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ABSTRACT 

Poisson's equation for temperature and Murray's (1967) equation for 

saturation vapor pressure both can be replaced by an appropriate finite 

Taylor's series to produce computationally faster methods of solution. 

In the case of saturation vapor pressure, a Taylor's series of the 

standard Goff-Gratch equation results in increased accuracy as well as 

greater speed over Murray's formulation. It is suggested that other 

expressions commonly used in meteorological applications can be similarly 

replaced to allow both increased speed and possible gains in accuracy as 

well. 
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1. Introduction 

There are several mathematical expressions commonly found in meteor

ological applications having the form of an exponential or a power 

function. In terms of computer operations, such functions are rather 

time consuming because their complicated numerical algorithms require 

many additions, subtractions, divisions, and multiplications. (Raising 

to an integer power is roughly four times faster than raising to a non

integer power.) 

This paper will demonstrate how a finite Taylor's series of an expo

nential or power function, for a modest investment of computer storage, 

may lead to a more expedient form involving a minimal number of multi

plications and additions. Two frequently used functions will be consid

ered: 1) saturation vapor pressure, an exponential function of temper

ature, and 2) Poisson's equation in which temperature is a power func

tion of pressure. Since these functions must be evaluated repetitively 

at each finite time step and over a multitude of grid points in two- and 

three-dimensional models that include moist processes and the prediction 

of potential temperature, the saving in computer time when summed over 

the duration of a numerical experiment can be substantial. In the case 

of saturation vapor pressure, an added bonus of increased accuracy is 

achieved by developing a Taylor's series for the standard Goff-Gratch 

equation in lieu of the commonly used Tetens' equation (the magnus 

formula) as modified by Murray (1967) for computational expediency. 

2. Saturation vapor pressure 

Tabata's (1973) note on the calculation of saturation vapor pres

sure over liquid water prompted several responses in which accuracy and 

computational efficiency were the main issues. Hull (1974), [citing 

Murray, 1967], and Riegel (1974) each used a separate form of what is 
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essentially Tetens' formula to indicate deficiencies in the accuracy and 

computational speed of Tabata's formulation. The accuracy of the Tetens 

equation, however, significantly degenerates with decreasing tempera-

tures below O°C. Wigley (1974) presented a method attributed to Richards 

(1971) that is highly accurate over a larger range of temperatures, yet 

is computationally inefficient for large numbers of calculations. An 

error analysis graphed by Wigley clearly shows that Richards' formula is 

by far the most accurate. Tetens' formula, vis-a-vis Murray's modifi-

cation thereof, is next best in accuracy followed by the least accurate 

Tabata formula. Timing tests, to be discussed in greater detail later, 

show that Richards' method is about 40% slower than Murray's form of 

Tetens' equation. Although the Tabata formula was not actually timed, a 

straightforward estimate indicates that it is somewhat slower as well as 

less accurate than Murray's formula. Because of its relative efficiency 

and generally acceptable accuracy in the warmer temperature ranges, it 

is apparent why Murray's formula has become the most widely used of all 

saturation vapor pressure formulas. If a higher degree of accuracy is 

desired in the colder temperature ranges and speed is a crucial factor, 

it appears that one has to compromise accuracy or accept a loss in 

efficiency. This paper offers an alternative. 

The respective methods of Murray, Richards, and Tabata, the latter 

with a change of logarithmic base, have the identical exponential form 

. e (T) 
s 

a exp {f(T)} 
o 

(1) 

in which each method is characterized by a unique constant a and temper
o 

ature function f(T). What distinguishes the individual methods in 

speed, though not necessarily in accuracy, is the complexity of f(T). 

The highly accurate Richards formula also has the most complex f(T), but 

Tabata's formula, though significantly less accurate than Murray's 

formula, has a slightly more complicated f(T). 
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As stated in the introduction, exponentiation is an extremely slow 

computer operation. It is therefore proposed to replace (1) with a 

second order Taylor's series that yields a much faster algorithm with 

essentially the same accuracy as the original exponential form. Ogura 

(1963), in a shallow convection model, used a second order series of 

Tetens' equation to obtain a quadratic expression for potential tempera-

ture which was then used to establish a criterion for saturation, also 

noting the numerical convenience. The proposed Taylor's series is not 

limited to shallow convection and has several other advantages. 

