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ABSTRACT

EVALUATION OF THE STORAGE OF DIFFUSE SOURCES OF
SALINITY IN THE UPPER COLORADO RIVER BASIN

Specific electrical conductance (EC) was found to correlate highly
(r2 = 0.99) with the total dissolved solids (TDS) concentration of
aqueous solutions derived from mixtures of distilled water and sediment
samples collected in the Mancos Shale lowlands of the Upper Colorado
River Basin. The effects of suspended sediment presence, turbulence and
particle size on the EC of partially equilibrated mixtures appeared
negligible. The mixing time necessary to approach equilibrium decreased
with an increase of salt content (of the dissolving sediment) and with a
decrease of sediment concentration, and the time span required for equi-
librium ranged from a few minutes to several days.

4
The chemical quality of the aqueous mixtures is of the Ca2 —Mg2+—

Nal+~soz;—HCO§~ type. Sodium and magnesium hydrated sulfates appear to
dissolve faster than gypsum or calcite. Moreover, it was determined
that the relative abundance of Nal+, Mg2+ and SOZ- decreases with a de-
crease in the sediment:water ratio. An increase in sediment:water ratio
was followed by an increase in TDS concentration due to the addition of
soluble minerals. A decrease in sediment:water ratio produced an oppo-
site trend. However, the TDS decrease was smaller than warranted by di-
lution for 95 percent of the samples. This dilution effect, in which

the mass of dissolved matter increases as much as 500 percent, may be

partly explained by gypsum and calcite dissolution but in undersaturated

it



solutions it calls for the existence of slightly soluble coatings on
mineral particles.

There is a large inherent variability in the soluble mineral con-
tent of sampled sediments. Soluble mineral content (calculated from
the EC of 1:99 sediment:water mixtures) of Mancos Shale from hillslopes
(2 percent, calculated as a weight per weight ratio) is significantly
larger than that of terrace alluvium (0.62-0.29 percent) and bed mater-
ials (0.93-0.81 percent) of North Miller and West Salt Creeks, respec-—
tively. The most saline deposits (10 percent) are efflorescent bed
crusts. Terrace and bed materials in narrow valleys where shallow al-
luvium overlies shale are highly saline (1.6 percent) and show an in-
crease in soluble mineral content with depth. Terrace crusts are well
leached; some bed material crusts accumulate salts while others do not.

Results from the experiments on the amount of dissolution and dis-
solution rates upon dilution indicate that the true salt load from dif-
fuse sources of salinity may be much larger than presently assumed.
Chemical analyses of samples from a single low magnitude flow event in
West Salt Creek show that stormflow salinity is considerably influenced
by the soluble mineral content of bed and lower bank materials. Results
also confirm that major areas of diffuse sources of salinity in the
Upper Colorado River Basin are also major sediment contributors. Hence,
gullying will significantly increase the sediment and salt load of
channels in saline alluvium and in Mancos Shale bedrock.

Jonathan Benjamin Laronne
Department of Earth Resources
Colorado State University

Fort Collins, Colorado 80523
Summer, 1977
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CHAPTER 1
INTRODUCTION
1.1 Statement of Problem

Colorado River water serves millions of people is such diverse
ways as industrial and municipal needs, recreation, irrigation and the
production of electrical energy. The variety of demands on this water
places great emphasis not only on the quantity of water but also on
water quality. The situation is complicated internationally by Mexico's
use of Colorado River water.

The most serious water quality problem in the Colorado River Basin
is salinity and the progressive increase of salinity. The average
annual salinity of the Colorado River at Imperial Dam, California, as
well as in all the major tributaries of the Upper and Lower Colorado
River Basin lowlands has almost doubled during this century (Iorns,
Hembree and Oakland, 1965). Although irrigation return flow con-
tributes significantly to this salinity increase, salts from diffuse
and point sources of natural origin are the largest contributors
(Maletic, 1973). Sources of salinity may be divided into point and
non-point, or diffuse types. Point sources include saline seeps and
springs as well as industrial and urban effluents. Diffuse sources
originate from the entire drainage basin.

Geologic sources of salt have been identified regionally but,
except for the recent investigation by Ponce (1975), the storage and

release mechanisms of salts and the variation of salt content within



high salt producing areas have not been studied. Such a study of
natural salt storage and release processes should improve the possi-
bility for control of salt production from these diffuse sources of

salt.

1.2 Objectives

The objectives of this study may be divided into two groups. The
first group involved the determination of amounts of salt, i.e.,
soluble mineral content, stored in alluvium (bed materials of alluvial
channels and terrace deposits including gully walls) and in associated
Mancos Shale (both weathered and unweathered) bedrock. These determi-
nations are required in order to evaluate the salinity potential of
such deposits. The diffuse source areas studied are heavy contributors
of dissolved solids. An additional objective was to determine the re-
lation between sediment yield and salt yield by studying the physical
and chemical dissolution processes of these geologic materials upon
contact with water.

The second set of objectives was oriented toward the identifica-
tion of the relationship between salt release and the erosion of valley
alluvium. The hypothesis to be tested was that salt is stored in allu-~
vium and released after alluvium is eroded. This goal may be achieved
by comparing morphological differences between basins of high and those
of low salt release and by comparing aggrading and degrading channel
reaches in channels of high salt release.

It was apparent in the early stages of this study that there are
very few natural basins contributing significant salt yields to the

Upper Colorado River Basin that are appreciably unaffected by irrigation



and, at the same time, for which water quality data is available. Com-
parison of potentially low and high salt yielding areas was therefore
limited to reaches within one of the studied basins. Moreover, interp-
retation of aerial photographs and topographic maps as well as a low-
level flight over large areas of the Upper Colorado River Bagin sub-
stantiated the field observation that most channels are incised or
gullied. Because no typical aggrading reach (one with a high width/
depth ratio and/or with thick fresh deposits) was located, no compari-
son was undertaken between aggrading and degrading reaches.
1.3 Salinity in Arid Regions

and in the Upper Colorado River Basin

Natural water in the atmosphere, hydrosphere and lithosphere con-
tains varying amounts of dissolved constituents. The concentration of
dissolved solids in precipitation is very low (Carroll, 1962) although
it may increase locally such as in coastal areas (Fanning and Lyels,
1964). Channelized and overland flow, soil water and ground water
dissolve gases, liquids and solids with which they come in physical
contact. The total dissolved solids (TDS) concentration of these na-
tural aqueous solutions becomes very high if the material in contact
with the solution is highly soluble or when evaporation of the water
concentrates the solutions.

Arid and semiarid regions are by definition regions of low annual
precipitation and high potential evaporation. The natural waters of
these regions become more concentrated with dissolved solids, or 'salt
loaded', as evaporation occurs. Therefore, saline accumulations appear

on the surface and in the soils of these regions. The saline deposits



are composed of highly soluble minerals, the most soluble of which are
the nitrates, chlorides and sulfates. The arid and semiarid environ-
ment is, therefore, conducive to the formation of saline deposits such
as saline playa deposits (Hardie, 1968; Lotspeich et gZ., 1969), and
it is characterized by saline soils and by runoff and groundwater of
low chemical quality.

Large parts of the Southwest and, specifically, the lowlands of
the Colorado River Basin, sizeable areas in the Rio Grande Basin and in
the San Juaquin Valley, California, as well as major areas in Wyoming,
Montana and Idaho are characterized by saline soils. Saline and sodic
(i.e., sodium rich) soils are common in the Middle East, in the Asian
subcontinent, in Australia and in western South America. The saline
bedrock and consequently the saline surficial materials of these
regions are the diffuse sources of salinity of the rivers that drain
them.

Most of the water in the Upper Colorado River Basin, defined as
the drainage area (276800 km2 or 109500 miz) drained by the Colorado
River above lLees Ferry, Arizona, originates from spring snow melt in
the high country of the Rocky Mountains. The upper parts of the drain~
age basin are vegetated mountain ranges exposing outcrops of Pre~
cambrian crystalline rocks. These rocks and their derived soils pro-
duce relatively insoluble weathering products, and they are
characterized by low sediment production. However, the lower areas of
the Upper Colorado River Basin are underlain by Paleozoic to Recent
sedimentary rocks. Various marine shales are interlayered in the thick
sedimentary sequence of the Colorado Plateau and the saline Mancos

Shale formation of Upper Cretaceous age occurs over rather large areas.



Shales, although relatively impermeable, are erodible materials.
Marine shales contain soluble minerals which were precipitated from
marine water. Therefore, it is expected that Mancos Shale areas will
yield high sediment and salt loads to the Colorado River. The percent
of the total flow and the percent of the total salt and suspended
sediment load discharged from the Upper Colorado River Basin measured
at selected gaging stations are shown in Figures 1.1 and 1.2. The
percentages were calculated from the total runoff, salt load and sus-
pended sediment yield at Lees Ferry, Arizona. The Price and Dirty
Devil Rivers are characterized by low water yields (0.66 and 0.58 per-
cent, respectively) and by very high sediment yields (3.73 and 4.81
percent, respectively). It is particularly noticeable that these basins
also contribute high vields of solutes (2.79 and 2.28 percent). Mun-
dorff (1972) and Ponce (1975) clearly demonstrated the relation of
high salinity to presence of Mancos Shale in the Price River Basin.
Similar patterns of high sediment and salt loading occur in the central
reach of the Gunnison Valley in the Delta-Montrose area of Colorado,
throughout the Grand Valley and in the San Juan River drainage basin
between Shiprock, New Mexico, and Bluff, Utah. All these basins,
valleys and reaches are extensively underlain by Mancos Shale. There-
fore, several of them were chosen as field areas for intensive
sampling of surficial Mancos Shale and associated alluvial deposits in
order to determine their potential as diffuse sources of salinity.

The major diffused sources of salinity yield a mixed cation
(calcium, magnesium and sodium) sulfate-bicarbonate type runoff, as
opposed to the low sodium and low sulfate runoff from most other areas

(Price and Waddell, 1973). The natural diffuse source areas yield
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approximately one-half the total salt load of the Colorado River, with
the remainder contributed by point sources (one~fifth) and sources
affected by man such as irrigated agriculture (about one-third) (U. S.
Environmental Protection Agency, 1972). Therefore, it is essential to
identify the sources of salinity and to understand the processes of
salt storage, dissolution and loading from these natural sources of
salinity. For the purpose of this study the research was concentrated

on the high salt producing areas of the Mancos Shale.

1.4 The Mancos Shale Terrain

The Mancos Shale crops out south of the east-west trending Book
Cliffs of west central Colorado and east central Utah in a broad band
of rolling hills to the south and as steep hillslopes with deeply in-
cised bedrock channels, arroyos and gullies to the north. The forma-
tion in places appears at the margins of pediments which are gravel-
capped. The Mancos Shale also outcrops extensively in the central
Dirty Devil and San Rafael Basins, in the central Gunnison Valley and
in the Four Corners area near the town of Mancos and in the Chaco River
Basin; there are additional outcrops throughout major tributary basins
of the central to lower San Juan, Green and Colorado Rivers.

