mul tiplier A is
positive oT zero.

Fundamentally the problem is to minimize the objective given by Eq. [38]
for the unknown function q(t) subject to Eq. [39]. The Lagrangian func-

tion associated with the objective function in Edq. [38] is:

T ¢
L= 6 I & ks(t—r)q(r)dt] g(t)dt
o ©

{ T T % ]
+ & ke Fateids - 4 i kr(t-t)q(r)dr} at + Np
L o o o0 | [40]
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It remains to derive the Euler-Lagrange equation for this functional
problem, The change in Lagrangian when g(t) changes to g(t)+en(t),

where en(t) represents a variation in q(t), is:

T t T £
AL = c & [ ks(t—t)q(r}dr)n(t)dt +oc € I ks(t—t)n(t)dt)q(t)dt
o o o o
% T 3 2
- xe [ n()dt - ae [ (J k_(t-)n(v)dz)dt + 0(e7)
o o o [41]

If the function g(t) is to minimize L then the coefficient of & must be
zero for all arbitrary n(t). After interchange of order of integration

in the second and fourth integral in Eq. [41] one obtains.

T t
AL = c e A ks(t-t)q(t)dt)n(t)dt
o o
T T
+oe. ) ks(t—t)q(t)dt)n(t)dr
o T
T T T 2
- ae [ n(t)dt — ae [ (J x_(t-t)dt)n(z)dT + 0(e7)
0 o © T [42]

Changing the name of the time variables in the second and fourth

integral yields:

T t T
AL = ¢ [ {cm / ks(t—t)q(r)dt + e I/ ks(t—t)q(t)dt
(o] (o] t
T
R O | kr(t—t)dt} n(t)dt [43]

t




25

The Fuler-Lagrange equation is thus:

t T T
cm[f k (t-t)q(r)dr + / ks('r~t)q('c)dt] =1+ [ k_(z-t)dt)  [44]
0 t t

It is an integral equation for the unknown functiom g(-). Eq. [44] can

be expressed in a more standard form by defining a kermel:

k:(u) = ks('ul) [45]

and by taking T = « in the second irrigation (beyond the real irrigation

season then e(t) = 0 and g(t) = 0). Eq. [44] takes the form:

@ T
o J k. (t-v)q()de = & (1+ [ k_(s-t)dv) [46]
) t

which is a linear integral equation of the first kind., The solution is
a function of the (unknown) Lagrange multiplier A. This multiplier is
then found by substitution of the solution gq(t,A) into the comnstraint
Eq. [39], taken as an equality, which becomes an algebraic equatiom to
be solved for A. Once A is obtained substitution of its value into the
solution q(t,A) yields the optimal solution q*(t) to the problem.

Bowever the solution so obtained is not valid if q(t) is < 0 or >
e(t), since clearly 0 and e(t) are bounds for the pumping rate in the
supplemental strategy.

Suppose that the optimal solution was on the lower bound constraint
at time t (thus q(t)=0). The only feasible variation is n(t) > 0. If
indeed the objective is at a minimum then AL has to be positive for a
positive wvariatiom n(t). It follows that if g=0 is optimal in the

interval (O,tp) the coefficient of e(t) in that range in Eq. [43] has to
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be positive namely:

t T gy
[k (t—r)q(n)dr + [ k (z-t)q(v)dr ) 2= (14 [ k_(z-t)dw)
o t m t

or more precisely since q is zero im interval (O,tp)

T T

A
g' k (z-t)q(t)dr 2 E; 35 { k (r-t)dt) for 0 ¢ t ¢ t, [47]
P

Since A is positive, this equation implies that gq=0 up to time tp
can be optimal provided that beyond that time pumping is large enough
and/or that tP is small (i.e., pumping is initiated early) and/or that
¢, 1is large. Similarly one may question whether or not g(t) = e(t) can
be an optimal policy. Suppose that the optimal solution was on the
upper bound for times te £ & €L, In that range the only feasible

variation is n(t) < 0. The coefficient of n(t) in that range of times

has to be negative, thus:

t
€ t
I ks(t“T)q(T)dt + f ks(t—t)e(r)dt
o t
€
T 2 T
- 1:f k (z-t)e(v)dr < °_:; (1+ { k_(v-t)dr) for t L tXT [48]
e

Since A is positive Eq. [48] implies that t_ cannot be too small and/or
that prior to t, a(t) must be small and/or that ¢, is small. Egs. [47]
and [48] imply that at early times a solution g=0 is optimal and that at
late times g=e is optimal, There remains 2 question about the possibil-
ity of an optimal q in the range (0,e) during the interval (tp,te), In

that case Eq. [44] must hold for tp £ttt
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This discussion provides a basis to check whether the ""bang-bang '’
solution that is g=0 up to tp and g=e thereafter is indeed optimal. The

solution for tp in this strategy is given by Eq. [36] or more precisely

by:
T T
[ lett) + [ kr(t—t)e(t)dr dt = NT [49]
t t
P | D 1

Having determined tp one would next verify that Eq. [47] holds, in this

case:

=

T

! k (z-t)e(r)dr g_ﬁL (1+ [ kr(t—t)dt)
- m t
P
for 0 <tX tp [50]