The series replacement of (1) has the form 

e (T) e (r) {1 + s s 
T' [g(T) + T'h(T)]} ( 2) 

where 

g(T) df(T) 
dT 

(3) 

and 

h(T) ~! [dfCT)]2 + d
2
f(T) l 

dT dT2 f 
(4) 

in which T represents reference state temperatures and T' is the temper-

ature deviation from the nearest reference state. The reference state 

saturation vapor pressures, e (T), are precomputed using values of T in 
s 

(1) and stored in a one-dimensional array. The values e (T) are there
s 

fore as exact as the particular formula being transformed. The coeffi-

cients geT) and h(T) are likewise precomputed and stored. Assuming a 

convergent series, it is obvious that (2) is increasingly in error from 

(1) as the absolute value of T' increases. In pursuit of rapid conver-

gence of (2), with its minimal number of terms, T values are chosen to 

be integers such that T' always lies in the range ± 12 K. As will be 
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shown, the integer T values conveniently serve as subscripts for the 

arrays corresponding to e (T), geT), and h(T). 
s 

The formulas of Richards and Murray both yield convergent series 

of the form given by (2). Tabata's formula was not considered because 

of its lack of accuracy. Since the coefficients of (2) are precomputed 

and stored~ the transformed Richards and Murray equations are equal in 

computational speed as would be any formula transformable from (1) to 

(2). Naturally then, a logical choice is to use the transformed Richards 

formula to compute saturation vapor pressures since it provides exce1-

lent accuracy. Carrying this reasoning a step further, however, a 

convergent Taylor's series of the standard Goff-Gratch equation would 

result in a superior algorithm over any of the methods already discussed 

in terms of both speed and accuracy. The Goff-Gratch equation (List, 

1958, p. 350) is not of the form (1) but is easily converted by a change 

of logarithmic base (Murray, 1967). The transformation to (2) then 

follows in a straightforward manner. 

For saturation vapor pressure over liquid water, f(T) for the Goff-

Gratch equation in form (1) follows directly from Murray (1967) as 

f(T) T T ( ( T) a1 T
S 

+ a2ln T
S 

+ a3 exp a4 ~s) + a5 exp a6 T
S (5) 

in which the included constants are 

a 
o 

7.95357242 x 1010 , 

-70242.1852, 

a6 -8.03945282 

-18.1972839, 5.02808, 

-26.1205253, 58.0691913, 

and T 
s 373.16 K. The coefficients for (2), i.e., (3) and (4), are 

obtained by differentiating (5). The first and second derivatives of 

(5) which are needed for geT) and h(T) are 



and 

df(T) 
dT 

5 

(6) 

(7) 

For sa.turation vapor pressure ~ ice, we again refer to Murray 

(1967). The Goff-Gratch equation in form (1) is thus characterized by 

f(T) a1 ~o +. a21nGO) + a3(U (8) 

with 

a 5.75185606 x 1010 , a
l 

= -20.947031 
0 

a 2 -3.56654, a3 = -2.01889049 

and T = 273.16 K. Similarly to the case over liquid water, the Taylor's 
o 

series coefficients for saturation vapor pressure over ice are obtained 

by differentiating (8). The required differentiation yields 

and 

df(T) 
~ 

(9) 

(10) 

In surrmary, the series counterpart to the Goff-Gratch equation 

involves the precomputation and storage of reference state saturation vapor 

pressures, e (T), and two corresponding coefficients, get) and h(T). 
s 

Reference state e values are computed using (1) with the appropriate 
s 

f(T) for integer temperature values, T. Reference state e values are 
s 
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exact. For saturation over liquid water, e (T), g(T), and h(T) are s 

precomputed with the aid of (5), (6), and (7). The appropriate equa-

tions for saturation over ice are (8), (9), and (10). The series method 

for calculating e is essentially embodied in (2) which, with its pre
s 

computed faetors, provides an algorithm much faster than Murray's for-

mula, yet is nearly as accurate as the exponential form of the Goff-

Gratch formula. 

