TECHNICAL BULLETIN 01-2

2001

SUSTAINABLE DRYLAND AGROECOSYSTEM MANAGEMENT¹

G.A. Peterson², D.G. Westfall², F. B. Peairs³, L.Sherrod⁴, D. Poss⁵, W. Gangloff⁵ K. Larson⁶, D.L. Thompson⁵, L.R. Ahuja⁷, M.D. Koch⁵, and C. B. Walker⁵

A Cooperative Project

of the

Colorado Agricultural Experiment Station Department of Soil and Crop Sciences Department of Bioagricultural Sciences and Pest Management Colorado State University Fort Collins, Colorado

and the

USDA - Agriculture Research Service Natural Resources Research Center Great Plains Systems Research Unit Fort Collins, Colorado

¹Funding is provided by the Colorado Agricultural Experiment Station and USDA-ARS. The High Plains Regional Climate Center in Lincoln, NE provides weather data retrieval.

²Professors, Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523

³Professor, Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523

⁴USDA-ARS Technician - Great Plains Systems Research Unit

⁵Research Associates, Colorado State University

⁶Research Scientist - Plainsman Research Center at Walsh, Colorado

⁷USDA-ARS Research Leader - Great Plains Systems Research Unit

Contents

Subject	Pages
Research Application Summary	1-3
Concurrent Research Projects	4-8
Introduction	9
Materials and Methods	10-17
Results and Discussion	18-24
Climate	18
Wheat	18
Corn and Sorghum	19
Proso Millet	20
Sunflower	20
Soybean	20
Opportunity Cropping	20
Crop Residue	21
Soil Water	22
Nitrogen and Phosphorus in Grain and Stover	24
Soil Nitrate-Nitrogen	25
References	25-26
Data Tables	27-76
Herbicide Information - Appendix I	77-83
Project Publications	84-93

Table Title	Page
Table 1 - Elevation, annual precipitation and evaporation characteristics for each site.	10
Table 2a - Cropping systems, old and new, for each of the original sites .	16
Table 2b - Cropping systems for the sites initiated in 2000.	17
Table 3 - Crop variety, seeding rate, and planting date for each site in 2000.	17
Table 4 - Nitrogen fertilizer application by soil and crop in 2000.	27
Table 5a & 5b - Monthly precipitation for each site for the 1999-2000 growing season.	28-29
Table 5c - 5h - Precipitation summaries by growing season segments.	30-32
Table 6a & 6b - Grain and stover yields for wheat.	33-34
Table 7 - Wheat yields by rotation at optimum fertility by year and soil position at Sterling 1999-2000.	35
Table 8 - Wheat yields by rotation at optimum fertility by year and soil position at Stratton 1999-2000.	35
Table 9 - Wheat yields by rotation at optimum fertility by year and soil position at Walsh 1999-2000.	36
Table 10 - Grain yields at Briggsdale, Akron, and Lamar sites in 2000.	37
Table 11a & 11b - Grain and stover yields for corn and sorghum.	38-39
Table 12 - Corn yields by rotation at optimum fertility by year and soil position at Sterling 1999-2000.	40
Table 13 - Corn yields by rotation at optimum fertility by year and soil position at Stratton 1999-2000.	40
Table 14 - Sorghum and corn yields by rotation at optimum fertility by year and soil position at Walsh 1999-2000.	41
Table 15a & 15b - Grain and stover yields for soybean at Sterling, Stratton and Walsh in 2000.	42-43
Table 16 - Soybean yields by rotation and optimum fertility by year and soil position at Sterling 1999-2000.	44
Table 17 - Soybean yields by rotation and optimum fertility by year and soil position at Stratton 1999-2000.	44
Table 18 - Soybean yields by rotation and optimum fertility by year and soil position at Walsh 1999-2000.	44
Table 19 - Grain and forage yields in the opportunity cropping system at Sterling.	45
Table 20 - Grain and forage yields in the opportunity cropping system at Stratton.	46
Table 21 - Grain and forage yields in the opportunity cropping system at Walsh.	47
Table 22 - Crop residue weights on all plots in wheat during the 1999-2000 crop year.	48
Table 23 - Crop residue weights on all plots in corn and sorghum during the 1999-2000 crop year.	49
Table 24 - Crop residue weights on all plots in soybean during the 1999-2000 crop year.	50
Table 25 - Crop residue weights preplanting from all crops at Briggsdale, Akron, and Lamar during 1999-2000.	51

Table 26 - 38 - Available soil water in various crops during the 1999-2000 growing season.	52-64
Table 39a - Total nitrogen concentration of wheat grain in 2000.	65
Table 39b - Total nitrogen concentration of wheat straw in 2000.	66
Table 40a - Total nitrogen concentration of corn and sorghum grain in 2000.	67
Table 40b - Total nitrogen concentration of corn and sorghum stover in 2000.	68
Table 41 - Total nitrogen concentration of soybean grain in 2000.	69
Table 42 - Total nitrogen concentration of corn, soybean, and sunflower grain and hay millet in 2000 at Briggsdale, Akron, and Lamar.	70
Table 43 - Nitrate-N content of the soil profile at planting for each crop in the 1999-2000 crop year.	71
Table 44 - Nitrate-N content of the soil profile at planting for each crop during the 1999-2000 crop year at Briggsdale, Akron, and Lamar.	72
Table 45 - Pest insects in wheat by crop stage at Briggsdale, Akron and Lamar in 2000.	73
Table 46 - Russian wheat aphid (RWA) in wheat by day, variety, and rotation at Briggsdale, Akron and Lamar in 2000.	74
Table 47 - Brown wheat mite (BWM) in wheat by day, variety, and rotation at Briggsdale, Akron and Lamar in 2000.	75
Table 48 - Predator insects in wheat by growth stage at Briggsdale, Akron and Lamar in 2000.	76

RESEARCH APPLICATION SUMMARY

We established the Dryland Agroecosystem Project in the fall of 1985, and 1986 was the first crop year. Grain yields, stover yields, crop residue amounts, soil water measurements, and crop nutrient content were reported annually in previously published technical bulletins. This summary updates our findings for the 15-year period.

Average Yields:

Annual yield fluctuations concern growers because they increase risk. Stable yields translate into stable income levels in their operations. Figure 1 provides a summary of average yield history for wheat, corn, sorghum, and soybean at our three study locations. Wheat has been grown all 15 years at all sites, corn every year at Sterling, and sorghum every year at Walsh. Other crops have been grown for shorter periods of time. Complete data for each crop are available in previously published bulletins (see reference section). Yields in Figure 1 are averaged over all years when a given crop was grown, even those where yield losses occurred due to hail, early and late freezes, insect pests, winter kill of wheat, and herbicidal carryover.

Figure 1. Grain yields averaged over soil positions for all years each crop has been grown at a given location (wheat yields after fallow).

Corn, Sorghum and Soybean Yields at Original Locations:

Fluctuations in corn and sorghum yields are of most interest because they represent the highest input crops. Yields of all crops include hail and drought years.

1) Corn yields at Sterling have averaged 62 bu/A (range = 14 to 107 bu/A).

2) Corn yields at Stratton have averaged 73 bu/A (range = 37 to 112 bu/A).

3) Corn yields at Walsh, using Bt varieties, averaged 57 bu/A from 1997-2000 (range = 2 to 100 bu/A).

4) Grain sorghum yields at Stratton (4 years) averaged 44 bu/A (range = 20 to 63 bu/A).

5) Grain sorghum yields at Walsh averaged 48 bu/A (range = 27 to 75 bu/A).

6) Soybean yields have averaged 10 bu/A or less at all sites.

Cropping Systems:

The 3- and 4-year systems like wheat-corn(sorghum)-fallow and wheat-corn-millet-fallow or wheat-sorghum-sorghum-fallow increased annualized grain production by 74% compared to the 2-year wheat-fallow system during the first 12 years of our project (Figure 2). Yields are annualized to account for the nonproductive fallow year in rotation comparisons. Economic analyses show this to be a 25-40% increase in net annual income for the three-year rotation in northeastern Colorado. However, in southeastern Colorado the three year wheat-sorghum-fallow rotation, using stubble mulch tillage in the fallow prior to wheat planting, netted about the same amount of return as reduced till wheat-fallow. New herbicide programs with fewer residual materials have shown promise and are less expensive.

Our data show that cropping intensification is feasible and profitable in the central Great Plains. More intensive rotations like wheat-corn(sorghum)-fallow and wheat-corn(sorghum)-milletfallow have more than doubled grain water use efficiency. Water conserved in the no-till systems has been converted into increased grain production.

Our opportunity cropping systems have maximized production at all sites relative to all other rotations, but have not been the most profitable. The 3-year rotations have been most profitable. Based on our findings with the intensive systems from 1985 to 1997 (12 cropping seasons), we altered the systems in 1998 to reflect the new knowledge. More intensive cropping systems have been added and wheat-fallow has been omitted from the experiments. We now consider the 3-year (wheat-corn or sorghum-fallow) system as the standard of comparison.

New Research Sites:

The dryland agroecosystem project established linkage with the Department of Bioagricultural Sciences and Pest Management in 1997. We are now evaluating the interactions of cropping systems with both pest and beneficial insects at three new experimental sites. The new sites at Briggsdale, Akron, and Lamar also allow us to test our most successful intensive cropping systems at three new combinations of precipitation and evaporative demand. The new sites have much larger experimental units, enabling us to study insect dynamics as influenced by cropping system. We want to know if the presence of multiple crops in the system will alter populations of beneficial insects and provide new avenues of insect pest control.

Adoption of Intensive Cropping Systems:

Producers in northeastern Colorado have been adopting the more intensive cropping systems at an increasing rate since 1990. Corn is one of the principal crops used in more intensive systems, and we use its acreage as an index of adoption rate by producers (see Table below). Area planted to dryland corn in northeastern CO increased from about 20,000 acres per year in years previous to 1990 to 220,000 acres in 1999. Total dryland corn acreage in Colorado increased from 23,700 historically to 290,000 in 1999.

Eight NE Counties* Total for State Year Acres 1971-1988 21,200 23,700 1989 27,000 28,000 1990 26,000 26,000 1991 32,500 33,000 1992 48,500 50,000 1993 79,000 90,000 1994 92,500 100,000 1995 95,500 100,000 1996 104,000 110,000 1997 138,500 150,000 1998 191,000 240,000 1999 290,000 220,000 2000 198.000 340.000

Dryland Corn Acreage in Eight Northeastern Colorado Counties and state total from 1971 to 1998.

^{*}Data from Colorado Agricultural Statistics (Adams, Kit Carson, Logan, Morgan, Phillips, Sedgewick, Washington, Yuma)

Corn acreage is expanding into areas once thought to be too dry for corn production, as exemplified in Lincoln county where corn acreage increased from1500 in 1996, to 4000 in 1997, to 8000 in 1998, to 18,000 in 1999, and to 23,000 in 2000. Adoption of the new systems also is reflected in sunflower and proso millet acreage increases. For example, sunflower acreage increased from 63,000 in 1991 to 270,000 in 1999 and then decreased to 185,000 in 2000 in Colorado. Producers wishing to get started in dryland rotation farming may consult bulletins published in previous years (see reference list) and/or the publication by Croissant et al. (1992).