The value of A is determined from Eq. [46] for q(t) being a step func-—

tion jumping from zero to e(tp) at t=tp, namely:

i
cn f ks(t—tp)e(t)dr

t
P

T
1+ g' kr(t—tp)dt £51]

p

One would also need to verify that Eq. [48] holds, in this case:

|

t E

A Y
tf k (t-t)e(r)dr + { k (t-t)e(r)dr e (1+ { k (t-t)de (5]
P

From the value of A in Eq. [51], Eq. [50] takes the more specific form:
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T T
[ k_(z-t)e(r)dr / k (x-t Je(t)de
tp g tp
T - T
1+f kE (z-t)dre 1+ f kr(T“tP)dt
t t
P
for 0 <t £ tp [53]
Similarly Eq. [52] takes the form:
t T T
f ks(t—r)e(r)dt + [ k (t-t)e(r)dr / ks(r—tp)e(t)dt
i
tp . Ep
T = &
1+ [k (:-t)de 1+ f k (vt )dv
t t
P
for tp Lt%4T [54]
It is not possible to state whether the ""bang-bang'" solution is

the
[54]

crop

optimal omne in all situations, The satisfaction of Egs. [53] and
depends upon the shape of the kernels ks(-) and kr(-) and of the
need e(-).

Consider the simpler case when the irrigation area extends far from

the river. In that case the return flow kernel has the form:

ek X1
k (t) = aJ;\]'E [55]

In particular its integral with respect to time (the unit step kernel)

is:

Consequently:
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T
_ - WTI 2 »
{kr(t t)dt = Kr (I-t) = -2 \l—; \IT t

whereas:

T
- i e __2 |x =
[ k(¢ tp)dt = K (T tp) ==1 \]; \|T t

t
Y

For t £ tp then it follows that the denominator of the Ileft—hand

side of Eq. [53] is less than that on the right-hand side. Everything

else the same, the larger the seepage flow (that is the better the

hydraulic connection between stream and aquifer) the longer ome waits to

pump to operate optimally.

Similarly again for the case of an area extending far from the

river the drawdown kernel has the form:

1ers (—=—) [56]
# 2 7t

k (t) =

Supposing a constant consumptive use e(t) then the numerator on the

left—-hand side of Eq. [53] is proportional to:

2
- 2 27(tp t) 4
[ erf f——~3L——-dr = %‘ [ erf (u) “%
t 2 7 (-0 ] 4 2 u
p —x

2y (T-t)

whereas on the right—hand side the numerator is proportional to:

Lee]

I erf (u) du
2
2 u
X
27(T-t
v p)

The main contribution to these integrals comes from the lower limit.

Thus for constant e the numerator on the left-hand side tends to be

greater than the numerator on the right-hand side. The discussion tends
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to indicate that in many situations the bang-bang policy will be optimal

but it is not sure.

General Procedure (for still the simple case)

One presumes that the ''bang-bang’' policy is optimal. The value
of tp is determined from Eq. [49]. One then checks that Eq. [53] is
satisfied for t ¢ tp' One checks that Eq. [54] is satisfied for all t
> tp. If the checks are positive then the optimal solution was
obtained. In the negative ome must relax the assumption that at initia—
tion of pumping pumping rate takes immediately the value of irrigation
need. At this stage an iterative procedure becomes necessary. Select-

ing wvalues of tp and t_ a priori ome solves Eq. [44] for values of t in

the interval (tp’te)’ more specifically:

t
t e
e {f' ks(t—t)q(r)dr + f ks(t—t}q(r)dt

Ltp . 1
T T
= g’ ks(r—t)e(r)dr + A1 - { kr(t—t)dt) [57]
€

The solution of this integral equation depends upon A. Substitution of

this solution for q(t,A) in Eq. [39] leads more specifically to the

expression:
te T T t
N, - t,A)dt - (t)dt - k - =
T tfq( ) {et) tf(tf [t alz,de)dt =0 o,
P e P p

Once X obtained one proceeds to Eqs. [47] and [48] for checks on
optimality. If the tests are positive the solution has been found. In

the negative one must reestimate tp and t,, etc.
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CONCLUSIONS

The classical techniques for optimization of decision functions
such as pumping rates, release rates, etc,, are not powerful emough to
find the optimal patterns as continuous functions of time as they really
are, Instead the unknown functions are discretized over the time hor-
izon, Often in addition to discretization, simplifications are made in
the dependence of the objective function on the decision functions. In
particular, as in Dynamic Programming, the instantaneous objective func-
tion cannot have a memory dependence on previous decisions, Yet this is
precisely the case when there is interaction between stream and aquifer.

In this study it was decided to take a crack at the problem from a
Functional Optimization point of view, Because of the intrinsic memory
of the cost function on past decisions, not surprisingly the Euler-
Lagrange egquation turns out to be an integral equatiom rather than a
differential equation (the classical case and only one discussed in the
mathematical 1literature). In the simple case considered for which the
Euler Lagrange equation was derived, the optimality condition has a
clear economic meaning, Under optimal operatioms at any given time the
marginal capitalized cost of future extra lifts due to additional unit
of pumped water at that time equals the immediate marginal pemnalty cost
for failing to meet the downstream legal right by one umnit at the same
time. Based on this optimality criterion optimal release and pumping
decisions can be taken continuously throughout the season of operatioms.
Unfortunately analytical solution of an integral equation, even a linear
one, is not an easy task, In fact exact solutions are rare. However
there are efficient numerical techniques of solution. Lack of time and

other commitments did not permit to explore this mnew procedure in a



quantitative manner for specific values of parameters for a reach of a
river in hydraulic connection with an aquifer, at the present time.
This will be done in the future. One must capitalize on a good idea

when one encounters one!
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