The basic method of computing saturation vapor pressure using the 

series formulation proceeds in the following five steps: 

1) Temperature, T, is computed or otherwise provided. 

2) T is determined by rounding T to the nearest integer value. 

3) T' is calculated as the difference T - T. Note that 

-~ K < T' < ~ K. 

4) The subscript for the precomputed factors e (T), g(T) , and h(T) 
s 

is caleulated as the integer value T minus a reference value; e.g., 

if the scheme is set up for the temperature range 223 K to 323 K, the 

reference value for the subscript is 222. (In this way computer 

storagt~ is minimized.) 

5) Eq.. (2) is now applied to determine the desired value of satu-

ration vapor pressure. 

The Appendix elucidates the method with a sample FORTRAN code. For the 

temperature range indicated in step 4, the factors e (T), g(T) , and h(T) 
s 

require a modest 101 computer words each. 

Since the series (2) is finite, a piecewise discontinuous represen-

tation of saturation vapor pressure results with discontinuities occur-

ring at ± ~ K departures from integer temperature values. Fig. 1 shows 

the discontinuities for representative temperature intervals, emphasizing 

the slightness of the error. The accuracies of the methods of Richards, 
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Fig. 1. Percentage error versus temperature for the second order Taylor's 
series of the Goff-Gratch equation, for the temperature ranges 
(a) 253-255 K, (b) 273-275 K, and (c) 321-323 K. Noting the 
vertical scale of the graphs, the discontinuities between integer 
temperature values are seen to be quite insignificant. This is 
for saturation vapor pressure over liquid water; the case over 
ice is comparable and is therefore not shown. 
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Tabata, and Murray appear in Fig. 2. The error of the series method, i.e., 

eq. (2), cannot be adequately plotted in Fig. 2 which has a vertical 

scale two orders of magnitude greater than Fig. 1. The series error would 

appear as a straight line along the zero error axis of Fig. 2. Looking 

at the figures, the superiority in accuracy of the Goff-Gratch series 

formulation becomes obvious. 

Timing tests were made of the Goff-Gratch formulation. the series 

counterpart (including all 5 steps previously outlined), and the methods 

of Richards and Murray. Table 1 shows timing ratios of the various 

methods to the series method. Elapsed times are shown in Table 2, based on 

10
7 

calculations of e , which corresponds to a hypothetical 20 x 20 x 25 
s 

3-D model in which 103 time steps are taken. Timing tests were performed 

on four types of computer: a CDC-6400, a CDC-6600, a CDC-7600, and a 

Univac-l108. For each method of computing e , 5 x 103 calculations were 
s 

completed and prorated to 107 calculations. Averaging the timing tests 

for the various computers, the series method is about 2.5 times faster 

than the commonly used Murray formulation. 

The series method was then applied to a fully compressible 3-D moist 

convection model. With its acoustjc disturbances, compressibility places 

a rigorous test on the series method. It was found that the disconti-

nuities inherent in the method are indeed negligible and do not produce 

any trace of computational instability. Replacing (2), which is a second 

order series, with a third order series resulted in no discernible 

difference in the evolution of the model. A second order series of the 

Goff-Gratch equation is therefore quite appropriate. When compared to 

Murray's formulation, however. the series method produced an obviously 

different solution in the model that can be attributed only to the 

superior accuracy of the series method. 
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Table 1. Ratios of the computational times of the various methods for 
computing saturation vapor pressure to the 2nd order Taylor's 
series of the Goff-Gratch formulation. 

METHOD CDC-6400 CDC-6600 CDC-7600 UNIVAC-H08 

Goff-Gratch 10.58 8.18 9.31 9.33 

2nd Order Series 1.00 1.00 1.00 1.00 
of Goff-Gratch 

Murray (Tetens) 2.68 2.24 2.64 2.26 

Richards 3.68 2.85 3.18 2.95 

Table 2. Elapsed times of the various ~ethods for computing saturation 
vapor pressure based on 10 7 calculations for each method. Time 
is in seconds. 