CONCURRENT RESEARCH PROJECTS

Triticale-Corn-Forage Soybean Rotation at Sterling: {Established in fall 1993}

Objective:

Maximize time in crop, provide both a cash crop (corn) and forage crops for a mixed livestock-grain farm. Land preparation costs would also be minimized. From 1993 - 1998 this rotation was triticale-corn-hay millet. Forage soybean replaced hay millet in 1999 in attempt to grow a sandbur free, higher protein forage.

Procedure:

i) Winter triticale is planted in September into the hay millet stubble.

ii) Harvest winter triticale for forage in June before heading, leaving a 8-10 inch stubble. Roundup and Atrazine, applied after harvest.

iii) Corn planted no-till into triticale stubble the following May.

iv) Corn is harvested in late September.

v) Forage soybean, Roundup-Ready was planted into corn stalks the following May and

is harvested in August. Weeds controlled with Roundup if necessary.

Results:

- i) Corn yields have averaged 52 Bu/A including 1994, when no grain was produced due to dry weather, and including 1995, when the corn froze before maturity. In the last 3 years a Roundup Ready variety was grown to aid in sandbur control.
- ii) Hay millet yields were non-harvestable in all years except 1997. The failures were primarily due to heavy sandbur infestations. We had to destroy the crop because sandbur populations were equal to the millet populations in most years.

iii) Forage soybean yields in 2000 averaged 1.45 T/A over all soils.

iv) Triticale "Harvested" yields have averaged 1.75 T/A over the past 3 years, even

though we left a 10-12" stubble remaining in the field for cover

Summary:

Winter triticale seems to be a well adapted cool season forage crop. Although corn yields were greatly limited by lack of rainfall in 2000, corn following triticale should be equivalent to corn after wheat, which has averaged over 50 bu/A. for a 15-year period at this site. The forage soybean yielded relatively well, 1.45 T/A, even though summer precipitation was well below the long-term average and has averaged 1.4 T/A for 2 years.

Year	Crop	Production	Soil Positions			
			Summit	Sideslope	Toeslope	Average
				Tons/A	or Bu/A	
1998	Triticale	Total	0.94	1.13	1.36	1.14
		Harvested ¹	0.77	1.00	1.05	0.94
	Corn	Grain	64	64	88	72
	Hay Millet	Total	0	0	0	0
1999	Triticale	Total	(Not measured in 1999)			
		Harvested ¹	1.64	1.17	1.92	1.58
	Corn	Grain	43	82	69	65
	Soybean	Forage @ 15% moisture	1.17	1.26	1.72	1.38
2000	Triticale	Total	(Not measured in 2000)			
		Harvested ¹	2.82	2.47	2.86	2.72
	Corn	Grain	18	18	24	20
	Soybean	Forage @ 15% moisture	1.60	1.39	1.35	1.45

Triticale and corn grain yields by soil for 1998 -2000.

¹ Harvested leaving 8" stubble;

Experiment Managers:

G.A. Peterson, G. Lindstrom, and D.G. Westfall

Soybean Variety Trials at Sterling and Stratton

Background:

Our interest in soybeans stems from our search for a crop we could harvest and immediately plant winter wheat, thus avoiding fallow. Soybean has the potential to be one of the crops that might fit the system. It has the following attributes:

- 1. Local market probable
- 2. Broadleaf plant for rotation
- 3. Roundup Ready (sandbur control)
- 4. Fits rotation (plant wheat after soybean harvest)
- 5. Use same planting and harvesting equipment as wheat
- 6. Economic potential good (Expected yields 20-25 bu/A and low fertilizer cost)

Objectives:

- 1) To determine the yield potential of dryland soybean varieties in eastern Colorado
- 2) To observe growth characteristics and potential harvest dates.
- 3) To compare drilled versus row planted soybeans

Procedure:

```
Planting Method:
Drilled with 12" row spacing
Row planted in 30" row spacing
Varieties:
Asgrow 2602, 2702, 2903, 3302, 3303
Dekalb 242RR, 285RR
Population:
85,000 to 90,000 seeds/A
(3000 seeds/pound)
Seed cost: Roundup Ready seed = $24 per 50 lbs; Planted @ 30#/A = $14.40/A
Planting and Harvesting Dates:
Sterling = 18 May and 9 October 2000
Sterling = 18 May and 11 October 2000
```

Results:

Yields ranged from 7 to 16 bu/A at Sterling and from 7 to 12 bu/ at Stratton with a tendency for higher yields with the longer maturity varieties. However, the longer season beans, like the 3303 and 3901 varieties did not mature properly and the bean quality was poor. The Asgrow 2702 variety was the "best fit" in terms of maturity and grain yield. The most consistent finding was that the soybeans planted in 30" rows yielded 3.5 bu/A more than drilled beans in 12" rows averaged over both sites. The Asgrow 2702 variety averaged 8.5 bu/A when drilled and 14 bu/A when planted in 30" rows. At the loan rate price of \$5.00/bu our best yield of 14 bu/A would not be economically feasible.

Lack of varieties adapted to our arid environment remains a major problem. In addition shattering losses near harvest and low set pods that are not easily harvested with a combine header also remain as large problems.

<u>Variety</u>	<u>Planting Method</u>	<u>Yield (13% moisture)</u>
		— Bu/A—
Asgrow 2602	Drill (12")	7
	30" Row	13
Asgrow 2702	Drill (12")	9
	30" Row	16
Asgrow 2903	Drill (12")	7
	30" Row	11
Asgrow 3302	Drill (12")	8
	30" Row	12
Asgrow 3303	Drill (12")	11
	30" Row	14
Asgrow 3901	Drill (12")	12
	30" Row	16
Dekalb 242RR	Drill (12")	5
	30" Row	7
Dekalb 285RR	Drill (12")	9
	30" Row	11

Soybean grain yields by variety and planting method at Sterling Colorado in 2000.

<u>Variety</u>	Planting Method	<u>Yield (13% moisture)</u>
		— Bu/A
Asgrow 2602	Drill (12")	8
	30" Row	10
Asgrow 2702	Drill (12")	8
	30" Row	12
Asgrow 2903	Drill (12")	7
	30" Row	9
Asgrow 3302	Drill (12")	6
	30" Row	10
Asgrow 3303	Drill (12")	7
	30" Row	10
Asgrow 3901	Drill (12")	7
	30" Row	12
Dekalb 242RR	Drill (12")	5
	30" Row	4
Dekalb 285RR	Drill (12")	7
	30" Row	8

Soybean grain yields by variety and planting method at Stratton Colorado in 2000.

Soybean grain yields averaged by planting method at Sterling and Stratton Colorado in 2000.

Planting Method	<u>Yield (13% moisture)</u>	
	— Bu/A	
Drill (12")	7	
30" Row	10.5	

Experiment Managers: D. Poss, G.A. Peterson, D.G. Westfall.

INTRODUCTION

Colorado agriculture is highly dependent on precipitation from both snow and rainfall. Dryland acreage exceeds irrigated acreage by more than two fold, and each unit of precipitation is critical to production. At Akron each additional inch (25 mm) of water above the initial yield threshold translates into 4.5 bu/A of wheat (12 kg/ha/mm), consequently profit is highly related to water conservation (Greb et al., 1974).

Our research project was established in 1985 to address efficient water use under dryland conditions in Eastern Colorado. A more comprehensive justification for its initiation can be found in Peterson, et al.(1988). The general objective of the project is to identify dryland crop and soil management systems that will maximize water use efficiency of the total annual precipitation and economic return.

Specific objectives are to:

- 1. Determine if cropping sequences with fewer and/or shorter summer fallow periods are feasible.
- 2. Quantify the relationships among climate (precipitation and evaporative demand), soil type and cropping sequences that involve fewer and/or shorter fallow periods.
- 3. Quantify the effects of long-term use of no-till management systems on soil structural stability, micro-organisms and faunal populations, and the organic C, N, and P content of the soil, all in conjunction with various crop sequences.
- 4. Identify cropping or management systems that will minimize soil erosion by crop residue maintenance.
- 5. Develop a data base across climatic zones that will allow economic assessment of entire management systems.

Peterson, et al. (1988) document details of the project in regard to the "start up" period and data from the 1986-87 crop year. Results from the 1988 - 1999 crop years were reported by Peterson, et al. (1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, and 2000). As in previous bulletins, only annual results are presented with a few summary tables. We do not draw major conclusions based on one year crop responses because cropping systems are highly time and weather dependent. Other publications, such as Wood, et al. (1990), Croissant, et al. (1992), Peterson, et al. (1993a & 1993b) and Nielsen, et al. (1996) summarize and draw conclusions based on a combination of years.

Long-term averages of summer crops, corn and sorghum, are 62, 72 and 47 bu/A for Sterling(corn), Stratton(corn) and Walsh(sorghum), respectively. These means include years of near crop failure due to drought, hail, and early frost. Our research has shown that cropping intensification is certainly possible and profitable in the central Great Plains. More intensive rotations like wheat-corn(sorghum)-fallow have more than doubled grain water use efficiency in our three study environments when compared over years. Water conserved in the no-till systems has been converted into increased grain production. Furthermore, our opportunity cropping systems have maximized production at all sites relative to all other rotations. Based on findings from1985 to 1997, we altered the systems being studied to reflect the new knowledge. Wheat-fallow was omitted from the experiments, and we consider the 3-year (wheat-corn or sorghum-fallow) system as the standard of comparison.

The dryland agroecosystem project established a linkage with the Department of Bioagricultural Sciences and Pest Management in 1998. We are evaluating the interactions of cropping systems with both pest and beneficial insects at three new experimental sites, Briggsdale, Akron, and Lamar, CO. This also allows us to test our most successful intensive cropping systems at three additional combinations of precipitation and evaporative demand. Compared with the original three experiments, they have much larger experimental units enabling us to study insect dynamics as influenced by cropping system. We want to know if the presence of multiple crops in the system will alter populations of beneficial insects and provide new avenues of biological pest management of Russian Wheat Aphid in wheat and insect pests in other crops. Details of cropping system changes at the original sites and the treatments at the new sites are explained in the methods section of this report.

MATERIALS AND METHODS

From 1986 - 1997 we studied interactions of climate, soils and cropping systems at three sites, located near Sterling, Stratton, and Walsh, in Eastern Colorado, that represent a gradient in potential evapotranspiration (PET) (Fig. 3). Elevation, precipitation and evaporative demand are shown in Table 1. All sites have long-term precipitation averages of approximately 16-18 inches (400-450 mm), but increase in PET from north to south. Open pan evaporation is used as an index of PET for the cropping season.

<u>Site</u>	<u>Elevation</u>	<u>Annual</u> <u>Precipitation</u> ¹	<u>Growing Season Open</u> <u>Pan Evaporation</u> ²	<u>Deficit</u> (Precip Evap.)
	Ft. (m)	In. (mm)	In. (mm)	In. (mm)
Nunn (Briggsdale)	4850 (1478)	13.7 (350)	61 (1550)	- 48 (- 1220)
Sterling	4400 (1341)	17.4 (440)	63 (1600)	- 45 (- 1140)
Akron	4540 (1384)	16.0 (405)	63 (1600)	- 47 (- 1185)
Stratton	4380 (1335)	16.3 (415)	68 (1725)	- 52 (- 1290)
Lamar	3640 (1110)	14.7 (375)	76 (1925)	- 62 (- 1555)
Walsh	3720 (1134)	15.5 (395)	78 (1975)	- 61 (- 1555)

 Table 1. Elevation, long-term average annual precipitation, and evaporation characteristics for each site.