Mancos Shale and stratigraphically associated formations dip 10°
to the north in the Grand Valley, south of which the Uncompahgre Uplift
exposes Paleozoic to Precambrian rocks (Figure 1.3). Similarly, in
the Price Basin area the Mancos Shale encircles the center of the basin
dipping 10° away from the San Rafael Swell.

Mancos Shale is a shallow marine formation of Upper Cretaceous

age. The lower shales of the formation are of late Cenomanian to early
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Turonian age and the upper shales in the sequence are Campanian
(Fisher, Erdmann and Reeside, 1960). It is a westward facies of parts
of the Pierre Shale which crop out east of the Rocky Mountains and in
the Great Plains. TIts thickness ranges between 1050 m (3450 ft) and
1265 m (4150 ft) in most areas. It is a saline monotonous marine
shale, drab gray where weathered and dark gray, thinly bedded and lack-
ing pronounced fissility when fresh. The dark shale abounds in
veinlets of gypsum and calcite and it is often covered with patches of
"white alkali” or salt efflorescence. The weathering of the shale
produces a friable semi-powdery mass that is sticky and impervious when
wet.

Mancos Shale generally includes thin sandstone layers which inter-
tongue eastwards with shales. The thickness and abundance of these
increases to the northwest. Minor, gas-rich, hogback-forming sandstone
beds are found at different places and horizons. In the Price River
area the Mancos Shale has been divided into several members (Stokes and
Cohenour, 1956). In ascending stratigraphic sequence these are the
Tununk member, a gray marine siltstone and claystone, the concretionary
fluviatile partly marine Ferron Sandstone, the light gray and calcare-
ous Blue Gate Shale, the marine to deltaic light colored Emery Sand-
stone and the gray marine Masuk Shale.

The fluviatile Dakota Sandstone conformably underlies the Mancos
Shale and usually crops out as prominent hogbacks or cuestas. The
lower part of the Mesa Verde Group, which conformably overlies the
Mancos Shale, are interlayered cliff-forming sandstones, coal seams and
saline marine shales. Deposition of the late Cretaceous Mesa Verde

Group began earlier to the northwest. The Wasatch and Green River
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Formations, which unconformably overlie the Mesa Verde Group, are all
terrestrial rocks.

Generally, the drainage density is high (100) due to the low in-~
filtration rates and high erodibility of weathered Mancos Shale
(Schumm, 1964). Where relief is high, intricate drainage patterns
resembling badlands form. Rolling hills characterize only the lower
parts of the drainage basins. The shale slopes steepen appreciably
toward the Mesa Verde cliffs, and active mass wasting occurs which in-
cludes creep, mudflows and rockfalls. These processes are very active
in the incised bedrock channels as North Miller Creek.

The climate in the lowlands of the Upper Colorado River Basin is
of a semiarid continental type with frequent high intensity convective
storms of small areal coverage. Maximum monthly precipitation occurs
in July-August. Daily and seasonal temperatures vary widely with
extremes of from 42°C (108°F) to -41°C (~42°F) in the Price River Basin
(Mundorff, 1972). The average potential evaporation measured with a
class—A pan at the Grand Junction airport was 233.0 cm (92.1 in)
during the years 1954-1960, and the maximum monthly average was 46.5 cm
(18.3 in) during July (Lusby, Reid and Knipe, 1971). Annual precipita-
tion at Fruita in the Grand Valley ranged from 117.9 mm (4.64 in) to
459.2 mm (18.08 in) during 1954-1966. Mean annual precipitation is
250 mm (10 in) at Price, 200 mm (8 in) at Woodside in the lower Price
Basin, and 215.9 mm (8.5 in) at Badger Wash with a gradual increase
eastward (Mundorff, 1972; Branson and Owen, 1970). The mean annual
precipitation at Cortez, Colorado, is 381 mm (15.0 in) (U. S. Dept. of

Commerce, 1956).
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Soils in parts of the study areas have been investigated and
classified by the Soil Conservation Service (Swenson et al., 1970),
by the interagency study group at Badger Wash (Lusby, Rheid and Knipe,
1971) and by Knobel et al. (1955). Generally, the area is underlain
by three Lithosel soil types that are represented by the Chipeta and
Persayo soil series. The Billings soil series represents the Alluvial
soil group. The lithosols are of the loose sandstone type, reddish
loam soils of low salinity and high pH (9.3). The thin gray and brown
silty shale loam soils that develop on Mancos Shale have high salinity
and a lower pH (8.0). The third lithosol is a mixture of the sandy and
shaly soils. It has been determined (Schumm, 1964) that fresh and
somewhat weathered Mancos Shale swell considerably when wetted with
25-58 percent volume increase in free swell tests.

Vegetation on most of the Mancos Shale and associated alluvium is
of the salt-desert shrub type with subtypes reflecting local differen-
ces in soil characteristics and available soil moisture. Except in
local areas, the plant cover is sparse with crowns of living perennial
plants covering 10-20 percent of the surface (Lusby, Reid and Knipe,
1971). Plant cover is somewhat increased in early summer and in wet

years.



CHAPTER 2

PROCEDURE

2.1 Introduction

Two separate research plans were required for this study. The
determination of soluble mineral content in surficial deposits re-
quires abundant sampling of these materials at the surface and at
depth. Field sites where alluvium and shale were collected are all in
Mancos Shale terrain because of the high solute yields from diffuse
sources in these areas. Based on two reconnaissance trips to the
area, fieldwork was planned such that samples would be collected from
sampling units of both alluvium (bed, bank and mass wasted materials)
and bedrock (from bedrock channels and from hillslopes). Laboratory
experimentation was planned to determine the effects of various para-
meters on the kinetics of dissolution and on the dissolution potential
of the samples. Based on these results, a procedure was adopted to de-

termine salt content.

2.2 Selection of Study Areas

2.2a Location

The study areas were selected to meet the following requirements:
they are located in accessible tributary basins of the Upper Colorado
River Basin that are known to be high salt contributors to the river

system; no irrigation takes place in the study areas.
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Soils and surficial sediments were sampled in four such basins
during the field season of 1975. The samples of surficial alluvium and
Mancos Shale were collected from the unnamed northern branch of Miller
Creek (herein called North Miller Creek) in the Price Basin, Utah, from
Leach and West Salt Creeks in the Grand Valley, Colorado, and from the
unnamed 'Mesa' Creek, a tributary of McElmo Creek near Cortez, Colo-
rado (Figure 2.1).

All of the study areas are located in the High Plateaus and
Canyonland sections of the Colorado Plateau Physiographic Province
(Fenneman, 1931), and they are partly or completely underlain by Mancos

Shale.

2.2b Description of Study Areas

North Miller Creek, with a drainage area of about 10.5 km2 (4.1
miz) above the lower sampling section denoted by number U6, was chosen
because of its location in the Price River Basin, one of the single
largest contributors of salt from diffuse sources in the Upper Colorado
River Basin, and because man's influences are minimal. The U. S.
Geological Survey monitors water discharge and specific conductance of
the Price River at Woodside, Utah. Moreover, several researchers from
Utah State University have also been involved in salinity studies in
the Price River Basin (e.g., Ponce, 1975).

Numbers of samples from North Miller Creek and from other studied
basins are comprised of a first character which identifies the general
sampling area ('U' stands for the Price Basin, Utah, 'G' for the Grand

Valley and 'M' for Mesa Creek). For samples from North Miller Creek,

the second character identifies a channel reach, the third corresponds
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to a channel section, the fourth corresponds to a sampling unit and

the last character corresponds to a given sampling depth. Because only
one section was sampled intensively within each studied reach in West
Salt, Leach and Mesa Creeks, samples from these areas are denoted by
four characters. The course of the main channel of North Miller Creek
is parallel to the Wattis coal mine road. Samples U5Bl1 to U5Z1B
correspond to locations sequentially more upstream in the upper reach
as shown in Figure 2.2. The upper reach of North Miller Creek that was
chosen for detailed study is deeply cut into the Mancos Shale bedrock
and it is bounded by unstable vertical walls which may reach 15 m

(49 ft) in height. As the channel meanders shifted and downcut through
the shaley bedrock, alluvial aprons formed on the abandoned bends (the
convex or inside banks). The channel bed is presently downcutting and
bedrock is exposed throughout the studied reach. Most of the alluvial
deposits are terraces 2-15 m (6-49 ft) above the present elevation of
the channel bed. The alluvium, which is primarily comprised of sands
and gravel, together with the unstable shaley bedrock, provides a large
sediment load as it mass wastes from the gully walls.

The Mancos Shale ‘desert' of the northern Grand Valley has been
studied for a number of years in connection with sediment yields
(Lusby, Reid and Knipe, 1971) and with the salt contribution of the
valley to the Colorado River (e.g., Skogerboe, 1972). Leach Creek
(Figure 2.3) drains the Book Cliffs and the adjacent Mancos Shale low-~
land, which is partly occupied by large dissected pediments. The basin

2 or 8.7 miz) and a road follows the creek up to its

is small (22 km
headwaters in the Book Cliffs. 1In the lower area of the drainage basin

(above the Government Highline Canal) the channel bed is only slightly
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gullied and overlies 5-8 m (16~26 ft) of alluvial £ill like the neigh-
boring Indian Wash (U. S. Dept. Agr., 1964).

West Salt Creek drains an area of 435 km2 (170 miz) and it is
located in the westernmost extremity of the Grand Valley (Figure 2.3).
The headwater channels drain the southern face of the Roan Cliffs which
are underlain by the lower Green River siltstones and marls. The upper
part of the basin is underlain by sandstones and shales of the Mesa
Verde Group and below section Gl1 (Figure 2.3) the valley broadens as
West Salt Creek enters the Mancos Shale. A Geological Survey station
is located in the southernmost area broadly underlain by shale. Be-
tween this gaging station and the confluence with the Colorado River,
West Salt Creek flows over the deep alluvial £ill of the Grand Valley.
West Salt Creek is unique in having a gaging station and an EC metering
facility.

Sections G7 through G10 are in the main West Salt channel (Figure
2.3) where it is incised in alluvium (100-150 m or 320-480 ft thick) to
a depth of 5~10 m (16-32 ft) below the upper terrace. This terrace
constitutes the valley floor. At section G8, the junction of the chan-
nel with the Mitchell Pass Road, the channel abutts against a Mancos
Shale slope where a small saline seep is perenially active. Salt
efflorescence is very conspicuous downstream of the seep. Section G11
is located in the main channel above the confluence with South Canyon
Gulch. Here the valley narrows between the steep slopes and cliffs of
alternating sandstones and shales, and the channel, which is incised
into the alluvium, is a source of many small saline seeps. These seeps

become more numerous upstream.
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McElmo Creek is a highly saline tributary of the San Juan River.
Grab samples (U. S. Geol. Survey, 1969-75) indicate a large range in
TDS with a relatively high (1.6-2.7) sodium absorption ratio. The
salinity of McElmo Creek is considered to originate from diffuse
sources including irrigation in the basin. Several of the tributaries
of McElmo Creek are underlain by Mancos Shale. Among these, only the
unnamed 'Mesa' Creek (Figure 2.4) has a stage recording gaging station
but data from this station is not available. Mesa Creek is essentially
a smaller version of Leach Creek although it is not accessible in its
headwaters which lie within Mesa Verde National Park. Therefore, data
was collected only in three lower reaches.