METHOD CDC-6400 CDC-6600 CDC-7600 UNIVAC-ll08 

Goff-Gratch 4883.1 1082.1 217.8 3500.9 

2nd Order Series 461.5 132.3 23.4 375.2 
of Goff-Gratch 

Murray (Tetens) 1236.7 296.5 61. 9 851.1 

Richards 1698.3 376.8 74.5 1109.2 
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When using the series method for computing saturation vapor pres-

sure, one must be careful to develop the thermodynamics in a system of 

equations consistent with the accuracy of the Goff-Gratch equation. All 

expressions involving the temperature derivative of e , i.e., de /dT, 
s s 

should use the Clausius-Clapeyron equation, with no approximations, in 

which latent heat is a function of temperature. This offers no diffi-

culty since latent heat can be represented quite acceptably as a linear 

function of temperature in the form 

L mT + b. (11) 

For the latent heat of vaporization, the constants band m are equal to 

3.150806 x 1010 and -2.379507 x 107 , respectively, for units of ergs/gm. 

3. Poisson's equation for temperature 

Temperature, pressure, and potential temperature are related by the 

Poisson equation 

T (

p )R/C 
e 1000 p (12) 

A power function such as this is even slower to compute than an exponen-

tial due to its complex algorithm. ( 
P )R/Cp 

Therefore, the factor 1000 ' 

symbolized by TI, is replaced by the second order Taylor's series 

TI (13) 

( 
P )R/C 

in which TIo = 10~0 P, and Po and p' are the pressure base state and 

deviation, respectively. The non-dimensional pressure, TI , is a function of 
o 

height only, and requires a one-dimensional array corresponding to the 

number of levels in a model. R 
The constants -- and 

c 
p p' 

lated. The ratio p-' of course, is not calculated 
o 

the use of (13), (12) is thus replaced by 

c 
v 

~ -- are precalcu
c 

p 
redundantly. With 
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T 

\ 

R p' [ C
v p'11 eTi 1+-- l-~--o c PcP pop 0 

(14) 

A rigorous scale analysis by Dutton and Fichtl (1969) has shown 

that the ratie) p' /p ,i.e., the ratio of the pressure deviation to the 
o 

reference state pressure at a given height, is quite small even in deep 

convection. Their analysis is substantiated by the computational results 

of Wilhelmson and Ogura (1972). Therefore, (14) should be quite valid 

for most applications. To test the validity of (14), a large p'/p was 
o 

considered. The values e = 305 K, p' = 3 mb, and P = 300 mb were 
o 

employed, based on limiting values of p' observed in both numerical and 

field experimentation. This gives a value of .01 for p'/p • 
o 

For a complete analysis, a first order series of (12) was included 

along with (l~.). Relative accuracies are shown in Table 3. Comparisons 

of timing ratios and timing tests are g~.ven in Tables 4 and 5. On the 

average, (14) is about 5.0 times faster than (12), with a negligible 

deficit in acc.uracy. 

As in the case of saturation vapor pressure, the Taylor's series 

counterpart to Poisson's equation was inc.orporated into a fully compres-

sible 3-D model. A preliminary error analysis seemed to indicate that a 

second order series of (12) would be necessary for consistency in accur-

acy when employed in conjunction with the second order Goff-Gratch 

series formulation, (2). However, computational results showed no 

resolvable difference between using a first order or second order series 

of (12) despite the compressibility of the model. In fact, the only 

difference noted in comparing the use of a first order series versus the 

full Poisson equation was an obvious time saving. This lack of differ-

ence in the solution was due to the fact that the ratio P'/P remained 
o 

much smaller than the extreme value .01 used to test (14). In general, 
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Table 3. Values of temperature computed by the various methods in which 
e = 300 K, P = 300 mb, and p' = 3 mb. 

o 

METHOD TEMPERATURE COMPUTED, K 

Poisson's Equation 216.S4060 

1st Order Series 216.S4279 
of Poisson's Equation 

2nd Order Series 216.S4058 
of Poisson's Equation 

Table 4. Ratios of the computational times of the various methods for 
computing temperature to the 2nd order series of Poisson's 
equation. 