¹Annual precipitation = 1961-1990 mean ²Growing season = March - October

Each of the original three sites (Sterling, Stratton, Walsh) was selected to represent a catenary sequence of soils common to the geographic area. Textural profiles for each soil at each location are shown in Figures 4a, 4b, and 4c. There are dramatic differences in soils across slope position at a given site and from site to site. We will contrast the summit soils at the three sites to illustrate how different the soils are. Each profile was described by NRCS personnel in summer

1991. Note first how the summit soils at the three sites differ in texture and horizonation. The surface horizons of these three soils (Ap) present a range of textures from loam at Sterling, to silt loam at Stratton, to sandy loam at Walsh. Obviously the water holding capacities and infiltration rates differ. An examination of the horizons below the surface reveals even more striking differe nces.

Figure 3. Experimental design with climate, soil, and cropping system variables.

The summit soil profile at Sterling (Figure 4a) changes from a clay content of 21% at the surface(Ap) to 31% in the 3-8" depth (Bt1) to a clay content of 38% in the layer between the 8-12" depth (Bt2). At the 12" depth the clay content drops abruptly to 27%. The water infiltration in this soil is greatly reduced by this fine textured layer (Bt2). At about the 36" depth (2Bk3) there is an abrupt change from 21% clay to 32% clay in addition to a marked increase in lime content. The mixture of 32% clay and 45% sand with lime creates a partially cemented zone that is slowly permeable to water, but relatively impermeable to roots. Profile plant available water holding capacity is 9" in the upper 36 inches of the profile.

At Stratton the summit soil profile (Figure 4b) is highest in clay at the surface, 34% in the Ap horizon, and then decreases steadily to 14% clay (Bk3) below the 40" depth. There are few restrictions to water infiltration at the surface nor to roots anywhere in the profile compared to summit soil at Sterling. Profile plant available water holding capacity is 12" in the upper 72 inches of soil.

Sterling Summit Soil Profile

Sterling Sidelope Soil Profile

Sterling Toeslope Soil Profile

Figure 4a. Soil profile textural characteristics for soils at the Sterling site.

Stratton Summit Soil Profile

Stratton Sideslope Soil Profile

Stratton Toeslope Soil Profile

Figure 4b. Soil profile textural characteristics for soils at the Stratton site.

Walsh Summit Soil Profile

Walsh Sideslope Soil Profile

Walsh Toeslope Soil Profile

Figure 4c. Soil profile textural characteristics for soils at the Walsh site.

The summit soil at Walsh (Figure 4c) has very sandy textures above 54" compared to either summit soil at the other sites. No restrictions to water infiltration nor root penetration occur in the profile. In this soil the abrupt increase in clay content at 54", 40% in the Btkb horizon, represents a type of "plug" in the soil profile. Water can infiltrate rapidly in the coarse-textured surface horizons, but does not drain rapidly beyond the root zone due to the high clay content of the deepest horizon at 54". This makes this soil more productive than a similar soil with no clay "plug". The profile plant available water holding capacity is 11". About 2" of the total is in the 5-6' depth, leaving only a 9" storage capacity in the upper 5' of soil.

Many other soil contrasts can be observed by the reader, both within and across sites. All of these soils had been cultivated for more than 50 years, and all exhibit the effects of both wind and water erosion damage. The toeslopes are the recipients of soil materials from the summit and sideslope positions because of their landscape location relative to the others. Hence they also have the highest organic matter content in their surface horizons.

Soil profile characteristics for the three new locations are only available on a general basis. The soil type at Briggsdale and Akron is Platner loam and at Lamar it is a Wiley silt loam.

The cropping system during the previous 50 years had been primarily dryland wheatfallow with some inclusion of grain sorghum at Walsh and corn at Sterling. At the original sites we placed cropping system treatments over the soil sequence (Fig.3) to study the interaction of systems and soils. At the three new sites we have only one soil type at each. Systems being studied at each site are listed in Tables 2a & 2b. Each system is managed with no-till techniques, and herbicide programs are reported in Appendix Tables 1 - 6. Complete details on measurements being made and reasons for treatment choices are given by Peterson, et al.(1988). Crop variety, planting rate, and planting date for each crop at each site is given in Table 3.

Nitrogen fertilizer is applied annually in accordance with the NO_3 -N content of the soil profile (0-6 ft or 0-180 cm) before planting, and expected yield on each soil position at each site. Therefore, N rate changes by year, crop grown, and soil position (Table 4). Nitrogen fertilizer for wheat, corn, and sunflower was dribbled on the soil surface over the row at planting time at Sterling and Stratton. Nitrogen on wheat at Walsh was topdressed in the spring, and N was sidedressed on corn and sorghum. We made all N applications as a 32-0-0 solution of urea-ammonium nitrate.

We band applied P (10-34-0) at planting of all crops near the seed. Phosphorus was applied on one-half of each corn and soybean plot over all soils at the original sites, but applied to the entire wheat plot. The rate of P is determined by the lowest soil test on the catena, which is usually found on the sideslope position. This rate has been 20 lbs P_2O_5/A (9.5 kg/ha of P) at each site each year thus far. We changed the P fertilization treatment for wheat in fall 1992, so that the half plot that had never received P fertilizer in previous years is now treated when planted to wheat. Other crops in the rotation only receive P on the half plot designated as NP. Zinc (0.9 lbs/A or 1 kg/ha) is banded near the seed at corn planting at Sterling, Stratton, and Briggsdale to correct a soil Zn deficiency.

Site	Rotations
Sterling	1) Wheat-Corn-Fallow (WCF)
	2) Wheat-Corn-Soybean (WCSb)
	3) Wheat-Wheat-Corn-Soybean (WWCSb)
	4) Opportunity Cropping*
	5) Perennial Grass
Stratton	1) Wheat-Corn-Fallow (WCF)
	2) Wheat-Corn-Soybean (WCSb)
	3) Wheat-Wheat-Corn-Soybean (WWCSb)
	4) Opportunity Cropping*
	5) Perennial Grass
Walsh	1) Wheat-Sorghum-Fallow (WSF)
	2) Wheat-Corn-Soybean (WCSb)
	3) Wheat-Wheat-Sorghum-Soybean (WWSSb)
	4) Continuous Row Crop (Alternate corn & sorghum)
	5) Opportunity Cropping [*]
	6) Perennial Grass

Table 2a. Cropping systems for each of the original sites in 1999.

*Opportunity cropping is designed to be continuous cropping without fallow, but not monoculture.

	Оррог	tunity Cropping History	
Year		Site	
	Sterling	Stratton	Walsh
1985	Wheat	Fallow	Sorghum
1986	Wheat	Wheat	Sorghum
1987	Corn	Sorghum	Millet
1988	Corn	Sorghum	Sudex
1989	Attempted Hay Millet	Attempted Hay Millet	Sorghum
1990	Wheat	Wheat	Attempted Sunflower
1991	Corn	Corn	Wheat
1992	Hay Millet	Hay Millet	Corn
1993	Corn	Corn	Fallow
1994	Sunflower	Sunflower	Wheat
1995	Wheat	Wheat	Wheat
1996	Corn	Corn	Fallow
1997	Hay Millet	Hay Millet	Corn
1998	Wheat	Wheat	Sorghum
1999	Corn	Corn	Corn
2000	Austrian Winter Pea	Austrian Winter Pea	Soybean

We measure soil water with the neutron-scatter technique. Aluminum access tubes were installed, two per soil position, in each treatment at each original site in 1988. These tubes are not removed for any field operation and remain in the exact positions year to year. Precautions are taken to prevent soil compaction around each tube. By not moving the tubes over years we get the best possible estimates of soil water use in each rotation. Soil water measurements are made on all soils and rotations at planting and harvest of each crop, which also represents the beginning and end of non-crop or fallow periods. At the new sites soil samples are taken for gravimetric water measurements at crop planting.

Site	Rotations
Briggsdale	1) Wheat-Fallow (WF)
	2) Wheat-Hay Millet-Fallow (WHF)
	3) Wheat-Wheat-Corn-Soybean-Sunflower-Pea (WWCSbSnPea)
	4) Opportunity
Akron	1) Wheat-Fallow (WF)
	2) Wheat-Corn-Fallow (WCF)
	3) Wheat-Corn-Proso-Fallow (WCPF)
	4) Wheat-Corn-Proso (WCP)
Lamar	1) Wheat-Fallow (WF)
	2) Wheat-Sorghum-Fallow (WSF)

Table 2b. Cropping systems for the sites initiated in 2000.	
---	--

Site	Crop	Variety	Seeding Rate	Planting Date
Briggsdale	Wheat (fallow & other)	Lamar & Prowers	60 lbs/A & 60 lbs/A	9/13/99 & 10/1/99
	Corn	Pioneer 3752	15,000 seeds/A	5/10/00
	Hay Millet	Golden German	10 lbs/A	6/1/00
	Sunflower	Triumph 765C	21,000 seeds/A	6/7/00
	Soybean	Asgrow 3901	90,000 seeds/A	5/16/00
Sterling	Wheat	Prairie Red	60 lbs/A & 90 lbs/A	9/20/99 & 10/6/99
	Corn	Asgrow 489	18,000 seeds/A	5/10/00
	Soybean	Asgrow RR	90,000 seeds/A	5/17/00
Akron	Wheat	Halt & Tam 107	60 lbs/A	9/6/99
	Corn	Dekalb DK 493RR	16,100 seeds/A	5/16/00
	Proso	Sunup	12 lbs/A	6/8/00
	Sunflower		Crop Failure	
Stratton	Wheat	Prairie Red	60 lbs/A & 90 lbs/A	9/21/99 & 10/5/99
	Corn	Pioneer 3752	18,000 seeds/A	5/11/00
	Soybean	Asgrow RR	90,000 seeds/A	5/23/00
Lamar	Wheat	Lamar & Prowers	45 lbs/A	12/15/99
	Sorghum	Cargill 770Y	42,600 seeds/A	5/31/00
Walsh	Wheat	Prairie Red	50 lbs/A	10/5/1999
	Sorghum	Cargill 627	40,000 seeds/A	5/31/00
	Corn	Asgrow RX686 RR/YG	19,000 seeds/A	5/31/00
	Soybean	Asgrow 3901 RR	110,000 seeds/A	5/31/00

Table 3. Crop variety, seeding rate, and planting date for each site in the 1999-2000 season.

RESULTS AND DISCUSSION

Climatic Data

Precipitation and its distribution in relationship to plant growth stages control grain and forage yields. Precipitation and temperature vary greatly year to year and rarely do the amounts and distributions match the long-term normals. During the last six months of 1999, the period prior to wheat planting and the fall growth period, precipitation at Sterling and Stratton was about normal, 8.0 in, (203 mm) and 8.5 in. (216 mm), respectively, while at Walsh it was 10.8 in. (274 mm), which is 2.8 in. (71 mm) above the normal (Table 5a). The first half of 2000 was well below normal at Sterling (-3.45 in. or -88 mm), 0.45 in. (11 mm) above normal at Stratton, and -0.38 in. (-10 mm) below normal at Walsh. Precipitation was near normal during the second half of 2000 at all sites (Table 5a).