M1l and M2 samples represent a reach where the channel abutts
against an actively mass wasting Mancos Shale bluff. The M3 samples
were taken to determine variations in salt content with depth in an
alluvial reach. The M3 and M4 reaches are similar except for the

coarser bed of the latter.

2.3 Methodology

2.3a Sampling Techniques and Sampling Error

Soils and surficial sediments were drilled with a 10 cm diameter
bucket~-type auger. Drilling direction was perpendicular to the sur-
face. Salt efflorescence and crusts were sampled by hand. Crusts
normally form in semiarid regions and crusts were present at many
sampling sites except on terraces and in some sandy channels. Because
crust thickness (0.1-10 cm or 0.04-4 in) may vary with the sediment
size distribution, mineralogy and antecedent moisture conditions, the

crusts were collected in their entirety.
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Sampling holes were drilled in the bed, banks and in the terrace
of each channel cross section. These morphologic units, in conjunction
with hillslopes, are herein referred to as sampling units. Sections
were chosen to represent a fairly long channel reach. More than one
set of samples of a given sampling unit was taken whenever variability
was either noted or expected.

These sampling errors may be identified. The first is related to
the drilling process whereby the sampled material includes matter
originating from previously-sampled parts of the same drilling hole.
Another, more significant, sampling error results from the large
natural variability in salt content of sampled materials. The third‘
sampling error results during splitting of a sample in the laboratory
and it is related to the variability in salt content of the given
samples. Yet another error may arise when a selected cross section
or sampling unit does not adequately represent a channel reach.

Drilling in dry sand and in gravelly sand often disturbed over-
lying materials which, in turn, fell into the sampler bucket. Table
2.1 summarizes the size distributions of samples G8I4 to G8I7 and
G8H1 and G8H2. The G8H samples were drilled horizontally into the
vertical bank of West Salt Creek 60 cm (24 ih) below the terrace and
they represent a sandy layer lacking gravel with a thickness of about
20 cm or 8 in (i.e., extending approximately 50-70 cm or 20-28 in
below the terrace). The G8H samples were drilled vertically in the
terrace proper. Comparison between the size distribution of samples
G8I4 and GB8I5 reveals their similarity (gravelly coarse sand) while
samples G8H1 and G8H2 are also similar (sandy). Although samples

G816 and G817 are supposed to represent the sandy layer, they both
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(but to a lesser extent G8I7) contain appreciable amounts of coarse
sand and gravel, the percentage of which is an indicator of in-place
sampling error.

Unlike sediment size, soluble mineral content will be subject to
change after deposition. Slightly soluble sediment particles remain
stationary after sedimentation while salt may be dissolved and trans-—
ported by percolating ground water. Soluble mineral content is expec-
ted to vary with aspect, being higher on slopes where evaporation is
also higher and gives rise to accumulations of saline crusts, and it
varies with surface elevations. The thalweg, being the lowest surface
in any given cross section is wettest and it collects water even during
low flows and consequently it will be rich in salts upon evaporation
of the water.

Specific conductance of saturated paste extracts of Mancos Shale
crusts from two large scale sampling grids reportedly varies as much
as tenfold (Ponce, 1975). This variation in salt content decreases as
the sampled area decreases, which is most likely due to the greater
homogeneity in lithology, aspect and moisture content in a given
locale. Ponce (1975) also shows that one salt content determination is
inadequate for areal representation of salinity. The standard devia-
tion of many of the soluble mineral contents of specific sampling
units is indeed very large, as will be discussed in detail in Chapter
4.

In addition to the forementioned variability in soluble mineral
content of surficial materials it appears that there is a small but
significant variation within parts of a sample. Portions of a given

sediment mass were randomly sampled by splitting. Samples G8Gl and
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USD1A were mixed with water at 1:999, 1:99 and 1:9 ratios. TFive to

six subsamples at each sediment concentration were shaken until equi-
librium was approached. The determinations of specific conductance

at given contact times are summarized in Tables A3.1 and A3.2 of the
Appendix. Mean EC and standard deviation (0) for each contact time are
also included. The variability index, lOO(c/EE), in percent, is
equal to the coefficient of variation times 100 and it is used to com-
pare the variability of mixtures of different ionic strengths.

The variability in EC, and hence in soluble mineral content, de-—
creases with increased sediment concentration for the equilibrated
alluvial (G8Gl) mixtures. The variability index is 34.7, 5.0 and 2.0
percent for the equilibrated 1:999, 1:99 and 1:9 mixtures. No such
trend is obtained with sample U5D1A. Because more material is in-
volved as mixture concentration increases (0.4, 4.0 and 40.0 g,
respectively) it might be argued that the larger subsamples better
represented the sample as a whole, thus explaining the variability
trend of sample G8Gl. The variability index of the G8Gl 1:999 mixture
is large (0 = EC/3) due to the late acceleration in dissolution rate
of the third subsample. The variability is, however, reasonably small
(i.e., one standard deviation is equal to less than 12.7 percent of
the mean) for all other mixtures. It may therefore be inferred that
the standard deviation of scluble mineral content within a given sub-
sample is in the order of * 10 percent for most samples. Additionally,
no significant trend of variability decrease with contact time was

noted.
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2.3b Laboratory Procedure

Agronomists and agricultural engineers use filtered saturated-
paste extracts or 1:1 sediment:water ratio extracts to determine the
salt content of soil materials (U. S. Dept. Agr., 1954). These de-
terminations are based on a shaking time of one hour or, at times, of
24 hours. The extracts are obtained in order to evaluate the amounts
of dissolved solids present in soils with moisture contents ranging
from a few percent to a maximum of about 50 percent. The effects of
contact time and sediment:water ratios reported in this study were
found to be crucial in the determination of the amount of solutes re-
leased from soils and surficial sedimentary deposits and therefore,

a new procedure was adopted which is based on these effects.

Because the 'salt content' of a sediment ultimately depends on
the contact time and on the amount and quality of the diluting agent
as demonstrated in Chapter 3, it was decided to simulate the behavior
of alluvium and Mancos Shale sediments in channel flow by using a 1:
99 sediment:water mixture (i.e., equivalent to 10,000 ppm solid sedi-
ment concentration). Hence, soluble mineral (SM) content (in percent)
was calculated as follows:

SM content =

[ (TDS mg/1) (g/10°mg) (liter/10°ml) (99 ml/g)] 100 =

1:99

(TDS ) 0.0099

1:99

Samples were air dried at room temperature for several days. The
sediment :water mixtures were shaken in 500 ml Erlenmeyer flasks. For

1:1 weight ratios of sediment:water, 200-300 g of sample were placed
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in the flask to which the same volumetrically measured weight of

water was added. The flasks were closed with rubber stoppers to
eliminate evaporation and then were shaken one hour on a horizontal
15~bottle capacity shaker at 110-130 cycles per minute. The mixture
was allowed to stand in contact with air for several minutes prior to
EC measurement. During this time 25 ml of the mixture was poured into
the EC meter cup and its temperature was recorded. A 'Lectro Mho
Meter' (Lab-line Instruments, Inc.) EC meter was used throughout the
laboratory experiments. The solvent and diluting agent in all experi-
ments was distilled water of 8 > EC > 1.5 umho cm_l at 25°C and of
5.5 < pH < 6.5,

In order to maintain a consistent degree of turbulence in the
mixing flasks, the preparation of the samples consisted of splitting
them (in order to ensure a representative size distribution) so that
the total volume in the mixing flask was approximately constant (400
cm?). The coarsest particles used in 1:99 mixtures of gravelly samples
were eliminated by the splitter or by the operator because of the small
weight (4.0 g) of sediment used. Mixture temperatures varied with
room temperature, with mixing time due to heating by the shaker, and
with location on the shaker plate. Mixture temperatures were mostly
in the 23-27°C range with recorded minimum and maximum values of 21°C
and 33°C, respectively. The EC at 25°C was ensured by a temperature
calibrating dial on the EC meter.

Plots of EC veg time (Figures 3.1la and 3.1b) were used to determine
the approximate time necessary to shake 1:4, 1:9 and 1:99 mixtures.

From these plots the one~hour EC was plotted against the time (t

1:1 90)

necessary to reach 90 percent of the approached 24-hour equilibrium
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(ECQO) for 1:4, 1:9 and 1:99 mixtures (Figure 2.5). For most samples
which appear in Figures 3.l1a and 3.1b, t90 increases as the sediment:

water ratio increases. t90 increases as the potential soluble mineral
content decreases. Because of the approach towards equilibrium,
(EC1:99)/(EC1:9) ratios remain essentially constant with time during
late dissolution stages. Therefore, the longef mixing times of 1:9 as
opposed to 1:99 mixtures ensure that the more concentrated mixtures
are in the same dissolution stage (in terms of equilibrium approach)
as are the dilute mixtures,

The chemical analyses of so0il solutions and runoff samples were
undertaken by the Colorado State University Soils Laboratory using
standard methods (U. S. Dept. Agr., 1954). Only Ca2+, Mg2+, Naz+,
5042— and HCO31_ were analyzed in most solutions. For the large ma-
jority of the analyses, 100 (Zcf“- ZCiZ+) / ZCiZ- < 10 percent,
where Ci denotes concentration in meq1‘1~of the ith ion, and =z+
and z- are the charges of the cations and anions, respectively.
Following the recommendation of the American Public Health Association

(1965, in Lane, 1975), most of the present analyses fall within the

acceptable limits of
Je,®" - Je,®7 = #(0.165 + 0.0155 Jc, 7).

This range is reportedly % one standard deviation of an average ana-

lytical error.
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CHAPTER 3
THE POTENTIAL FOR MINERAL DISSOLUTION

In order to determine the amount and the type of salts that are
stored in geologic formations, one may study the samples mineralogi-
cally or petrographically, or else dissolve them in water for chemical
analysis. A review of the vast literature on dissolution of minerals
reveals that both the type and the amount of dissolved matter, which
is released from geologic materials in contact with water, depend on
the dominant soluble minerals, temperature, pressure, turbulence, con-
tact time, particle size and sediment:water ratios (i.e., sediment con-
centration). 1In this chapter the results and analyses pertaining to
the dissolution potential of alluvium and related surficial Mancos
Shale will be presented and discussed.