METHOD CDC-6400 CDC-6600 CDC-7600 UNIVAC-llOS 

Poisson's Equation 5.24 4.96 5.45 4.26 

1st Order Series 0.67 O.SO 0.43 0.72 
of Poisson's Equation 

2nd Order Series 1. 00 1.00 1. 00 1. 00 
of Poisson's Equation 
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Table 5. Elapsed times of the various methods for computing temperature 
based on 107 calculations for each method. Time is in seconds. 

METHOD CDC-6400 CDC-6600 CDC-7600 UNIVAC-llOB 

Poisson's Equation 2567.7 601.9 102.4 1294.3 

1st Order Series 329.0 96.B B.1 219.7 
of Poisson's Equation 

2nd Order Series 490.3 121.3 1B.B 303.9 
of Poisson's Equation 
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a second order series of (12) should be used when combined with (2) 

unless there is ~ priori knowledge that P'/Po will remain less than 

about .0075 in a numerical simulation. 

4. Summary and conclusions 

The benefits of using a Taylor's series approximation to the Goff-

Gratch equation include superior accuracy and speed over other tech-

niques for computing es ' The discontinuities present in (2) were found 

to be quite negligible when the series method was applied to a compres-

sible 3-D model. The requirement of additional computer storage for the 

precomputed factors e (r), g(T) , and h(T) is minimal, totaling 30.3 
s 

computer words for a 100 K temperature range. Therefore, the advantages 

of using a series formulation for e , especially in a large numerical 
s 

model, far outweigh the single disadvantage of a slight cost in extra 

computer storage. 

Similarly, replacing Poisson's equation, (12), with a first or 

second order Taylor's series yields a substantial gain in computational 

speed at the slight cost of storage for the precomputed factor TI. The 
o 

loss in accuracy by employing a second order series of (12) is negli-

gible. A first order series introduces a slight error for a large value 

of p'lp For consistency of accuracy, however, a second order series 
o 

of (12) should be used in conjunction with using a second order series 

of the Goff-Gratch equation, unless p'lp in a simulation will always be 
o 

less than .00i'5. 

The combined use of the Taylor's series counterparts to the Goff-

Gratch and Poi.sson equations resulted in a 5% time savings when applied 

to the comprehensive 3-D model. This is rather significant when consid-

ering that the. calculation of temperature from pressure and potential 

temperature and the calculation of saturation vapor pressure constitute 
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much less than 5% of the total number of required calculations in a 

comprehensive 3-D simulation. 

In closing, it is suggested that of the many exponential and power 

functions appearing in meteorology, several would lend themselves to 

transformation into a finite Taylor's series to increase speed of compu

tation. Even if many such modifications were incorporated into a numer

ical model, the cumulative need for increased computer storage for the 

precomputed factors appearing in the various series should not be pro

hibitive. In some cases such factors would be constant and not require 

arrays of memory. Finally. if a particular exponential or power func

tion is an approximation to a more complicated expression, such as 

Murray's equation is approximate to the Goff-Gratch equation, a finite 

series of the more complicated expression could result in a gain in 

accuracy as well as speed over the approximate form. 
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APPENDIX 

A sample FORTRAN code to describe the series method for computing 

saturation vapor pressure: 

FORTRAN 

1) T =---
2) IT = T + 0.5 

3) TDEL T - IT 

4) L = IT - IREF 

5) EST ES(L)* (1. + TDEL*(GT(L) + TDEL* HT(L») 

Explanation 

1) T is computed. 

2) T is rounded to nearest integer value. 

3) T' is computed. Note that -~ K ~ T' 2. ~ K. 

4) Subscript for e (T), g(T), and h(T) is determined from the 
s 

integer temperature value; a reference value is subtracted to 

begin the subscripting at one. 

5) Saturation vapor pressure is computed using T' and tabulated 

values of e (T), g(T), and h(T). s 
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