Precipitation at the three new sites in the last six months of 1999, the period prior to wheat planting and the fall growth period, was above the normals by 2.2 in. (56 mm) at Briggsdale, by 5.1 in. (130 mm) at Akron, and below by -2.1 in. (-53 mm) at Lamar (Table 5b). The first half of 2000 was below normal at all three sites; Briggsdale (-1.4 in. or -36 mm), Akron (-3.2 in. or -81 mm), and Lamar (-1.7 in. or -43 mm. During the second half of 2000 precipitation was far below normal at Briggsdale (-4.7 in. or 120 mm), above normal at Akron (1.4 in. or 34 mm), and far below normal at Lamar (-3.6 in. or -90 mm) (Table 5b).

July and August rainfall are critical for production of corn, sorghum, and soybean. At Sterling, Stratton, Walsh, Briggsdale, and Lamar (July + August) rainfall was below normal, only Akron received its normal amount for those months (Table 5a & 5b). Therefore summer crops were severely stressed at five of the six sites. Specific precipitation distribution, relative to crop growing season, is given for each site in Tables 5c-5h.

<u>Wheat</u>

Wheat yields in the year 2000 for each site, soil and cropping system combination are shown in (Tables 6a & 6b & 10). Since the 2000 yields only reflect annual variability, the reader will find more meaningful long-term comparisons of cropping systems in Tables 7-9.

Wheat yield after fallow (WCF) at Sterling matched the three-year mean of 35 bu/A (2350 kg/ha, but at Stratton wheat after fallow (WCF) yielded only about half of the three-year mean, while at Walsh wheat yield in WSF was 10 bu/A (670 kg/ha) less than the three-year mean . The excellent precipitation during fallow before wheat seeding provided an excellent subsoil water supply at all sites except Lamar where fallow precipitation was below normal. At all sites precipitation during the vegetative stage ranged from above to just average (Tables 5c-5h), which provided a good base for production. Unfortunately, the rainfall during the reproductive stage was well below normal at all sites, an average deficit of -3.3" (84 mm) compared to the normals for that period. This resulted in relatively low wheat yields even following fallow.

Wheat yields in the more intensive systems, WCSb and first year wheat in (W)WCSb ranged from 2 to 9 bu/A (130 to 600 kg/ha) less than wheat after fallow; an average reduction of 38% (Tables 7-9). Yield of second year wheat in the W(W)CSb system was very low at Sterling and Stratton because of downy brome infestations and at Walsh the W(W)SSb was low basically because of less available water. Note at Walsh that second year wheat was about 5 bu/A (335 kg/ha) greater yield than first year wheat, which was all related to available water at planting.

Wheat yield means from 1998-2000 (Tables 7, 8 and 9) for the continuous WCSb system are about 21% less than wheat after fallow. Second year wheat in the W(W)CSb and W(W)SSb systems has yielded about 17% less than wheat after fallow.

Wheat yields at the newest sites were not affected by rotation mainly because wheat in these systems is always after fallow (Table 10). Yield differences due to cultivar, resistant to Russian wheat aphid vs. nonresistant, were not found in 2000 because Russian wheat aphid populations were low (Table 44).

Corn and Sorghum

Corn yields following wheat averaged 19, 43, and 37 bu/A (1190, 2700, 2320 kg/ha) at Sterling, Stratton, and Walsh, respectively in 2000 (Tables 11a & 11b). The below average (July + August) rainfall at Sterling (-1.6" or 41mm) was a critical factor because most of what was received came in August. Furthermore, a very dry June, -2.1" (-53 mm) created stress conditions even before the reproductive period began. Corn yields at Stratton were well below the 72 bu/A long-term average for this site despite the fact that (July + August) was normal. A dry soil profile at planting, coupled with a very dry (May + June) rainfall, -2.7" (-69 mm) less than the long-term average for these months contributed to the low corn yield. Corn yields at Walsh were far below average, again because of low early summer precipitation (Table 5a) despite about average (July + August) rainfall. Late summer stress damaged corn yields too as evidenced by the low August and September rainfall, -2.8" (-71 mm) below normal.

Corn yields at Briggsdale were low, 11 bu/A (690 kg/ha) and 19 bu/A (1190 kg/ha) at Akron (Table 10). Based on long-term July plus August precipitation records, we would expect that the Briggsdale site should average about 50 to 55 bu/A (3400 kg/ha) and the Akron site about 70 bu/A (4390 kg/ha). A combination of low precipitation early in the growing season and average to below (July + August) rainfall caused the yield depression.

Sorghum yields following wheat at Walsh averaged about 22 bu/A (1380 kg/ha) (Tables 11a & 11b), which is about 30 bu/A (1880 kg/ha) below the long-term average. Sorghum yields in the continuous row-crop system at Walsh (Tables 11a & 11b) have always been lower than sorghum after wheat, and 2000 was no exception. Continuous sorghum averaged 17 bu/A (1065 kg/ha), which is 25 bu/A (1570 kg/ha) below the long-term average (Tables 11a & 11b). The extraordinarily dry summer obviously decreased sorghum grain yields no matter the system.

Phosphorus fertilization had no consistent effect on corn or grain sorghum yields on any soil at any site (Tables 11a & 11b). Soil tests indicate that responses to P fertilizer are expected on the sideslopes, but are not likely on the summit or toeslope positions. Recall that the entire experimental plot now receives P fertilizer when planted to wheat. Thus it appears that the carryover P to the corn and sorghum from the fertilized wheat crop has diminished the chance for a response to P fertilizer applied to the corn crop at planting. However, a vegetative growth response usually is evident on the summit and sideslope positions. This "starter - P" response usually does not result in an increase in grain yields.

The sorghum crop at Lamar failed completely due to the dry summer as yields were below 3 bu/A (185 kg/ha)(Table 10).

Proso Millet

Proso millet yields at Akron averaged 13 bu/A (730 kg/ha) (Table 10). These yields were below expectations given the good late summer rainfall.

Sunflower

Sunflower was produced at both the Briggsdale and Akron sites. Yields at Briggsdale averaged 456 lbs/A (510 kg/ha), and at Akron the crop failed (Table 10).

Soybean

____Soybean was grown at Briggsdale, Sterling, Stratton and Walsh for the first time in 1999. Soybean is planted after corn in two systems, WCSb and WWCSb. Choosing a soybean variety is difficult because there has been little testing in the dryland areas of eastern CO. Our choice this year, Asgrow 3901, was based on limited testing we did in 1999.

Soybean failed at Briggsdale in 2000 (Table 10), and yielded 8.5 bu/A (570 kg/ha) at Sterling, 6.5 bu/A (435 kg/ha) at Stratton, and 2 bu/A (135 kg/ha) at Walsh (Tables 10, 16a, 16b, 17, 18, & 19). Because the soybean plant sets pods close to the soil surface under stressed conditions, there were large field losses at all sites.

At \$5.00/bu it requires about 11 bu/A to pay the out of pocket costs, and thus it is obvious that we had less than break even yields. On the positive side the Round Up Ready soybean allowed us to have excellent weed control; especially for sandbur which has been an increasing problem at Sterling and Walsh.

Opportunity Cropping

Opportunity cropping is an attempt to crop continuously without resorting to monoculture. It has no planned summer fallow periods, and is cropped as intensively as possible. In 2000 we grew Austrian winter pea as a forage crop in the opportunity system at Sterling and Stratton and grew soybean for grain at Walsh (Tables 19-21). Both the Austrian winter pea and soybean followed a 1999 corn crop at all three sites. The winter pea forage yields ranged from 0.5 T/A at Sterling to 2.1 T/A at Stratton. The toeslope at Sterling was badly infested with downy brome and there was no winter pea forage yield at that soil position (Tables 19 & 20).

From the initiation of our project in fall 1985 we have grown 13, 13, and 11 crops in 15 years at Sterling, Stratton and Walsh, respectively in the opportunity system (Tables 19-21). Productivity in opportunity cropping has been excellent at Sterling and Stratton, but more marginal at the Walsh site. In 15 years at the two northern sites the system has produced a total of 118 to 164 bushels of wheat, 368 to 427 bushels of corn or sorghum, and 5.1 to 6.8 tons of forage per acre at Sterling and Stratton, respectively. Crop productivity at Walsh over 15 years has been 93 bushels of wheat, 323 bushels of corn or sorghum, 2 bushels of soybean, and 0.5 tons of forage. Two fallow years were included at Walsh and crops failed in two years, 1987 and 1990.

Above average annual precipitation has been a major factor contributing to the excellent productivity; annual precipitation has been 2 to 3 inches above the long-term averages for all sites during the 15 year study period. Therefore, growers should use extreme caution in extrapolating these results to their own operations. On the other hand, the systems could have been even more productive had we managed them more carefully. The missed crop at Sterling

and Stratton in 1989 was a management mistake and not related to weather. The stored water was used by weeds that summer and thus functioned like crop removal in terms of the water budget.

Failure to produce a millet crop at Walsh in 1987 occurred because we chose proso millet, which is not a well adapted crop for that climate. A forage like sudex, for example, would have done well that year. Sunflowers at Walsh in 1990 failed because of jack rabbit damage, and not because of climatic factors. The fallows in 1993 and 1996, however, were necessary. Soybean production was essentially a failure at Walsh in 2000, 2 bu/A (135 kg/ha), and so overall productivity of the opportunity system decreased this year.

Our goal has been to produce wheat and corn or sorghum, the highest value crops, as frequently as possible in our systems. We have used forages to transition from row crops back to fall planted wheat. We harvest the forage and plant winter wheat that fall. Another good possibility is planting proso the year after corn or sorghum, harvesting it as early as possible, and then planting wheat immediately into the proso stubble.

Opportunity cropping has had some advantages over the 3-year systems, such as excellent residue cover and ease of weed control. The combination of crop competition and no fallow has reduced weed pressures compared to other systems. One major difference in weed pressure has been in regard to the invasion of the perennials, Tumblegrass (*Schedonnardis paniculata*) and Red Threeawn (*Aristada longiseta*), in our no-till systems. All systems with fallows, especially WF and WC(S)F, have had devastating invasions of these grassy weeds and have required shallow sweep tillage to control these grasses. The opportunity system has remained free of these weeds. These particular perennial grasses are shallow rooted and cannot get established if surface soil water is low and if a crop is competing for the light. Fallow, where we are saving water and keeping the surface weed free, provides an excellent environment for their establishment. In contrast, opportunity cropping has no long fallows. Crop plants keep the soil surface dry much of the time and the two grassy invaders have not established.

Crop Residue Base

Maintenance of crop residue cover during non-crop periods and during seedling growth stages is vital to maximizing water storage in the soil. Crop residues provide protection from raindrop impact, slow runoff, and decrease water evaporation rates from the soil. Cover also greatly reduces erosion, both by wind and water.

Residue amount is being monitored by soil and crop within each system (Tables 22-25). Residues present at planting are needed to protect the soil during the early plant growth stages when there is little canopy present. Residue levels are subject to annual variations in climate, both in terms of production and decomposition rates. Obviously, drier years decrease production but also may decrease decomposition rates. The net effect is difficult to assess because the particular portion of the year that is extra dry or wet will change the direction of the impact. Residue quantities always are largest on toeslopes at each site, which is a function of productivity level. Walsh and Briggsdale, the most stressed sites, usually have the lowest residue amounts.