Minerals are soluble to some extent in any solvent. Some minerals
such as halite or mirabilite (NaZSO4 . 10H20) are highly soluble in
water; but most rock~forming minerals such as calcite, feldspar and
quartz are only slightly soluble. Solubility is defined as the mass
of a substance contained in a solution which is in equilibrium with an
excess of the substance (Weast, 1975, p. F109). The solubility of
minerals is given by their concentration in the solvent. The magnitude
of individual or specific ionic concentrations also depends on the
presence of dissolved matter derived from other mineral sources. The
concentration of ion species is given by their solubility product,

which is related to the mineral that precipitates from solutions
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containing these ions. The solubility product (KSP) of a mineral is
an intrinsic parameter that varies with temperature, pressure and the

concentration of the solution.
3.1 Electrical Conductance as an Index of Dissolution

Dissolved matter includes electrically charged ions and charged
ion complexes (e.g., Nal+ and NaSOAl-, respectively) as well as un-

charged molecules such as CO2 and H2C03 and uncharged associated mole-
cules, ion pairs in true solution such as CaSOZ. The capability of a
solution to transmit electrical current depends on the characteristics
of the solvent and on the presence of electrically charged dissolved
matter. Specific electrical conductance, usually referred to as spe-
cific conductance and herein abbreviated EC, is therefore used as an
index of total dissolved solids (TDS) concentration. EC is the elec-
trical conductance of a substance between opposite sides of a cube,

1

. . , , . -1 -
one centimeter in each direction. The units of EC are ohm cm or

mho cm

It can be shown (Stumm and Morgan, 1970, p. 37) that the equilib~-
rium product (Keq) and, therefore, the solubility product and the EC
are dependent on temperature and on pressure. In general, the effect of
pressure on mineral dissolution is smaller than the effect of tempera-
ture. Gypsum and calcite are common In the geological materials sampled
in this study and, therefore, 1t may be added that the solubility of
gypsum (i.e., also the EC of such a solution) increases while that of
calcite decreases with increase in temperature at atmospheric pressure.

The effect of contact time on EC is shown in Figures 3.1la and 3.1b

where EC is plotted against time for seven alluvial samples at different
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sediment:water ratios. For all the samples EC increases with contact
time. The dissolution rates are similar to several diffusion functionms
but the reaction paths are of many varied types and the only general
equation to which they fit is a high-ordered logarithmic function of the
form:

EC = a + b log t"
where a and b are constants and n>>1.

Non-metalic and uncharged solid matter in coantact with a solution
does not enhance the transfer of electrical current through the solu-
tion. Therefore, the presence of varying amounts of such solids (e.g.,
quartz particles) will not affect the EC of the suspension. However,
clay particles with charéed surfaces as well as with non-perfect
crystal lattices with charged broken edges may orient themselves (a
plating phenomenon) and actually enhance the transfer of current. The
degree of plating may increase with the duration of direct current (DC)
transfer. Therefore, with merely several (1-5) seconds available for
the measurement (with AC current) of the resistance of the mixture,
plating effects should be minimal.

EC data for various types of suspension and their filtered solu-
tions are summarized in Table 3.1. From this table it appears that the
amount and presence of solid matter does not affect EC substantially.

The change of concentration with time (Berner, 1971, p. 26) may
be derived from Fick's laws of diffusion and be described by

dc/dt = DX(CS - 0)/1 (3.1)

where A is the total surface area of material being dissolved per
unit volume of solvent, € is the non~equilibrated concentration in the

rapidly mixed solution, CS is the concentration at the surface of the
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Table 3.1. Equilibrium EC (umhos em™ 1 @ 25°C) values of selected
mixtures (unfiltered) and solutions (filtered or centri-

fuged) .

Sample Number N2 1qb 40¢ cd

G9F1 (1:99) 63 85.5 86 62
G9F1 (1:9) 277 300 290 250
G9F1 (1:4) 520 480 460 452
G9G1 (1:99) 132 161 148 135
G9G1 (1:9) 708 713 681 720
G9G1 (1:4) 1490 1440 1280 1510
Gl1Cl (1:99 440 443 430 448
G11cl (1:9) 3310 3100 3100 3385
G1licl (1:4) 6400 6000 5940 6500

N = settled solution, remixed for test.

le = filtered through #1 Qualitative Whattman paper.

€40 = filtered through #40 Ashless Whattman paper.

dC = centrifuged at 4500 rpm and 5 cm radius for 5 minutes.

dissolving mineral minus the equilibrium solubility, and 1 is the
thickness of a layer which is formed near the dissolving surface if
the solution is not quiescent. This equation (3.1) shows that the
rate of dissolution increases with increase in surface area of the sol-
vent. Hence, as particle size decreases the surface area per unit
volume increases and, therefore, at least initially, finer material
should dissolve faster than coarser material.

Figures 3.2a and 3.2b describe the dissolution paths of a silty
shale (number U5D14A) and a gravelly sandy alluvium (number G8G1l) in

distilled water. Both samples were individually sieved into 1 phi in-
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Figure 3.2a. Dissolution kinetics of a shale-rich sample (U5D1A,
1:99) by size groups.
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Glossary of Symbols
Symbol No. Size
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size groups.
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terval size units. It was observed for each of the 1 phi size groups
of sample U5D1A that the rate of decrease of particle size with sieving
time was very high. The derived particles of this sample were essen-
tially aggregates of shale and silty particles. These aggregates also
broke down very fast (< 30 min) during shaking in the subaqueous en-

vironment. Hence, the 1 phi interval size distribution, acquired after

5 min of sieving, must be regarded as artificial. Certainly, because
of the fast subaqueous breakdown of the aggregates it is only meaning-
ful to regard the first few minutes of the dissolution experiment. The
1 phi size group curves of Figure 3.2a do not show an increase in
dissolution rate with decrease of particle size. The same is true for
Figure 3.2b. The discrepancy between theory and measurement is most
probably a result of the use of non-pure solids comprised of mineral
aggregates.

The effect of turbulence on the magnitude of the electrical con-
ductance is directly deduced from equation 3.1, where 1 {is the
thickness of a layer surrounding a dissolving particle. Because 1 is
by definition inversely proportional to the extent of mixing (i.e., to
the magnitude of turbulence) then dC/dt increases as turbulence in-
creases.

Table 3.2 summarizes EC ve time data for samples U5S5D1A and G8G1
for 1:9 and 1:99 sediment:water ratios. The EC measurement for a given
sediment:water ratio applies to the EC of a particular shaking time of
a subsample undergoing a given amount of turbulence. Turbulence must
decrease as the total mixture volume increases in a given container.
This is due to the increase in burial of part of the sediment (which,
therefore, progressively experiences less turbulence) as its amount in-
creases. The results of these experiments (Table 3.2) do not demon~

strate the effect of turbulence. It is inferred that the heterogeneous
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Table 3.2. EC (umhos cm—1 @ 25°C) values of aqueous mixtures at vary-
ing levels of turbulent mixing.2

Weight

Sample Number (g) EC (umhos cm_1 @ 25°C) Values
- - = =~ =~ <~ C(Contact Time: 10 130 218 483 690
G8G1 (1:9) 5 2190 2820 2920 3060 3100
10 1940 2780 2860 2980 3000
20 2210 2820 2900 3005 3040
40 980 1840 2240 2620 2760
- - ~ =~ - - (Contact Time: 14 54 “159 894
G8G1 (1:99) 0.5 553 739 801 316
1.0 563 737 773 775
2.0 525 722 830 857
4.0 253 485 652 712
- =~ = ~- - =~ Contact Time: 14 31 78 367
U5SD1A (1:9) 5 1110 1238 1350 1320
10 880 1055 1205 1295
20 940 1050 1320 1330
49 361 560 735 1045
- = = - =~ ~ Contact Time: 16 43 114 1894
U5Dp1A (1:99) 0.5 120 13.7 150.5 184
1.0 ? 170.5 212 226
2.0 ? 183 194 210
4.0 ? 246 322 341

®Note: The following table summarizes the magnitude (qualitative)
of turbulent mixing for 1:99 and 1:9 sediment:iwater ratios.

Weight of Sample

(g) Particle Movement

0.5 particles saltate and suspend
1.0 particles move fast on "bed"
2.0 particles move slowly on 'bed"
4.0 coarse particles stagnant, some

fines are in suspension
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composition of these sediments precludes the determination of the
turbulence effect.

The ionic strength of a solution must increase as more solid
matter is added to it unless saturation (i.e., equilibrium) is ob-
tained. Conversely, as the sediment:water ratio decreases so must the
ionic strength of the solution decrease for ionic activities below
saturation. The plots of EC ¢ mixing time shown in Figure 3.l1la and
Figure 3.1b indeed show that at any given mixing time the EC, and hence
the ionic strength of the mixture of a given sample, increases as the
sediment:water ratio increases. For example, after 24 hours of mixing
the EC in umho en b at 25°C is 300 and 40 for sediment:water ratios of
1:9 and 1:99 of sample G7Al; the respective EC values for sample
G10XCl are 70 and 20.

The following discussion excludes highly concentrated solutions
(e.g., G8Bl and Gl1Cl in Figure 3,la) that approach saturation with re-
spect to any of the major dissolving minerals. The data of Table Al of
the Appendix confirm the general statement that the mixtures of many
surficial alluvial and shale samples of EC larger than about 2 mho cm“1
approach saturation with respect to gypsum, the least soluble among
the major dissolving minerals (see, for example, the calculations in
Table A4 of the Appendix)., This solubility is approached whenever

2- -2

(ca®hy (50,77 = 2.5. 1075 M2 1

Using the regression equation of Figure 3.3 to solve for the TDS
(mg 171) values of the 1:9 and the 1:99 mixtures of samples G7Al and

G7XCl, we arrive at 11 (TDS Y/ (DS, ) = 11 (21.0)/(201.0) = 1.15

1:99 1:9

and ll(TDsl.gg)/(TDsl-g) = 11(9.65)/39.3 = 2.70, respectively. The

multiplier is used to account for the eleven-fold dilution. The above
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1'1 Line

w
A

Llog (TDS), mg 1!

Log (TDS) = -0.47413+1.1212 Log (EC)
2= 0.94

24 S.E =102

L T i ¥
2 2.5 3 3.5 4 4.5
Log (EC) . mho cm—'@25°C

-
-]

Figure 3.3. Total dissolved solids (TDS, in mg l_l) concentration de-

pendence on electrical conductance (EC).
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calculated ratios are larger than unity. This might imply incorrectly
that saturation with respect to a major dissolving mineral is attained
at 1:9 mixtures. These larger~than-unity ratios therefore prove that
there is a dissolution limiting phenomenon which is more effective at
larger sediment:water ratios. A discussion of such a phenomeﬁon fol-

lows in section 3.3.
3.2 Specific Ion Data

The concentration of specific ions extracted from or in contact
with geologic materials depends on temperature and pressure, as dis-
cussed previously, and on the nature of the dissolved matter and that
of the solvent. An example of a solvent effect is the increased solu-
bility of most minerals when contacting an acidic solution. The 'com-

mon ion' and 'salt ion' phenomena are solute effects.