Cropping systems that involve a fallow period, like WCF or WSF, have minimum residue levels just prior to wheat planting because this time marks the end of the summer fallow period where decomposition has been occurring with no new additions of crop biomass. Therefore, cover is at its minimum, and soil erosion potential is at its maximum point. One of the advantages of our new continuous cropping systems is the avoidance of a year with no crop residue input.

Residues present at wheat planting are given in Table 22 and 25. Residue amounts were moderate to high at wheat planting in all cropping systems in 2000 except in the WF system at Briggsdale. One might expect that the system with fallow, WC(S)F, in the long-term to have less residue than the continuously cropped systems. However, the small residue input from the low-yielding soybean crops probably has not improved the continuous systems relative to WC(S)F. At corn planting, Table 23, the same thing seems to be true. The systems with fallow are no worse than the continuously cropped systems, and in fact tend to have greater amounts at the Sterling and Stratton sites. Residue amounts at soybean planting, Table 24, are about the same for both continuous cropping systems.

Over the long-term, one would expect the continuously cropped systems to have the most residue present on the surface. However, type of residue will influence accumulation because of differences in surface area for decomposition and C:N ratio of the material. For example, corn because of its large stalk diameter has a smaller surface area available for decomposition relative to wheat. Soybean residue has a C:N ratio that is much smaller than that of either corn or wheat, and therefore will decompose more quickly under similar environmental conditions. Therefore, systems with more corn and wheat are likely to have more residue accumulation, especially since our soybean yields of grain and stover are very low relative to corn and wheat.

Soil Water

Soil water supplies plant demand between rainfall events, but soils of eastern Colorado cannot store sufficient water to sustain a crop for the whole season, even if at field capacity at planting time. We monitor soil water in our systems to determine how efficiently various rotations and crops within rotations are using water. Our concern is how well precipitation is captured in non-crop periods, and subsequently how efficiently water is used for plant growth. Soil water at planting and harvest of each crop is shown by soil depth increment for each crop (Tables 26 to 38).

Wheat:

Soil profile available water was measured at all soil positions in all systems at wheat planting in the fall of 1999 (Tables 26-29 & 36). The continuous cropping systems like WCSb and WWC(S)Sb represent different opportunities for water storage prior to wheat planting and should have the least amount of stored soil water at planting compared to the most in the WCF or WSF systems. Wheat after fallow in the WCF or WSF systems has had 12 months of time to store soil water. Second year wheat in the WWC(S)Sb system has had approximately 2 months (July and August) to store water prior to planting. Wheat in the WCSb and first year wheat in the WWC(S)Sb systems are planted immediately after soybean harvest and essentially have no time between crops to store soil water. In the latter cases, only rainfall received after soybean senescence can be stored. For example, the reader can observe typical water storage differences among the systems can be observed by comparing them at the summit position at Sterling. Wheat after fallow in WCF had 170 mm of water (Table 26), while second year wheat in W(W)CSb had 94mm (Table 29). Wheat planted directly after soybean in the WCSb and (W)WCSb systems on the Sterling summit had 81 and 41 mm of water, respectively Tables 27 & 28).

As expected, available water at planting was highest following fallow (Table 26) compared to the other systems (Tables 27-29). Water use by the wheat crop in WCF or WSF was 2 to 3 times greater than use by wheat in WCSb, (W)WCSb or W(W)CSb at all sites. Basically, wheat uses all of the available stored water and since WCF and WSF had the most water at planting they had the greatest water use. The increased water use translated into greater grain production (Tables 6a & 6b).

Note that the winter wheat plant can easily extract soil water from depths as great as 6 feet (150-180 cm), and that some water was used from the deepest depth in all systems.

Corn and Sorghum:

Soil water contents at corn and sorghum planting were excellent at all sites in spring 2000 (Tables 30-32). Toeslope positions usually have a greater amount of available water than summit or sideslope positions because of possible run-on water, greater soil depth, and finer texture relative to the other positions. Since corn follows wheat in all systems, the time period for soil water recharge is identical. Therefore, one would expect similar storage among systems at a given site and soil position.

Soil depth distribution of the available soil water at corn and sorghum planting and harvest also is shown in these tables. As is observed in most years both corn and sorghum extract soil water from depths as deep as 155 cm (5-6 ft.). Soil water depletion by corn and sorghum was large at all sites and soil positions, ranging from a minimum of 105 mm to a maximum of 215 mm. The toeslope position at Stratton had some recharge during the growing season because of downpours that caused water to run on to that position, and thus water use by corn is underestimated for the toeslope.

Soybean:

Soil water contents at soybean planting tended to be lower than at corn or sorghum planting (Tables 33 & 34). This is as expected because of a shorter soil water recharge period and because corn, the preceding crop in both the WCSb and WWCSb systems greatly depletes the available soil water. The long-term average precipitation from September, when corn water use is usually complete, until soybean planting near the end of May the following spring is 9.0, 8.5, and 8.7 in.(230, 215, & 220 mm) at Sterling, Stratton, and Walsh, respectively. The average precipitation for the soil water recharge period from wheat harvest until corn planting is 11.2, 11.2, and 10.6 in. (285, 285, & 270 mm). Although the recharge period prior to corn is longer and more water is received, the storage efficiency for this period is less than prior to soybean because of high air temperatures just after wheat harvest. Thus the difference in expected available soil water at soybean planting relative to corn is smaller than the differences in total precipitation.

Opportunity:

Soil water data for the opportunity system, which was cropped to Austrian winter pea at Sterling and Stratton in 2000 and soybean at Walsh are shown in Table 35. Note that the Austrian pea obtained most of its water from the upper 75 cm of soil (30 inches) with small withdrawals from 75 to 105 cm. Thus a good reserve of available soil water remained at harvest that would be available for a wheat crop to be planted in the fall. Soybean at Walsh, on the other hand, depleted most of the soil water in the entire profile; leaving little reserve for a fall planted

wheat crop.

Nitrogen Content of Grain and Stover

Nitrogen content was determined for both grain and stover for each crop at each site (Tables 39-42). The reader can calculate crude protein content for each grain type by multiplying wheat grain N content by 5.7; corn, sorghum or soybean grain N content by 6.3; and hay millet, triticale or Austrian winter pea and soybean forage N by 6.3. All nutrient concentrations are on a dry weight basis, consequently crude protein levels will appear high compared to market levels. To obtain market levels, a grain moisture correction must be applied.

On a dry matter basis, wheat proteins averaged 14.7% at Sterling, 14.0% at Stratton, 12.8% at Walsh, 15.5% at Briggsdale, and 16.4% at Lamar (Tables 39a and 42). The relatively high protein contents at Briggsdale and Lamar are the result of dry weather and low grain yield, which concentrates protein. To correct these values for grain moisture content, multiply by 0.88, which results in a protein average of 12.9% at Sterling,12.3% at Stratton, 11.3% at Walsh, 13.6% at Briggsdale, and 14.4% at Lamar. Goos, et al. (1984) established that if grain protein levels were above 11.1%, yield was not likely to be limited by N deficiency. A comparison of 2000 wheat protein to this standard indicates that N fertilization was adequate for the wheat crop at all sites.

Wheat straw N concentrations ranged from 0.35 to 1.03% across sites and averaged 0.66% at Sterling, 0.60% at Stratton and 0.50% at Walsh; thus each ton of straw contained about 12 lbs of N (Table 39b). There was no obvious relationship of straw N concentration and crop rotation at any site.

Nitrogen levels in corn and sorghum grain varied from 1.21 to 2.03 %, which is equivalent to 6.4 to 10.8% protein on a market moisture basis (Table 40a). Corn stover N contents varied from 0.87 to 2.00% and averaged 1.16% (Table 40b). Each ton of corn stalks thus contained an average of 23 lbs of N. No sorghum stover samples were taken in 2000.

Nitrogen levels in soybean grain (Table 41a) ranged from 4.63 to 6.22%, which is equivalent to 25 to 34% crude protein at market moisture content of the grain. No soybean stover samples were taken in 2000.

Soil Nitrate-Nitrogen

Residual soil NO₃-N analyses are routinely conducted on soil profile samples (0-6 ft or 0-180 cm) taken prior to planting for each crop, except for soybean, on each soil at each site (Table 43). These analyses are used to make fertilizer N applications for a particular crop on each soil at each site. Accumulation of residual nitrate allows reduction in the fertilizer rate. By using residual soil nitrate analyses of the root zone we also can determine if nitrate is leaching beneath the root zone. With improved precipitation-use efficiency in the more intensive crop rotations, the amount of nitrate escaping the root zone should be minimized. In the first 12 years of experimentation we found that the wheat-fallow system generally had higher residual nitrates than the 3- or 4-year rotations at the end of fallow prior to wheat planting.

At fall wheat planting in 1999 the amount of nitrate-nitrogen present varied from site to site, but wheat planted after fallow tended to have more nitrate-nitrogen present than other systems. We would expect soil nitrate levels at wheat planting to be highest after fallow in systems like WCF and WSF, intermediate in second year wheat in W(W)CSb, and least in the WCSb and WWCSb systems because of lack of time for N mineralization and little available water to allow mineralization. This basically held true for second year wheat, but since we did not sample soils after the soybean and before wheat planting, we can only hypothesize that wheat in WCSb and first year wheat in (W)WCSb were lowest.

Soil nitrates at corn and sorghum planting were similar to those observed in most years. It is apparent that NO₃-N is not accumulating in the soil profile of any cropping system, which indicates that no system is over-fertilized. If fertilizer N is not used by wheat, for example, it is used by the subsequent corn or sorghum crop. The carry-over N is accounted for in the soil test used and reduces the amount of fertilizer N applied to the crop. In the long-term, the systems with soybean should be the most N efficient because the soybean removes nitrate-nitrogen in addition to the amount fixed symbiotically during its growth period.

REFERENCES

Croissant, R.L., G.A. Peterson, and D.G. Westfall. 1992. Dryland cropping systems in eastern Colorado. Service in Action No. 516. Cooperative Extension. Colo. State Univ. Fort Collins, CO.

Goos, R.J., D.G. Westfall, and A.E. Ludwick. 1984. Grain protein content as an indicator of nitrogen fertilizer needs in winter wheat. Colorado State University Service in Action No. 555.

Greb, B.W., D.E. Smika, N.P. Woodruff and C.J. Whitfield. 1974. Summer fallow in the Central Great Plains. In: Summer Fallow in the Western United States. ARS-USDA. Conservation Research Report No. 17.

Iremonger, C.J., D.G. Westfall, G.A. Peterson, and R.L. Kolberg. 1997. Nitrogen fertilization induced pH drift in a no-till dryland cropping system. Agron. Abstracts p.225. Amer. Soc. of Agron., Madison, WI.

Nielsen, D., G.A. Peterson, R. Anderson, V. Ferreira, W. Shawcroft, and K. Remington. 1996. Estimating corn yields from precipitation records. Cons. Tillage Fact Sheet 2-96. USDA/ARS and USDA/NRCS. Akron, CO.

Peterson, G.A., D.G. Westfall, N.E. Toman, and R.L. Anderson. 1993a. Sustainable dryland cropping systems: economic analysis. Tech. Bul. TB93-3. Colorado State University and Agricultural Experiment Station. Ft. Collins, CO.

Peterson, G.A., D.G. Westfall, W. Wood, and S. Ross. 1988. Crop and soil management in dryland agroecosystems. Tech. Bul. LTB88-6. Colorado State University and Agricultural Experiment Station. Ft. Collins, CO.

Peterson, G.A., D.G. Westfall, W. Wood, L. Sherrod, and E. McGee. 1989. Crop and soil management in dryland agroecosystems. Tech. Bul. TB89-3. Colorado State University and Agricultural Experiment Station. Ft. Collins, CO.

Peterson, G.A., D.G. Westfall, L. Sherrod, C.W. Wood, and E. McGee. 1990. Crop and soil management in dryland agroecosystems. Tech. Bul.TB90-1. Colorado State University and Agricultural Experiment Station. Ft. Collins, CO.

Peterson, G.A., D.G. Westfall, L. Sherrod, C.W. Wood, and E. McGee. 1991. Crop and soil management in dryland agroecosystems. Tech. Bul.TB91-1. Colorado State University and Agricultural Experiment Station. Ft. Collins, CO.

Peterson, G.A., D.G. Westfall, L. Sherrod, E. McGee, and R. Kolberg. 1992. Crop and soil management in dryland agroecosystems. Tech. Bul.TB92-2. Colorado State University and Agricultural Experiment Station. Ft. Collins, CO.

Peterson, G.A., D.G. Westfall, L. Sherrod, R. Kolberg, and B. Rouppet. 1993b. Sustainable dryland agroecosystem management. Tech. Bul. TB93-4. Colorado State University and Agricultural Experiment Station. Ft. Collins, CO.

Peterson, G.A., D.G. Westfall, L. Sherrod, R. Kolberg, and B. Rouppet. 1994. Sustainable dryland agroecosystem management. Tech. Bul. TB94-1. Colorado State University and Agricultural Experiment Station. Ft. Collins, CO.

Peterson, G.A., D.G. Westfall, L. Sherrod, R. Kolberg, and D. Poss. 1995. Sustainable dryland agroecosystem management. Tech. Bul. TB95-1. Colorado State University and Agricultural Experiment Station. Ft. Collins, CO.

Peterson, G.A., D.G. Westfall, L. Sherrod, R. Kolberg, and D. Poss. 1996. Sustainable dryland agroecosystem management. Tech. Bul. TB96-1. Colorado State University and Agricultural Experiment Station. Ft. Collins, CO.

Peterson, G.A., D.G. Westfall, L. Sherrod, D. Poss, K. Larson, and D.L. Thompson. 1997. Sustainable dryland agroecosystem management. Tech. Bul. TB97-3. Colorado State University and Agricultural Experiment Station. Ft. Collins, CO.

Peterson, G.A., D.G. Westfall, L. Sherrod, D. Poss, K. Larson, D.L. Thompson, and L.R. Ahuja. 1998. Sustainable dryland agroecosystem management. Tech. Bul. TB98-1. Colorado State University and Agricultural Experiment Station. Ft. Collins, CO.

Peterson, G.A., D.G. Westfall, F.B. Peairs, L. Sherrod, D. Poss, W. Gangloff, K. Larson, D.L. Thompson, L.R. Ahuja, M.D. Koch, and C.B. Walker. 1999. Sustainable dryland agroecosystem management. Tech. Bul. TB99-1. Colorado State University and Agricultural Experiment Station. Ft. Collins, CO.

Wood, C. W., D. G. Westfall, G. A. Peterson and I. C. Burke. 1990. Impacts of cropping intensity on carbon and nitrogen mineralization under no-till agroecosystems. Agron. J. 82: 1115-1120.

Table 4.	<u>Nitrogen fei</u>	<u>rtilizer appli</u>	<u>cation by so</u>	il and crop f	for 2000.		
					ROTATION		
SITE	SOIL	CROP	WCF	WCSb	WWCSb	<u>OPP¹</u>	
					Lbs/A		
Sterling	Summit	Wheat	63	63	63		
	Sideslope	"	63	63	63		
	Toeslope		63	63	63		
	Summit	Corn	101	101	101		
	Sideslope		101	101	101		
	Toeslope		101	101	101		
	Summit	Soybean	-	6	6		
	Sideslope		-	6	6		
	Toeslope		-	6	6		
			WCF	<u>WCSb</u>	WWCSb	\underline{OPP}^1	
Stratton	Summit	Wheat	63	63	63		
	Sideslope		63	63	63		
	Toeslope	"	63	63	63		
	Summit	Corn	101	101	101		
	Sideslope		101	101	101		
	Toeslope	"	101	101	101		
	Summit	Soybean	-	6	6		
	Sideslope		-	6	6		
	loeslope		-	6	6		
							CONT
			WOD	WCCI	WWGGI	ODD	CONT.
XX7 1 1	G	11/1	<u>WSF</u>	<u>WCSb</u>	<u>wwssb</u>	<u>OPP</u>	CROP
waish	Summit	wheat	70	70	70	-	-
	Tagalana		70	70	70	-	-
	Toestope		70	70	70	-	-
	Summit	Sorghum	51	-	51	_	51
	Sideslope	"	51	-	51	-	51
	Toeslope		51	-	51	-	51
	Summit	Corn	-	106	-		101
	Sideslope	"	-	106	-		101
	Toeslope	"	-	106	-		101
	Summit	Soybean	-	6	6	6	-
	Sideslope	"	-	6	6	6	-
	Toeslope	"	-	6	6	6	-

¹OPP = Planted to Austrian winter pea in 2000 at Sterling and Stratton and received 6 lbs/A of N as a starter fertilizer on all soils.

<u>MONIH</u> -			LOCH				
-	STERLING		STRA	STRATTON		WALSH	
	1000	Normola ¹	lnc	Normala ¹	1000	Normala ¹	
<u>1999</u>	0.05	<u>Normais</u>	1 00	2.80	2.05	<u>Normais</u> 2.62	
JULI	0.95	3.23	1.00	2.80	2.05	2.02	
AUGUSI SEDTEMDED	4.31	1.90	5.50	2.00	2.75	1.90	
OCTODER	0.24	0.76	0.20	1.43	2.23	1./4	
NOVEMBER	0.24	0.70	0.29	0.83	0.89	0.89	
NUVEMBER	0.21	0.30	0.29	0.62	0.55	0.55	
DECEMBER	0.55	0.40	0.57	0.28	0.51	0.31	
SUBIOIAL	8.04	7.83	8.50	8.60	10.78	8.05	
2000	2000	<u>Normals</u>	2000	<u>Normals</u>	2000	<u>Normals</u>	
JANUARY	0.52	0.33	0.53	0.28	0.36	0.27	
FEBRUARY	0.61	0.33	0.66	0.30	0.02	0.28	
MARCH	2.01	1.07	3.04	0.76	3.55	0.81	
APRIL	1.39	1.60	1.52	1.23	1.14	1.15	
MAY	0.70	3.27	0.62	2.70	0.67	2.69	
JUNE	0.92	3.00	1.80	2.45	1.37	2.29	
SUBTOTAL	6.15	9.60	8.17	7.72	7.11	7.49	
2000	2000	Normals	2000	Normals	2000	Normals	
JULY	0.99	3.23	2.43	2.80	3.17	2.62	
AUGUST	2.51	1.90	2.00	2.60	0.78	1.96	
SEPTEMBER	1.55	1.04	0.69	1.45	0.10	1.74	
OCTOBER	1.98	0.76	1.29	0.85	3.94	0.89	
NOVEMBER	0.91	0.50	0.56	0.62	0.15	0.53	
DECEMBER	0.30	0.40	0.13	0.28	0.81	0.31	
SUBTOTAL	8.24	7.83	7.10	8.60	8.95	8.05	
YEAR TOTAL	14.39	17.43	15.27	16.32	16.06	15.54	
18 MONTH	22.43	25.26	23.77	24.92	26.84	23.59	
TOTAL							

Table 5a. Monthly precipitation for the original sites for the 1999-2000 growing season.

TOTAL ¹Normal = 1961-1990 data base

Table 5b. Monthly precipitation for the three new sites for the 1999-2000 growing season.						
			LOCA	TION		
MONTH	BRIGGS	DALE	AKRON	1	LAMAR	
			In	ches		
1999	1999	<u>Normals¹</u>	1999	<u>Normals¹</u>	1999	<u>Normals¹</u>
JULY	1.65	2.63	2.70	2.73	1.43	2.23
AUGUST	4.33	1.77	6.45	2.04	2.62	1.85
SEPTEMBER	2.63	1.29	1.59	0.98	0.66	1.33
OCTOBER	0.39	0.70	0.72	0.60	0.13	0.71
NOVEMBER	0.18	0.36	0.53	0.56	0.12	0.56
DECEMBER	0.00	0.27	0.37	0.32	0.05	0.40
SUBTOTAL	9.18	7.02	12.36	7.23	5.01	7.08
2000	2000	<u>Normals</u>	<u>2000</u>	<u>Normals</u>	2000	<u>Normals</u>
JANUARY	0.10	0.26	0.23	0.33	0.31	0.42
FEBRUARY	0.41	0.18	0.33	0.30	0.22	0.42
MARCH	1.00	0.75	2.25	0.91	3.00	0.90
APRIL	0.75	1.27	1.17	1.32	1.38	1.15
MAY	2.63	2.08	0.80	3.25	0.44	2.50
JUNE	0.33	2.10	0.76	2.62	0.54	2.19
SUBTOTAL	5.22	6.64	5.54	8.73	5.89	7.58
<u>2000</u>	2000	<u>Normals</u>	<u>2000</u>	<u>Normals</u>	2000	<u>Normals</u>
JULY	0.51	2.63	2.65	2.73	1.55	2.23
AUGUST	0.32	1.77	2.12	2.04	0.39	1.85
SEPTEMBER	0.91	1.29	1.62	0.98	0.30	1.33
OCTOBER	0.19	0.70	1.94	0.60	1.19	0.71
NOVEMBER	0.10	0.36	0.15	0.56	0.06	0.56
DECEMBER	0.27	0.27	0.11	0.32	0.04	0.40
SUBTOTAL	2.30	7.02	8.59	7.23	3.53	7.08
YEAR TOTAL	7.52	13.66	14.13	15.96	9.42	14.66
18 MONTH	16.70	20.68	26.49	23.19	14.43	21.74
TOTAL						
¹ Normal = 1961-1990 data	a base					

		Growing	Season Segm	lents	
	WI	Wheat		C	Corn
	Vegetat.	Reprod.		Preplant	Growing Season
	<u>Sep - Mar</u>	Apr - Jun		<u>Jul - Apr</u>	May - Oct
Year			Inches		
1987-88	5.2	9.9		11.1	15.8
1988-89	3.1	6.5		10.5	14.3
1989-90	5.1	4.7		11.8	13.0
1990-91	3.8	7.2		12.3	11.7
1991-92	4.5	4.8		9.1	14.8
1992-93	4.5	6.2		15.5	10.6
1993-94	6.4	3.0		10.2	6.1
1994-95	7.3	14.4		9.6	17.2
1995-96	4.2	9.2		7.5	18.0
1996-97	4.7	7.0		10.6	21.4
1997-98	5.5	4.9		16.7	13.8
1998-99	5.8	7.7		13.5	12.8
1999-00	5.7	3.0		12.6	8.6
Long Term	4.4	7.9		11.2	13.2
riverage					

Table 5c. Precipitation by growing season segments for Sterling from 1987-2000. Growing Season Segments

Table 5d. Precipitation by growing season segment for Stratton from 1987 -2000.