The rate at which mineral dissolution takes place is governed by
kinetic principles as outlined in section 3.1. When a sediment:water
mixture is filtered before approaching equilibrium it will contain less
soluble matter than it ultimately would have contained. Equilibrium is
useful as a concept denoting the kinetic equivalence of forward (Vf)
and backward (Vb) rates of reaction such as dissolution and precipita-
tion during solid-solution contact and also to denote that the solid
is completely dissolved (Vf = Vb = 0). However, true equilibrium for
dissolution, hydrolysis and redox reactions in nature is rarely
achieved (Morgan, 1967). For instance, partial equilibrium is attained
when all the gypsum and calcite have dissolved from a soil contributing
mostly Ca2+, 8042_ and HC031‘ to a solution with which it is in con~

tact. This is not a total equilibrium because other minerals such as

silicates and oxides have not as yet approached equilibrium with the
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aqueous environment. None of the dissolution processes investigated
in this study are considered to have attained true equilibrium.

Sample G8Gl, a sandy-pebbly thin crust of the alluvial bank of
West Salt Creek was diluted at 1:1, 1:9 and 1:99 sediment :water ratios.
Electrical conductance readings were taken after 1/3, 1, 3, 9 and 25
hours of contact time. These mixtures were filtered and were subse-
quently analyzed for the major ion species. These included Ca2+, Nal+,
Mg2+, S0 2", HCO 1- and Cc11~ (Table 3.3). Note that wvarious dilute

4 3

solutions contained less than 0.1 meq 17Y of HCO .

3
The data reported in Table 3.3 show that the relative abundance

calt

of several specific ions changes with contact time. tends to in-

1+ and Mg2+ decrease in relative abundance with in-~

crease while Na
crease of contact time of the 1:9 and 1:99 mixtures. The major ionic
species point to a fast dissolving soluble mineral phase of CaSO4 .
2H20, hydrated NaZSO4 and hydrated MgSOa. The dissolution of these
minerals is apparently governed by a rate limiting process which
accounts for the faster dissolution of the more soluble minerals. This
process might be identical to the one which accounts for the dilution

effect (see section 3.2). The changes in abundance of specific

cations with contact time is not realized in the 1:1 derived solutions.

The changes of specific ion abundance with contact time account
for the shift from a Na—Ca—Mg—SO4 to a predominantly Ca—SO4 type water

with increase of the residence time of these sediments in their

aqueous environment. Most of this change apparently takes place during
the first hour of contact. The corresponding anionic change is too
small to be considered herein. Whatever these total changes might be,
those summarized in Table 3.3 incorporate the effects of inherent
variability of dissolution rates among subsamples of the same material
as well as random variations of soluble mineral content (see section

2.2a).
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Specific ion information on the solutions of the 1 phi size groups
(Table 3.4) of samples USD1A and G8Gl (see Figures 3.2a,b) may explain
part of the inconsistency between available relative magnitudes of
dissolution rates and those derived from theory. Referring
back to Figure 3.2b, the 8-16 mm sample denoted by 1 has a
very high dinitial dissolution rate; it 1is comprised of the
largest particles but dissolves faster than all other samples
coarser than 0.125 mm. This sample, comprised of two granule aggre-
gates, contains a higher soluble mineral content than the finer par-

ticles do. If availability to dissolve (i.e., availability of soluble

minerals) increases as soluble mineral content increases it explains
the dissolution behavior of the two granules. However, this assumption
is certainly not universal. For instance, the initial dissolution
rates of the size groups denoted by 2, 3 and 4 of Figure 3.2b are

small but their relative soluble mineral content is high. An inspec-
tion of the ratio lOO[Nal+]/ZC§+ may, however, explain part of this
behavior. In decreasing particle size (excluding the siltstone par-
ticle) this abundance ratio (derived from the data in Table 3.4) is
5.9, 5.1, 8.2, 9.6, 10.7, 7.3, 7.3, 5.9 and 6.7 percent. Thus, number
5 (0.5-1 mm) might initially dissolve fast due to a relatively high
NaZSO4 hydrate content (see Chapter 3.3) even though the total soluble
mineral content is the smallest of all. The generalization that avail-
ability for immediate dissolution is related to high soluble mineral
contents applies to all the samples of Figure 3.2b except numbers 2, 3
and 4. A similar situation is also encountered in the shale sample of

Figure 3.2a.
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Table Al of the Appendix summarizes 1:1, 1:9, 1:99 and some 1:4
and 1:999 sediment:water ratio data of 52 different samples of surfi-
cial shale and alluvium. The measured EC, as well as the calculated
TDS concentration are supplied in addition to the specific ion concen~
trations. In general, most of the cationic analyses are more complete
than the anionic ones; the sum of the former in megq 171 is larger than
that of the latter.

Several of the solutions of Table Al are saturated with respect to
gypsum. The following discussion will, therefore, apply to lower con-
centrations of dissolved species for which [Ca2+] [8042—] <
2.5 ¢ 10'5 M2 1_2 unless stated otherwise. Analyses are also excluded
for which the stochiometric concentration of Ca2+, Mg2+, Nal+, 8042~
and HC031° is smaller than 0.1 megq 1_l or those for which no specific
ion concentration decrease is attained upon dilution.

The specific ion concentrations tabulated in Table Al consistently
increase with increase in sediment:water ratio. This is expected for
unsaturated solutions to which potentially soluble minerals are added.
It is noteworthy that upon dilution, the decrease in specific ion con-
centration is not identical for all major ions. This variability is
diagrammatically shown in Figure 3.4 where the mean 1:99/1:9 concentra-
tion ratio is shown for the five major dissolved species of solutions
undersaturated with respect to gypsum. This ratio should be 9/99 =
1/11 = 0.09 for every ion due to the eleven-fold dilution. However,
the decrease in ionic concentration is roughly 1/6, 1/3.5 and 1/2.5 of
the expected wvalues for HCO l_, calt and for the Na1+, Mg2+ and 8042‘

3
group, respectively. Thus, two and one-half times Nal+, Mg2+ or 5042",
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three and one~half times Ca?t and six times higher HCO31” concentra-

tions are attained upon the eleven-fold dilution. These additional
amounts of solutes have their source in the sediments although bicar-
bonate may be partly derived from the atmosphere. It may therefore be
inferred that under concentrated conditions the dissolution of sodium
and magnesium sulfates is less inhibited than that of gypsum, calcite

and possibly dolomite.

Similarly, it was shown earlier that these more soluble sulfates
dissolve faster than gypsiferous and carbonate minerals. An explana-~
tion for the faster and more complete dissolution of highly soluble

sulfates is attempted in the following discussion.

3.3 Discussion

Solutions that are in partial equilibrium or that are approaching
true equilibrium contain concentrations of specific ions which can be
computed from equilibrium theory. Therefore, the concentration of the
major dissolved solids will remain comnstant upon dilution of a concen-
trated solution as long as the dissolving minerals are present. When
a solution is undersaturated with respect to the minerals contributing
its major dissolved constituents it is surmised that these minerals
have been completely dissolved. If, however, the concentration of the
dissolved matter decreases upon dilution less than does the dilution
factor then there must be an additional source for the dissolved
matter, a source which had not been exhausted under conditions of

higher ionic strengths.

2+ 2-

As an example consider a solution for which (cafree) (SO4 free)

7 2 -2

100 M1 and [Caz+ M l—l. Such a solution should
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contain 10--4 M l-l of [Ca2+ l] upon a ten—-fold dilution. The

tota

24 . .
] / [Ca total] is unity for this

final initial

2+

ratio 10[Ca total

example. Ratios smaller than unity imply accelerated precipitation
upon dilution. Ratios larger than unity prove that there is an incom-
plete exhaustion of the source of major dissolved constituents at
higher jionic strengths.

Tables Al and A2 of the Appendix list the 11(TDS )/(TDSl_

1:99 9)
ratios for all the samples. It is most noticeable that the ratio is
larger than unity for 95 percent of the samples. Therefore, it is
inferred that most of the studied sediment samples contain salts that
continuously dissolve upon dilution, even under conditions of under-
saturation with respect to gypsum.

From a comparison with Reitemeier's (1946) study it is suggested
that although ion exchange processes may very well be operable in the
studied mixtures, they do not explain the results. Some of the studied
solutions are saturated with respect to calcite. Whenever this situa-
tion arises it is expected that calcium and bicarbonate concentrations
would not decrease substantially upon dilution. Calcite dissolution
and bicarbonate dissociation, as well as dissolutioﬁ of gypsum and
other minerals are considered in the calculations of Appendix Table A4.
The calculations for sample U5E3C at different concentrations of sedi-
ment show that one of the Ca2+ and HCO31_ sources 1is carbonate minerals.
This source cannot, however, account for the increased dissolution of
these ions in solutions originally undersaturated with respect to cal-
1+ 2+

cite, nor can it account for the continued dissolution of Na™ , Mg

and 5042— upon dilution.
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An explanation of the dilution effect is based on a hypothesis of
particle coating. It may be postulated that the studied sediments com-
prise particles of all sizes which are surrounded with coatings of
slightly soluble minerals. These might be siliceous or ferric oxide
coatings, the latter being very common in arid environments. It may
further be postulated that particle coating takes place contemporane-
ously with the precipitation of evaporites. During the continuous
concentration of the soil solution due to evaporation, the slightly
soluble minerals are the first to precipitate out of the solution.
This precipitation continues indefinitely during the concentration
process. Therefore, a slightly soluble mineral such as gypsum is ex-
pected to be surrounded by a more complete and thicker coating than
that on more soluble minerals such as sodium and magnesium sulfates,
which begin to precipitate (when the solution is initially under-
saturated with them) at a later stage. Upon contact with water the
most soluble minerals, least coated with the slightly soluble ferric
oxides, will dissolve rapidly and more completely than, say, gypsum or
calcite. Moreover, if the coating is thick enough some of the par-
ticles comprised of gypsum or calcite (and to a lesser extent, those
of more soluble minerals) may not, in fact, dissolve in the soil solu-
tion. Although such a solution amy be saturated with respect to a
ferric oxide, it may be undersaturated with respect to gypsum.

In conclusion, it is evident that soluble minerals continuously
dissolve upon addition of water even under conditions that at first
imply that these minerals are already completely dissolved. Particle
coating with slightly soluble minerals provides a possible explanation

for this dilution phenomenon.



CHAPTER 4

DISTRIBUTION OF SOLUBLE MINERAL CONTENT
IN SURFICIAL DEPOSITS
The amount and type of minerals present in sediments is a func-
tion of storage, leaching and accumulation processes. The various
gsources of soluble minerals are rainfall, which may only account for
small amounts due to its relative purity (Carroll, 1962), leaching
from overlying layers and upward solute transport as well as in situ
soluble matter.
4.1 Soluble Mineral Content of Surficial
Mancos Shale and Alluvium
The Mancos Shale is a deposit that has been in contact with sea-
water. Upon erosion and mixing with aqueous solutions (overland and
channelized flow) it is therefore expected that this formation will
yield appreciable amounts of common (19°/° chlorinity; pH = 8.1) ions.

In decreasing order of molal abundance, Nal+, Mg2+, SO 2- Lt

HCO31— and COBZ“ make up practically all of the dissolved mass of sea-

water (Garrels and Thompson, 1962). These ions should be readily
available in Mancos Shale. The alluvium is, however, derived from
particulate matter originally transported by channelized flow which,
upon contact with the sediment, depleted it of much of its potentially
soluble minerals.

The mean soluble mineral content of Mancos Shale derived from

hillslopes is 1.99 percent. The mean for terraces in North Miller
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Creek, West Salt Creek and Mesa Creek is 0.62, 0.30 and 1.69 percent,
respectively (Table 4.1), The surficial shale deposits contain more
soluble minerals and are therefore a greater potential salinity hazard.
With 95 percent confidence limits the mean soluble mineral content of
the shale is significantly larger than that of North Miller Creek and
West Salt Creek surficial terrace alluvium. It is noteworthy that the
soluble mineral content is largest for Mesa Creek and lowest for West
Salt Creek terraces. The North Miller Creek alluvium is richer in
soluble minerals than the alluvium of the wide West Salt Creek valley
due to the physical closeness to the source, i.e., Mancos Shale. In-
deed, the alluvium in West Salt Creek consistently contains low soluble
mineral contents except where it approaches Mancos bedrock outcrops,
such as in section G8 and upstream, where it encroaches close to the
marine shales of the Mesa Verde Group (section Gl1l, see Table A2 of the
Appendix).

In fact, the influence of distance to Mancos Shale is well demon-
strated in Leach Creek. Section G2 is located in the lower basin where
the channel is gullied about 1 m but meanders in a narrow valley be~
tween Mancos slopes. For this section the soluble mineral content of
the terrace and bed materials is exceptionally high, 2.21 and 3.67 per~
cent, respectively (Table A2). The soluble mineral content of Mesa
Creek alluvium is also rather high and it is postulated that this re-
sults from the proximity to bedrock.

The dominant soluble mineral in Mancos Shale is gypsum but ap-
preciable amounts of sodium and magnesium hydrated sulfates and some
carbonates are present. The clorides are 1eachea, which is character-

istic of other saline shales throughout the world (Billings and



54

*ATeoATIo2dsSx /Y pue %87°Q
‘9T€ 0 @1 u pue o ‘Y Y3 ‘@sayl [urpnyoxd {S3ITS g9 POIDSIJB-SODUBK Om3 BpnToul soydumes Jrem mmw:&v

*A1oat1309ds31 060y PUB 1RZ°9 03 28UBYD UOTILTASP PIEPPUEIS DUE UBDW SYI BNTBA U0 INOYITM

*SRWIH BSO PUEB IBTTTN Ylioy Eonmg

*ISNID 37ES 10 FDUAISIOTIFO=H {BTI33IBU poq=g
fleTIelBw pa3lses SSEW=Y ‘TTeM ATIn3=M (2dOTSITTY=S {oTeYS SoduEi=} :aomol=] $adddn= ¢odvixai=y muw:uuuom

g5 6 8 #1 u
J0£9°T  0EY°0  605°0  Z29°0 o
180°Z  OEI'T  %EL°T  069°1 X
g ) I i
- = = =~ YOBAD BSOH - ~ -~ - = =
09 12 €1 %2 Y 9z L u
€I8°0  ¥%$°0  Z9S°T 909°T T6T'0 9610 £%0°0 o
§99°0  60S°0 SEE'T pb00°T £ZE'C  962°0 IYI'0 X
q ) v ) %) I 10
- - = = = = ~¥921) ITe§ ISBY  ~ -~ =~ - =~ -~ - - -
6 € 1z €1 £T 01 6 £ L 1 A4 ¢ u
TOE'0  0€0°0 §2S°0  _%88°%T  ¥E9°0 669°0 OZ0'T ¥56°0 Sy9°0  6LZ°0 8LL°0  990°0 0

£86°T £0L°0 9€6°C  ,860°0T %£6°0 [90°T 8TI"T L£0'T 069°0 094°0 029'0 9810 X

pwz Amzo g e MAT MO v Yo MR MRAOO L 1o

- = = - = = - - e e~ - - 993D XPTTTW YIAON - = = ~ = = e e e e e e e e — -

g’ SY@31]3 BSIY puR 3TeG 189K “ISTTTW Y3xoN Ut s3tun Burpdues jo (u) sardues
Jo zoqunu ay3 pue ‘(D) UOTIRTADP PIBPUBIS SIT ‘(X) IUSIUO0D TeILUTW 2TqnT0s ueaw jo Lieuwmng **4 a1qe]



55

Williams, 1967). In the alluvium the dominant soluble minerals are
calcite, dolomite (x~-ray diffraction studies by L. Whittig, personal
comm., 1976) and gypsum. The relative abundance of the sulfate ion is
larger in the Mancos Shale samples from North Miller Creek than in

the West Salt Creek alluvium; the mean 5042_/ZCiZ concentration

ratios are 3.09 and 0.46, respectively. Figure 4.1 shows the 95 per-

, , i+ z+
cent confidence interval on the mean Na /ZCi and on the

(Nal

+
+ Mg2+) / ZCiZ+ concentration ratios for Mancos Shale and for
alluvial samples. The former contains significantly and appreciably

higher contents of highly soluble sulfate minerals.
4.2 Distribution of Soluble Minerals

4.2a Salt Buildup in Crusts

So0il crusts form due to cementing of materials on the soil sur-~
" face. The cement may be a ferric oxide, but more commonly it is cal-
careous. Encrustation may also take place during drying due to ad-~
herence of fine silt and clay particles to the rest of the soil mass.
When soil water is highly concentrated with dissolved constituents,
these will precipitate from it during evaporation after being trans-
ported to the surface by capillary action (or, possibly, due to thermal
gradients and their effect on diffusion). These precipitates will
cement the surface layer to form a saline crust.

Materials rich in soluble minerals should develop saline crusts
under proper conditions. An example is the efflorescent crusts de-
veloped on the bed of North Miller Creek. Because this is a bedrock

channel incised in the slightly permeable Mancos Shale formation, most
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of the overland flow reaching the channel does not percolate into the
bed and bed materials dry primarily by evaporation rather than by in~
filtration thereby forming very saline crusts. Thus, the mean salt
content of bed crusts developed in North Miller Creek is 10.10 percent
compared with 0.94 percent in the bed proper (see Table 4.1).

The crusts of the lower and of the upper Mancos Shale gully walls
of North Miller Creek contain 1.07 and 0.76 percent soluble minerals.
The lower and upper walls beneath the crusts contain 0.63 and 0.69 per-
cent respectively (Table 4.1). The crusts are slightly richer in
soluble minerals than their source (i.e., thé wall) but the difference
is not statistically significant. 1t is believed that the apparent
difference between the upper and lower walls is due to the low moisture
content of the upper wall which prevents formation of saline crusts.
However, the lower wall comes in contact with water frequently enough
that transport of solutes to the outer surface is more pronounced than
in the upper wall.

Where permeability is very high the upper part of the surficial
materials will be thovroughly leached. This applies to the coarse allu-
vial terraces of North Miller, West Salt and Leach Creeks. The mean
soluble mineral content of the crusts is significantly lower (p<0.05)
than that of underlying materials (Table 4.1). No significant differ-
ence among the means of salt contents of the crust and that of under-
lying materials exists for the permeable alluvial bed materials, in-
cluding fresh bank material deposited on the channel bed, where leaching
and evaporation are both active. However, a mean soluble mineral con-
tent comparison between the surface léyer and material immediately

underlying shows the crust to be richer in soluble minerals. This
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difference was found to be significant (p < 0.05 with a 95 percent con-
fidence interval) for the bed of Mesa Creek (see the following section).
This difference suggests that solutes are transferred to the saline
crust surface primarily from the soil layer immediately underlying the
crust.

The preceding analysis shows that soil crust salinity increases as
the permeability decreases and as the soluble mineral content of the
underlying material increases. Much of the soil buildup in saline
crusts appears to originate from the material in immediate contact with
them.
4.2b Variation of Soluble Mineral
Content with Depth

Figures 4.2 and 4.3 show the variations in soluble mineral content
with depth in bed materials as determined from 1:99 mixtures. The mean
salt contents for the 6-, 15- and 50-cm depths in the bed of section M3
of Mesa Creek (Figure 4.2) are 1.13, 0.91 and 1.46 percent, respec—
tively; these means are significantly different (p < 0.025). With in-
crease in depth the mean salt content increases to an average maximun
5.6 percent at a depth of 2.8 m. The bed material in section M3 is
coarse alluvium that overlies saturated and deeply weathered Mancos
Shale at a depth of 2.5 m. Because the alluvial fill of this channel
is shallow it is expected that a strong gradient of salt content with
depth would appear in the bed material. The effect of solute concentra-
tion due to increased evaporation at the surface is also well defined
in this section, where the crust is somewhat enriched in comparison with

the layer immediately beneath it.
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The increase in soluble mineral content with depth is not noted
in the bed of West Salt Creek (Figure 4.3). Although the mean content
of the crust is higher than that at any other depth the difference is
not significant (i.e., F not significant in analysis of variance). An
explanation for the constant soluble mineral content in these bed
materials is the general sterility of West Salt Creek alluvium and its
remoteness from contamination by ground water which was formerly in con-
tact with Mancos Shale. Samples G8A, G8B and G8C were taken from the
bed of West Salt Creek where the channel abutts against Mancos Shale
(see Table A2)., Moreover, the alluvial fill of the present channel is
very shallow at this section. Therefore, the soluble mineral content
of the bed at section G8 increases with depth as at the M3 section.
These data are plotted in Figure 4.3.

Figures 4.4 and 4.5 show the variability in soluble mineral content
with depth for the Mesa Creek terrace and gully wall and for the various
gully walls of North Miller Creek. No trend is apparent in these de-
posits. Although there is no statistically significant change in soluble
mineral content with depth in the sterile terraces of West Salt and
North Miller Creeks, an increase with depth appears to take place. The
significance of this trend, as shown in Figure 4.6, is obscured by the
general large variability in salt content throughout the deposits.

In summary, soluble mineral content increases with depth in shallow
alluvium overlying Mancos Shale. A uniform soluble mineral content
with depth characterizes deep and leached bed materials and terrace de-

posits.
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4.2¢ The Soluble Mineral Content
of Sampling Units

Differences in soluble mineral content between sampling units are
marked by the generally large inherent variability of this parameter.

In other words, the variance within any group defining, say, a terrace,
is larger than the variance in soluble mineral content between a terrace
and banks of Mancos Shale. The extent of this variability is shown in
Table 4.1, in which a summary is given of the mean and the standard de-
viation about the mean soluble mineral content of sampling units.