		Growing	Season Segments
	Wheat		Corn
	Vegetat.	Reprod.	Preplant Growing Season
	<u>Sep - Mar</u>	Apr - Jun	Jul - Apr May - Oct
Year			Inches
1987-88	4.3	7.2	8.8 12.6
1988-89	3.0	9.4	5.3 15.5
1989-90	5.3	6.1	11.0 13.4
1990-91	4.4	4.1	10.7 14.7
1991-92	3.3	6.1	14.2 13.6
1992-93	3.3	3.8	11.8 14.7
1993-94	4.3	7.8	16.7 13.5
1994-95	7.0	10.0	14.8 13.7
1995-96	3.5	6.0	8.1 14.5
1996-97	2.9	6.2	12.2 23.2
1997-98	8.0	5.9	22.6 13.9
1998-99	4.4	8.5	15.6 12.3
1999-00	6.2	3.9	14.2 8.8
Long Term Average	4.5	6.4	11.2 12.9

		Growing	Season Segments
	Wheat		Sorghum & Corn
	Vegetat.	Reprod.	Preplant Growing Season
	Sep - Mar	Apr - Jun	Jul - Apr May - Oct
Year			Inches
1987-88	4.3	7.6	7.4 11.1
1988-89	4.1	11.5	8.1 20.2
1989-90	5.7	7.4	14.1 12.5
1990-91	5.0	7.7	11.7 12.2
1991-92	2.7	5.8	7.1 13.2
1992-93	6.1	9.2	13.8 14.5
1993-94	3.2	5.3	8.7 16.3
1994-95	4.6	7.2	16.6 7.2
1995-96	1.7	3.5	1.9 17.1
1996-97	5.8	5.3	17.2 11.3
1997-98	6.9	2.3	12.3 13.3
1998-99	8.2	7.4	19.4 14.5
1999-00	7.9	3.2	15.8 10.0
Long Term	4.8	6.1	10.6 12.2
Average			

 Table 5e. Precipitation by growing season segment for Walsh from 1987-2000.

 Growing Season Segments

1 abic 51. 110	Table 51. Treepitation by growing season segment for Driggsdate from 1777-2000.							
Growing Season Segments								
	W	heat	So	rghum				
	Vegetat.	Reprod.	Preplant	Growing Season				
	<u>Sep - Mar</u>	Apr - Jun	<u>Jul - Apr</u>	May - Oct				
Year			Inches					
1997-98	3.9	3.9	11.6	11.9				
1998-99	4.6	8.4	15.3	12.4				
1999-00	4.7	3.7	11.4	4.9				
Long Term	3.8	5.5	9.5	10.6				
Average								

Table 5f Precinitation by growing season segment for Briggsdale from 1997-2000

Table 5g. Precipitation by growing season segment for Akron from 1997-2000.

	Growing Season Segments					
	W	heat	Corn			
	Vegetat.	Reprod.	Preplant Growing Season			
	<u>Sep - Mar</u>	Apr - Jun	Jul - Apr May - Oct			
Year			Inches			
1997-98	5.6	2.1	11.1 6.5			
1998-99	2.8	7.9	11.4 17.1			
1999-00	6.0	2.7	16.3 9.9			
Long Term Average	4.0	7.2	10.1 12.2			

Table 5h. Precipitation by growing season segment for Lamar from 1997-2000.

Growing Season Segments				
W	heat	Sorghum		
Vegetat.	Reprod.	Preplant Growing Season		
<u>Sep - Mar</u>	Apr - Jun	Jul - Apr May - Oct		
		Inches		
10.5	2.6	19.4 15.9		
7.5	9.2	22.5 11.0		
4.5	2.4	9.9 4.4		
4.7	5.8	10.0 10.8		
	W Vegetat. Sep - Mar 10.5 7.5 4.5 4.7	Growing S Wheat Reprod. Sep - Mar Apr - Jun 10.5 2.6 7.5 9.2 4.5 2.4 4.7 5.8		
Table 6a.	Grain and stover	vields for WHEAT in English units in	2000.	
-----------	------------------	--------------------------------------	-------	
-----------	------------------	--------------------------------------	-------	

	SLOPE POSITION											
		SI	JMMIT			SIDE	SLOPE			TOES	LOPE	
SITE												
&	G	RAIN	S1	OVER	(GRAIN	S1	OVER		GRAIN	STO	OVER
ROTATION	NP*	NP	NP*	NP	NP*	NP	NP*	NP	NP*	NP	NP*	NP
												<i>(</i>)
STERLING:	Bu	./A	lbs	./A	Bu	ı./A	lbs	./A	Bu./A lbs./A			
WCF	33	34	4325	5025	30	29	3480	2910	42	43	6690	5205
WCSb	14	15	1550	1865	18	18	1720	2310	16	15	1940	1875
(W)WCSb	15	16	1590	1770	17	21	1765	2300	8	10	1190	2160
W(W)CSb	29	27	3130	3215	24	27	2380	3040	23	19	2820	2790
	NP*	NP	NP*	NP	NP*	NP	NP*	NP	NP*	NP	NP*	NP
OTDATTON						. / A		/ •		D / A		1.
STRATION:	Bu	./A	Ibs	./A	Bi	Bu./A lbs./A			t	3u./A	Ibs	./A
WCF	21	22	3485	3550	10	9	2910	3620	23	26	7655	5970
WCSb	11	12	3405	1375	7	9	800	1835	30	34	10490	5375
(W)WCSb	5	8	1050	1375	6	5	1245	1170	33	34	4740	5065
W(W)CSb	10	8	3330	4100	4	2	3950	1480	13	13		
	NP*	NP	NP*	NP	NP*	NP	NP*	NP	NP*	NP	NP*	NP
WALSH:	Bu	./A	lbs	./A	Bu	ı./A	lbs	./A	E	3u./A	lbs	./A
WSF	24	25	3395	2605	27	31	2815	3905	33	32	3100	3260
WCSb	12	16	1170	1350	13	16	1045	1755	14	14	1625	1775
(W)WSSb	11	17	985	1705	11	11	1035	1285	11	15	1425	1780
W(W)SSb	16	16	2075	1575	14	15	1775	2525	22	27	2540	3470

Wheat grain yield expressed at 12% moisture.
 * Only receives phosphorus in wheat phase of each rotation.

	SLOPE POSITION																	
													_			_		
			SU	MMII					S	IDE					10)E		
SILE	~ •	A 161	0.7.0		TO	T A 1		A 181	070		TO	T . I	0.0	A 161	670		то	
∝ ROTATION	NP*	NP	NP*	NP	NP*	NP	NP*	NP	NP*	NP	NP*	NP	NP*	AIN NP	NP*	NP	NP*	NP
STERLING:			kg/	ha					kg	g/ha			kg/hakg/ha					
WCF	2200	2315	4845	5630	7045	7945	2020	1945	3895	3260	5915	5205	2850	2900	7495	5830	10345	8730
WCSb	920	1020	1735	2090	2655	3110	1215	1235	1930	2590	3145	3825	1055	1035	2170	2100	3225	3135
(W)WCSb	1040	1080	1780	1980	2820	3060	1130	1405	1975	2575	3105	3980	540	685	1335	2420	1875	3105
W(W)CSb	1970	1830	3505	3600	5475	5430	1635	1820	2665	3405	4300	5225	1540	1280	3160	3125	4700	4405
CTRATTON.	ka/ha								المعا	'h a					lin l	h		
STRATION:			кg/	na					кg/	na					кg/	na		
WCF	1380	1475	3905	3980	5285	5455	680	640	3260	4060	3940	4700	1555	1730	8575	6690	10130	8420
WCSb	740	790	3810	1540	4550	2330	475	580	895	2055	1370	2635	1985	2305	11750	6020	13735	8325
(W)WCSb	350	570	1180	1540	1530	2110	435	320	1395	1310	1830	1630	2220	2310	5305	5675	7525	7985
W(W)CSb	700	575	3330	4100	4030	4675	290	150	3950	1480	4240	1630	890	870				
WALSH:			ka/	ha					ko	ı/ha					ka/	ha		
-			5												5			
WSF	1635	1700	3800	2920	5435	4620	1845	2120	3150	4375	4995	6495	2210	2145	3470	3650	5680	5795
WCSb	840	1055	1310	1510	2150	2565	910	1100	1170	1970	2080	3070	955	975	1820	1985	2775	2960
(W)WSSb	770	1150	1105	1910	1875	3060	770	775	1160	1440	1930	2215	780	1010	1595	1990	2375	3000
W(W)SSb	1110	1090	2325	1765	3435	2855	930	980	1990	2825	2920	3805	1510	1830	2845	3890	4355	5720

 Table 6b. Grain, stover and total biomass yields for WHEAT in 2000.

	SLOPE POSITION						
	ROTATION	SUMMIT	SIDE	TOE	MEAN		
			Bu/A				
1998	WCF	28	16	40	28		
	WCP	32	33	30	32		
	(W)WCP		No yiel	db			
	W(W)CP	32	36	46	38		
1999	WCF	36	40	46	41		
	WCSb	33	24	31	29		
	(W)WCSb	29	28	29	29		
	W(W)CSb		No yiel	d			
2000	W(W)CSb WCF	 34	No yiel 30	42	35		
2000	W(W)CSb WCF WCSb	 34 14	No yiel 30 18	42 16	35 16		
2000	W(W)CSb WCF WCSb (W)WCSb	 34 14 16	No yiel 30 18 19	4 42 16 9	35 16 15		
2000	W(W)CSb WCF WCSb (W)WCSb W(W)CSb	 34 14 16 28	No yiel 30 18 19 26	42 16 9 21	35 16 15 25		
2000 	W(W)CSb WCF WCSb (W)WCSb W(W)CSb WCF	 34 14 16 <u>28</u> 33	No yiel 30 18 19 <u>26</u> 29	42 16 9 21 43	35 16 15 <u>25</u> 35		
2000 MEAN	W(W)CSb WCF WCSb (W)WCSb W(W)CSb WCF WCSb	 34 14 16 28 33 26	No yiel 30 18 19 26 29 25	42 16 9 21 43 26	35 16 15 25 35 26		
2000 MEAN	W(W)CSb WCF WCSb (W)WCSb W(W)CSb WCF WCSb (W)WCSb	 34 14 16 28 33 26 22	No yiel 30 18 19 <u>26</u> 29 25 24	42 16 9 21 43 26 20	35 16 15 25 35 26 22		

Table 7.Wheat yields by rotation at optimum fertility by yearyear and soil position at STERLING from 1999-2000.

Table 8.Wheat yields by rotation at optimum fertility by year
year and soil position at STRATTON from 1999-2000.