An analysis of variance of the mean soluble mineral content of all
sampling units (excluding Mancos Shale slopes) in West Salt Creek re-
veals that a difference (p < 0.05) between them does exist. This dif-
ference, however, is not significant at a 95 percent confidence inter-
val about the means. In this connection it should be noted that the
standard deviation of the compared property must be approximately equal
in all groups (i.e., sampling units) undergoing an analysis of variance.
Note, however, that the soluble mineral content of the terrace crusts
has a considerably smaller standard deviation than that of other groups.
Deleting the data of terrace crusts and mass wasted materials ('A' of
Table 4.1, with a very large standard deviation) does not alter the
situation. It is therefore inferred that the variability within an
alluvial unit is almost as large or larger than it is between units.
This conclusion also applies to North Miller Creek (significant F with
p < 0.05) as well as to the alluvium of Mesa Creek. It may be added
that the analysis of variance for the Mesa Creek units showed no signi-

ficant difference whatsoever (i.e., F not significant) in salt content,
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Notwithstanding the large inherent variability in soluble mineral
content, one significant difference (at a confidence interval about
the means of 95 percent) stands out clearly. This is between the
soluble mineral content of alluvial materials in West Salt and North
Miller Creeks and the Mancos Shale walls, bed and slopes. These slopes
are significantly richer in soluble minerals than any other sampling
unit excluding the efflorescent crusts. Also, the lower Mancos walls
and bed material of North Miller Creek contain more soluble minerals
than the overlying terraces (though only at a confidence interval
slightly less than 90 percent). Figure 4.7 shows these differences in
a schematic diagram.

Mancos Shale is the main source of soluble minerals. The shale
contains approximately 2 percent soluble minerals in 1:99 mixtures. It
is conceivable, however, that the surficial part of Mancos Shale is
more leached than the deeper layers. For instance, Leythaeuser (1973)
has shown that surficial Mancos Shale (50 cm depth) contains 0.9 per-
cent organic carbon, which increases to 1.05 percent for underlying
layers; the soluble organic matter component (in mg per gram organic
carbon) is 16.5 at a depth of 50 cm and for underlying layers it in-
creases to a value of 30.0.

4.3 TFunctional Relationship between Inorganic Water Quality

and Soluble Mineral Content of Bed Materials

Texture and structure of fluvial sediments are causally related to
hydraulics, channel form and channel shape (Schumm, 1960; Karcz, 1968;
Reineck and Singh, 1975). This means that information on the shape,

form and hydrologic regime of a channel may be acquired via the
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alluvium which it deposits. Similarly, a hypothesis can be advanced
that a cause and effect relationship exists between the salinity of
runoff and the soluble mineral content of channel deposits. Specifi-
cally, it is proposed that salt content of bed materials is an indica-
tion of the water quality of storm runoff.

Various studies such as those of Davis (1961), Hembree and Rain-~
water (1961) and Miller (1961) have shown that water quality of low
flows is strongly correlated with the lithology and geochemistry of the
country rock. Feth, Robenson and Polzer (1964) also attribute much
significance to the role of climate in weathering and, hence, to its
effect on water quality of low flows. The chemical quality of storm
runoff is, however, primarily influenced by the availability of soluble
minerals on the surface and in crusts. This dependency may be more
easily studied in ephemeral channels of semiarid and arid regions where
the overland flow component of the hydrograph may be separated from
the small low-flow contributions due to the peakedness o¢f most flow
events. Ponce (1975) has shown that there is a high correlation (r =
0.955) between the 1:1 EC of the crust (0-2.5 mm) and the EC of runoff
produced on hillslope segments by simulated rainfall on Mancos Shale
and related formations. His study also showed a generally high correla-
tion between specific ion concentrations in 1:1 crust extracts and
those in overland flow.

Grab samples of water were collected in sections G7 through Gl1 on
July 10, 1975, during a small runoff event in West Salt Creek. The
center of the storm appeared to have been located due west of the G10X
site (see Figure 2.3 for this location). High intensity precipitation

lasted for 40 minutes and it produced a maximum estimated discharge of
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0.085 m3 sec_l (3 ft3 sec_l) at the Gl0X section and a maximum re-

corded discharge of 0.920 m3 sec-l (32.4 ft3 sec_l) at the gaging sta-

tion (section G7).

The chemical quality of the collected water samples is summarized
in Table A5 of the Appendix. The table also includes chemical analyses
of samples collected at the gaging station (G7) and one at section Gl1
during low flow produced by a small storm on July 9, 1975. A list of
the mean 1:99 EC of bed material crust mixtures at each site is summar-
ized in Table 4.2 together with the EC of the water samples. A com-
parison between the EC of the bed material curst mixtures and that of
the runoff reveals a difference between sections G7, G9, G100 and Gl0X
and sections G8 and Gl1. The former group of sediments is low in
soluble mineral content (0.6 percent) and includes channel reaches in
the center of the alluvial wvalley. Both G8 and Gl1l sections are close
to Mancos and Mesa Verde shales, respectively, and this proximity is
manifested by the‘occurrence of saline seeps and the generally high salt
content (1.8 percent) of the bed materials. As the storm runoff passed
through the reaches characterized by saline bed materials its quality
definitely deteriorated.

The Nal+/ZCiZ+ ratios listed in Table 4.2 indicate the effect of
soluble minerals in bed materials on the ionic composition of the storm
runoff. As the runoff passed sections Gll and G8 it dissolved sodium
and magnesium sulfates; it also mixed with the saline seeps, which con-
tain high concentrations of Nal+, Mg2+ and 8042" (see the chemical
composition of the seep at section G8 in Table A5 of the Appendix). 1In
this connection it might be noted that all the water samples described

in Table A5 are saturated or supersaturated with respect to calcite.
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Moreover, the samples collected in sections G7, G8 and Gl1 (excluding
the first G7 sample) are also saturated or supersaturated with respect
to gypsum. It is therefore inferred that West Salt Creek transported
incompletely dissolved soluble minerals (as its sediment load) in these
reaches. It must be recognized, however, that the contribution of
solutes from such saline reaches cannot be separated at this stage to
that part directly contributed by the flowing seep and to the saline bed
materials contaminated by earlier seep flows. A distinction between
point and diffuse sources of salts is therefore not warranted in thisg
context.

In summary, it may be concluded that water quality of storm runoff
in ephemeral semiarid channels is affected substantially by the salt
content of bed and lower gully wall crust materials. This conclusion is
based on a single low magnitude, high frequency event in ome channel.
Additional information is clearly needed to substantiate this phenomenon

and to determine its significance for flow events of higher magnitude.



CHAPTER 5

CONCLUSIONS

5.1 Summary and Conclusions

Specific electrical conductance (EC) was found to be a reliable
estimate of the total dissolved solids (TDS) concentration of aqueous
solutions derived from mixtures of distilled water and alluvium and
Mancos Shale samples collected in the Upper Colorado River Basin. The
effect of solids (i.e., no filtration) on the EC of such mixtures
appeared negligible and, therefore, fast and low cost determinations
of the EC of several hundred unfiltered mixtures of samples of bed,
bank, terrace and slope materials provided information on the TDS con-
centration of the mixtures. Dissolution continued with contact time
but reached an asymptotic value which represents partial equilibrium.
The initial dissolution rate of soluble compounds in surficial Mancos
Shale and alluvium generally increased as particle size decreased but
particle size alone or increased turbulence did not exert an influence
on the equilibrated concentration of the mixtures.

An increase in sediment concentration (i.e., in the sediment:water
ratio) was followed by an increase in the TDS concentration of the mix-
tures. The source of additional dissolved minerals is the soluble
matter in the added sediment. From the change in specific ion concen-
trations with contact time it appears that sodium and magnesium hydrated
sulfates dissolve faster than gypsum or calcite. Also, it is evident

that in most of the samples, not all potentially soluble minerals
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dissolved in mixtures containing high (100,000 ppm) sediment concentra-
tions. Dissolution of the samples was more complete as sediment con-—
centration decreased. The main added dissolved constituents were Calt
and HCO31_.

The dilution effect mentioned above also takes place in 1:9 mix-
tures undersaturated with respect to both gypsum and>calcite as shown in
the calculations of Table A4 of the Appendix. Hence, there exists a
dissolution limiting phenomenon which probably takes place due to the
coating of particles by slightly soluble minerals such as ferric
oxides. This coating is assumed to be less complete and thinner on
highly soluble mineral particles (such as NaySO, - 10H20 and MgSQ,; -
7Hy)0 with solubilities of 4 and 6.4 Normal, respectively) which usually
precipitate later than do gypsum or calcite from a solution undergoing
evaporation.

Surficial alluvium and Mancos Shale were sampled in four basins
located in areas known to contain appreciable diffuse sources of salts.
The basins are underlain in whole or partly by the saline marine Mancos
Shale. The variability in soluble mineral content of the sampled
materials is very large with a range in standard deviation of 0.03 to
14.88. Lower variability is associated with Mancos Shale slope samples
and with crusts of terraces. The large inherent variability in soluble
mineral content masks clear trends of change in this parameter.

Mancos Shale from hillslopes, the source of most of the soluble
minerals in the area, contains an appreciably higher content of soluble
minerals (2 percent) than alluvial samples. The highest salt concen-
trations (10 percent) are found in efflorescent crusts on the bedrock

{(Mancos Shale) bed of North Miller Creek. Soluble minerals also tend
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to accumulate in the upper 5 cm of the Mesa Creek bed, being transported
upward by capillary action from the layer immediately underlying it.
Salt buildup in crusts does not take place in highly permeable alluvial
sediment such as on the bed of West Salt Creek. 1In fact, soluble
minerals are leached from the crusts of terraces of North Miller and
West Salt Creeks. Soluble mineral content increases with depth in
shallow alluvium overlying Mancos Shale. The mean salt content of these
alluvial bed materials and those in the vicinity of saline shale hill-
slopes (e.g., section Gl1) is very high (3-5 percent)., No apparent
trend in soluble mineral content with depth takes place in the generally
sterile alluvium of terraces or in the bed of West Salt Creek.

The finding that thick alluvial deposits have low salt contents
prompted sampling of alluvium retained by stockponds. Samples from
stockponds (all G1C and G4 data summarized in Table A2 of the Appendix)
were analyzed for soluble mineral content. Site Gl is located in the
middle Leach Creek Basin (see Figure 2.3) where a stockpond receives
runoff from Mancos Shale terrain that is appreciably covered by sandy
s0il and coarse alluvium capping pediment benches. The data from Table
A2 show that the stockpond sediment (BIC samples) is not more saline
than the bed materials in the upstream channel reach (G1B samples). The
sediment which accumulated in the Crow  Stockpond (site G4) does con-
tain high amounts of soluble minerals. However, this salinity is
attributed to the highly dissected Mancos Shale basin above this
sediment-retaining structure. Therefore, it may be concluded that ag-
gradation or sedimentation does not necessarily imply a high soluble
mineral content in the deposited sediments. In fact, the measured high

salinities of seeps originating downstream from stockponds afford an
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explanation for the relatively low salt content of the retained sedi-
ments. Thus, not only do deep alluvial fills lack high salt content,
but even artificially retained sediments loose much of their soluble
minerals initially during transport and thence by leaching.

Mancos Shale is widely recognized as the largest major source of
salinity in the Upper Colorado River Basin. However, the presence of
a large number of saline seeps, the high salinity of section Gl1l in
West Salt Creek (Table 4.2) as well as the overall high soluble mineral
content of selected samples from the Mesa Verde marine Shales (samples
G20 of Tables Al and A2 of the Appendix) leave little doubt that the
Mesa Verde Formation is also an important contributor of salinity to
the Colorado River. A study of this source is recommended.

Hem (1970) and Lane (1975) have summarized much of the literature
on the relations between water quantity and water quality. In general,
TDS concentration decreases with increase in discharge due to dilution.
However, TDS concentration initially increases on the rising limb of
hydrographs (Miller and Drever, 1977) and especially in runoff from
basins contributing substantial salinity from diffuse sources (Mun-
dorff, 1972). Ponce (1975) has shown that the quality of overland flow
follows a similar pattern. It is fherefore suggested that saline crust
accumulations constitute a major contributing source of salts to the
storm runoff. Analysis of samples from a single low magnitude runoff-
producing storm in West Salt Creek (Table 4.2) substantiates this

hypothesis.
5.2 Implications

The rate of dissoclution of the soluble constituents of Mancos Shale

and alluvium varies considerably. The time required for a sediment:
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water mixture to approach partial chemical equilibrium increases as
sediment concentration increases and as the soluble mineral content of
the mixed sediment decreagses. This time interval ranges from a few
minutes to several days. These results imply that the aqueous composi-
tion of stormwater changes downstream and may become constant over
varying lengths of channel. Runoff from tributaries with a high sus-
pended sediment concentration may very likely be chemically unequili-
brated at the confluence with the main stem of the drainage basin.
Additional soluble minerals will dissolve upon mixing with the more
dilute water of the main stem. This dilution effect certainly applies
to tributary runoff supersaturated or saturated with respect to a major
potentially-soluble mineral that is present in the transported sediment;
it also applies to runoff undersaturated with respect to such minerals
because of the postulated presence of particle coatings.

The yield of dissolved solids from the semiarid drainage basins
of the Upper Colorado River Basin should be greater than that calcu-
lated from EC measurements at gaging stations or from the analysis of
water samples from tributary runoff. The chemical analyses fail to
consider the dilution effect (which might increase the dissolved yield
by as much as 500 percent) while the EC measurements also fail to con-
sider whether the runoff is kinetically equilibrated with the trans-
ported sediment. It may be added that higher solute yields mean that
the rate of chemical denudation is higher. In fact, the ratio of
chemical denudation to denudation by erosion of particulate matter may
therefore increase considerably.

Efflorescent crusts, Mancos Shale slope materials and shallow

alluvium overlying Mancos Shale contain the highest quantities of



77

soluble minerals. Storm flow from bedrock channels in Mancos Shale
terrain and in shallow alluvium should therefore contain very high TDS
concentrations. Mancos Shale should also be the source of sodium-~rich
runoff. These high salt-yielding areas also contribute the highest
sediment yields. The mean sediment yield from ungrazed Badger Wash
basins (Lusby, Reid and Knipe, 1971) is 4700-6100 metric tons/km?/yr
{2000-2600 tons/miz/yr) with a maximum of 38,500 metric tons/kmz/yr
(16,400 tons/miZ/yr) using an average specific weight of 85 pounds/ftB.
These figures are very high in comparison with the mean worldwide
maximum of 3520 metric tons/ka/yr (1500 tons/miz/yr) in semiarid re-~
gions {(Langbein and Schumm, 1958).

One of the objectives of this study is to relate potential yield
of salts of surficial deposits (i.e., their soluble mineral content) to
sediment yield and to channel morphology. Mancos Shale and associated
alluvial materials are gullied throughout the entire Upper Colorado
River Basin. The gullies may have been formed at the end of the 19th
century by climatic changes and/or by overgrazing (Schumm and Hadley,
1957). It is concluded that areas underlain by Mancos Shale and asso-~
ciated shallow alluvial deposits are presently major diffuse sources of
salts and that they contribute significant amounts of both sediment and
solutes at any time but especially when gullied. Therefore, another
recommendation is the need to delineate or map the Mancos Shale
bedrock exposures and associated shallow alluvial areas considered
herein to be major producers of dissolved solids. Such a delineation
would require careful mapping and additional sampling of the saline
materials to determine their salt content, but it would serve to iden-
tify the critical salt-producing areas within the much larger Mancos

Shale outcrop area.
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5.3 Recommendations

The role of moisture conditions on the salt content of alluvium
and weathered bedrock was not determined in this study. The soluble
mineral content of crusts of surficial materials and especially of bed
and lower bank materials is expected to decrease during a precipitation
event and subsequently to increase due to upward capillary movement and
evaporation of soil water. It is suggested that this topic be studied
in detail. The role of aeolian transport of dry saline surficial
deposits may be more difficult to determine but it should not be al-

together neglected.

EC measurements of stream water are inadequate for estimating the
solute contribution from diffuse sources of salinity such as the Price
River or West Salt Creek drainage basins. An analysis of the chemical
quality of water samples is necessary in order to determine the rela-
tionship of EC to TDS concentration. Half of each water sample should
be filtered immediately in order to determine whether the solution had
attained equilibrium. Several of the unfiltered solutions should be
diluted (to the equivalent TDS value of the Colorado River at the time
of sampling) and the additional dissolution taking place should be
studied. Upon addition of distilled water the TDS of the solution may

increase as much as 500 percent, as shown by the 11(TDS 99/TDS

1: 1:9)

dilution ratios of Tables Al and A2 of the Appendix.
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Mixtures of surficial deposits and water undersaturated with re-
spect to gypsum and calcite should be further studied to determine the
mechansim which limits complete dissolution of soluble minerals. X-ray
diffraction studies underway at the University of California at Davis
may throw light on the mineralogic composition and quantities of
particle coatings.

Erosion control in the semiarid Southwest is very costly. In-
stead of constructing numerous sedimentation reservoirs (which, as Wein
and West (1973) showed, accumulate sediment that is too saline for
revegetation and from which saline water seeps downstream) in small
(1 km?) basins it is proposed that the economics of building larger
sediment retaining earth structures for channels draining at least 100
km? but preferably 500 km? (about 200 mi2) be studied. These should be
capable of retaining a flow event of about a five-year recurrence.
Larger events should be allowed by proper design to leave the structure
intact. Several days after a flow event, when most of the sediment has
already settled in the ponded area, the water should be pumped into a
nearby closed basin (such as a neighboring plugged gully) lined with an
impermeable bottom. After complete evaporation of the saline ponded
water, the precipitated soluble minerals could be collected and removed.

Reduction of high sediment and solute yields require conservation
techniques which may be achieved by inducing local aggradation of chan-
nel reaches where the channel beds incise into Mancos Shale or where the
alluvial f£ill is very shallow. A second recommended conservation
technique is to keep the channel away from Mancos Shale outcrops by
straightening reaches or defelcting them away from the valley sides
such that the main channel will remain in the center of the valley

floor.
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One important recommendation which stems from this study is the
need to map and thereby to classify those areas in the Upper Colorado
River Basin known to be serious contributors of dissolved solids. Such
a classification would be based on an index of salinity potential which
in turn would depend on the soluble mineral content of surficial ma-
terials in these diffuse source areas. Upon completion of the salinity
map 1t may be used by government and state officials to indicate spe-
cific hazard areas.

The compilation of a map showing the salinity hazard within the
Upper Colorado River Basin must also be based on the erodibility of the
terrain, which indicates the yield of sediment and associated soluble
minerals. Also, the geomorphic and hydrologic characteristics of
the area and the hydraulic regimen of the channelways must be specified

because they describe the transport capacity of the channels.
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Table A3a. Summary of EC variations within the aqueocus mixtures
(1:999, 1:99 and 1:9) of sample US5DIA.

Concentration - =~ = =~ - EC uUmhos cm_l @ 25°C - = = = - -

Contact Time (min)

13 110 200
1:999 23.8 42.2 43.1
34,4 47.5 49.2
35.8 46.1 48.0
34.7 47.0 47.8
33.2 48.8 50.1
34.1 46.2 48.5
X 32.7 46.3 47.8
g 4,42 2.24 2.45
100(6/X) 13.5 4.8 5.1
Contact Time (min)
13 51 127 345
1:99 100.0 129.0 144.5 157.0
111.0 132.1 172.0 215.5
106.4 132.1 144.0 157.5
116.2 135.2 150.0 164.5
116.6 137.6 151.0 170.5
118.4 136.0 150.2 169.5
X 111.4 133.7 152.0 172.4
o 7.1 3.1 10.3 21.9
100(6/X) 6.4 2.3 6.8 12.7
Contact Time (min)
18 40 80 230 315 585
1:9 515 670 810 1010 1015 1140
460 580 730 880 925 1043
521 560 665 775 877 940
535 605 697 852 900 1068
440 643 797 980 1000 1130
518 595 680 770 800 900
X 498 609 730 878 920 1037
o} 38.5 40.8 61.2 100.8 80.3 98.4

100(5/X) 7.7 6.7 8.4 11.5 8.7 9.5
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Table A3b. Summary of EC variations within the aqueous mixtures
(1:999, 1:99, and 1:9) of sample G8GL.
, -1 .
Concentration -~ =~ - - ~ EC ymhos cm = @ 25°C -~ - - - =
Contact Time (min)
22 85 345 1265
1:999 62.0 95.5 115.9 121.0
48.7 78.2 113.7 122.5
43.3 86.6 185.0 204.0
45.8 66.4 81.2 91.9
42.3 68.0 96.0 107.4
39.7 61.8 81.2 87.4
X 47.0 76.1 112.1 122.4
e 8.0 13.1 38.7 42.5
100(5/%X) 17.0 17.2 34.5 34.7
Contact Time (min)
26 192 240 1034
1:99 304 650 710 801
382 652 704 821
2472 555 608 782
289 605 667 805
243 555 643 720
X 292 603 666 786
o 57.4 48.1 42.5 39.3
100(6/X) 19.6 8.0 6.4 5.0
Contact Time (min)
16 34 68 292 497 696
1:9 2450 2680 2850 3000 3055 3060
2365 2630 2880 3080 3130 3130
2250 2590 2800 3020 3075 3005
2310 2610 2805 3000 3040 3040
2280 2545 2740 2895 2925 2965
X 2331 2611 2815 2999 3045 3040
o 90.2 49.8 53.4 66.8 75.3 62.0
100(5/%) 3.9 1.9 1.9 2.2 2.5 2.0
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