		SLOPE POSITION						
	ROTATION	SUMMIT	SIDE	TOE	MEAN			
			Bu/A					
1998	WCF	37	29	51	39			
	WCP	34	34	48	39			
	(W)WCP	35	31	40	35			
	W(W)CP	37	39	51	42			
1999	WCF	55	38	50	48			
	WCSb	36	27	34	32			
	(W)WCSb	34	30	44	36			
	W(W)CSb		No yiel	d				
2000	WCF	22	10	24	19			
	WCSb	12	8	32	17			
	(W)WCSb	6	6	34	15			
	W(W)CSb	9	3	13	8			
MEAN	WCF	38	26	42	35			
	WCSb	27	23	38	29			
	(W)WCSb	25	22	39	29			
	W(W)CSb	23	21	32	25			

		SLOPE POSITION								
	ROTATION	SUMMIT	SIDE	TOE	MEAN					
			Bu//	A						
1998	WSF	31	31	38	33					
	WCSf	25	31	40	32					
	(W)WSSf	8	12	20	13					
	W(W)SSf	27	29	32	29					
1999	WSF	52	52	54	53					
	WCSb	40	46	52	46					
	(W)WSSb	37	36	37	37					
	W(W)SSb	54	50	52	52					
2000	WSF	24	29	32	28					
	WCSb	14	14	14	14					
	(W)WSSb	14	11	13	13					
	W(W)SSb	16	14	24	18					
MEAN	WSF	36	37	41	38					
	WCSb	26	30	35	30					
	(W)WSSb	20	20	23	21					
	W(W)SSb	32	31	36	33					

Table 9.Wheat yields by rotation at optimum fertility by yearyear and soil position at WALSH from 1999-2000.

		Wh	eat		Corn/Sorghum Millet		М	illet	Sunflower		Soybean		Peas	
SITE	GRA	IIN	STOV	ER	GRAIN	STOVER	GRAIN	STOVER	GRAIN	STOVER	GRAIN	STOVER	Hay	Stubble
& ROTATION	Susceptible Variety	Resistant Variety	Susceptible Variety	Resistant Variety										
BRIGGSDALE:	bu/	A	lbs/	A	bu/A	lbs/A	lb/A	lbs/A	lb/A	lbs/A	bu/A	lbs/A	lb/ A	lbs/A
WF	18	21	4406	4177										
WM(Hay)F	15	16	3281	4260			No	Yield						
(W)WCSbSfP	12	13	1912	1442	11	858			456	750	No	Yield	No	yield
W(W)CSbSfP	11	12	1658	3067										
Opportunity											No	Yield		
AKRON:	bu/	A	lbs/	A	bu/A	lbs/A	bu/A	lbs/A	lb/A	lbs/A				
WF	27	29	4534	4153										
WCF	28	28	4154	4011	20	1230								
WCM (Proso)	18	19	2466	3319	18	2635	13	692						
WCSfF	26	27	4456	4229	10	783			No	Yield				
LAMAR:	bu/	A	lbs/	A	bu/A	lbs/A								
WF	16	12	2483	2159										
WSF	12	14	2117	2483	2	330								

1. Grain or hay yield expressed at the following moistures: Wheat - 12%; Corn - 15.5%; Hay millet @ Briggsdale - 15%; Proso millet @ Akron - 10%; Sunflowers - 10%; Soybeans - 13%; Pea Hay - 15%.

		SLOPE POSITION											
		S	UMMIT				SID	ESLOPE			то	ESLOPE	
SITE										1			
&	GR	AIN	ST	OVER		GR	AIN	ST	OVER		GRAIN	ST	OVER
ROTATION	N	NP	N	NP		N	NP	N	NP	N	NP	N	NP
STERLING:	Bu./	A	lb	s./A		Bu	./A	lb	s./A		Bu./A	lb:	s./A
	2 0.17			• • • •			.,,						
WCF	7	10	870	905		15	23	500	1180	25	30	570	1010
WCSb	17	18	1075	815		26	18	750	540	22	26	510	765
WWCSb	8	6	1310	1040		21	19	680	590	26	24	875	1000
	Ν	NP	Ν	NP		N	NP	N	NP	N	NP	Ν	NP
STRATTON	Bu /	Α	lh	s /A		Bu	/A	lh	s /A		Bu /A	lb	s /A
	Bu.n	/ \.		0.77		Du			0.77		Du.m.	10	0.771.
WCF	41	36	1545	695		14	27	565	690	54	52	1740	2990
WCSb	53	41	1475	1255		51	39	1540	1360	56	49	2280	1980
WWCSb	46	42	1240	965	:	37	42	785	765	49	47	890	935
	N	NP	N	NP		N	NP	Ν	NP	N	NP	Ν	NP
WAISH	Bu	/Δ	lbs	α /Δ		Ru	/Δ	lbs	α /Δ		Bu /A	lb	s /A
WALON.	Du.	/	10.	5.//		Du	./	10.	5./ /		Du./A	u	3./A
WSF	22	22	790	785		23	29	840	1035	16	19	570	695
WCSb	20	19	890	850		12	10	530	435	1	2	65	65
WWSSb	21	33	760	1195		23	36	815	1295	15	22	525	780
CS (Corn)	5	6	220	285		6	5	255	225	1	1	35	25
CS (Sorghum)	23	24	830	885		21	23	755	820	6	3	200	110

|--|

Corn grain yield expressed at 15.5% moisture.
 Sorghum grain yield expressed at 14% moisture.

			SU	мміт					S	IDE					тс	DE		
SITE																		
&	GR	AIN	STO	VER	то	TAL	GR	AIN	STO	VER	то	TAL	GR	AIN	STO	VER	то	TAL
ROTATION	N	NP	N	NP	Ν	NP	N	NP	Ν	NP	Ν	NP	N	NP	N	NP	Ν	NP
STERLING:			-kg/ha-					kg/ha							kg/l	าล		
									-									
WCF	440	635	910	945	1350	1580	930	1440	520	1235	1450	2675	1550	1885	595	1060	2145	2945
WCSb	1085	1110	1120	850	2205	1960	1600	1100	785	570	2385	1670	1355	1600	535	800	1890	2400
WWCSb	500	390	1370	1090	1870	1480	1290	1190	715	620	2005	1810	1620	1510	915	1045	2535	2555
	N	NP	Ν	NP	Ν	NP	N	NP	Ν	NP	Ν	NP	N	NP	Ν	NP	Ν	NP
STRAITON:		kg/ha							K	g/ha					kg	/ha		
WCF	2580	2260	1615	725	4195	2985	855	1670	590	720	1445	2390	3400	3260	1820	3125	5220	6385
WCSb	3335	2580	1540	1310	4875	3890	3220	2475	1610	1420	4830	3895	3485	3070	2385	2070	5870	5140
WWCSb	2860	2610	1295	1010	4155	3620	2330	2660	820	800	3150	3460	3085	2975	935	980	4020	6955
	Ν	NP	Ν	NP	Ν	NP	N	NP	Ν	NP	Ν	NP	N	NP	Ν	NP	Ν	NP
WALSH:			kg/	/ha					kg	/ha					·kg/h	а		
WSF	1370	1365	825	820	2195	2185	1455	1795	875	1080	2330	2875	985	1210	595	730	1580	1940
WCSb	1225	1165	935	885	2160	2050	725	595	550	455	1275	1050	90	105	70	70	160	175
WWSSb	1320	2070	795	1250	2115	3320	1410	2250	850	1355	2260	3605	910	1350	550	810	1460	2160
CS (Corn)	300	395	230	300	530	695	350	310	265	235	615	545	50	35	40	30	90	65
CS(Sorahum	1435	1535	865	925	2300	2460	1310	1425	790	860	2100	2285	350	190	210	115	560	305

SLOPE POSITION

Table 11b. Grain, stover and total biomass yields for CORN and SORGHUM in 2000.

YEAR		SLOPE POSITION									
	ROTATION	SUMMIT	SIDE	TOE	MEAN						
			Bu/A	\							
1998	WCF	50	44	54	49						
	WCSb	56	71	96	74						
	WWCSb	44	55	84	61						
1999	WCF	56	62	81	66						
	WCSb	50	56	70	59						
	WWCSb	39	67	66	57						
2000	WCF	10	23	28	20						
	WCSb	18	21	24	21						
	WWCSb	7	20	25	17						
MEAN	WCF	39	43	54	45						
	WCSb	41	49	63	51						
	WWCSb	30	47	58	45						

Table 12. Corn yields by rotation at optimum fertility by yearand soil position at STERLING from 1999-2000.

Table 13. Corn yields by rotation at optimum fertility by yearand soil position at STRATTON from 1999-2000.

YEAR		SLOPE POSITION									
	ROTATION	SUMMIT	SIDE	TOE	MEAN						
			/A								
1998	WCF	122	94	117	111						
	WCSb	110	94	124	109						
	WWCSb	122	100	117	113						
1999	WCF	88	80	100	89						
	WCSb	73	70	96	80						
	WWCSb	82	86	108	92						
2000	WCF	38	20	53	37						
	WCSb	47	45	52	48						
	WWCSb	44	40	48	44						
MEAN	WCF	83	65	90	79						
	WCSb	77	70	91	79						
	WWCSb	83	75	91	83						

	ana oon poo				
YEAR			SLOPE PO	SITION	
	ROTATION	SUMMIT	SIDE	TOE	MEAN
			Bu/	'A	
1998	WSF	60	76	76	71
	WCSb	38	56	100	65
	WWSSb	61	74	80	72
	Cont. Row C	54	62	80	65
	Cont. Row S	60	64	60	61
1999	WSF	64	68	60	64
	WCSb	46	65	54	55
	WWSSb	59	70	54	61
	Cont. Row C	45	58	50	51
	Cont. Row S	52	58	45	52
2000	WSF	22	26	18	22
	WCSb	20	11	2	11
	WWSSb	27	24	18	23
	Cont. Row C	6	6	1	4
	Cont. Row S	24	22	4	17
MEAN	WSF	49	57	51	52
	WCSb	35	44	22	34
	WWSSb	49	56	51	52
	Cont. Row C	35	42	44	40
	Cont. Row S	45	48	36	43

Table 14. Sorghum and corn yields by rotation at optimum fertilityand soil position at WALSH from 1999-2000.

					SLOPE POSITION							
		SI	JMMIT			SIDI	ESLOPE			TOES	LOPE	
SITE	0.0		67		0.0	A 181	67				670	
& DOTATION	GRA		57	OVER	GR		570	UVER	Gr		510	VER
RUTATION	N	NP	N	NP	N	NP	N	NP	N	NP	N	NP
STERLING:	Bu./.	A	lb	s./A	Bu	./A	lb:	s./A	B	u./A	lbs	./A
WCSb	8	10	320	515	4	11	160	520	9	8	665	450
WWCSb	9	10	455	475	10	11	645	695	9	8	670	690
	N	NP	N	NP	N	NP	N	NP	N	NP	Ν	NP
STRATTON:	Bu./.	A	lb	s./A	Bu	./A	lb:	s./A	B	u./A	lbs	./A
WCSb	7	13	410	700	5	6	335	390	11	11	570	990
WWCSb	1	3	50	175	3	4	190	230	4	10	340	750
	N	NP	N	NP	N	NP	N	NP	N	NP	N	NP
WALSH:	Bi	u/A	lł	o./A	E	3u/A	lb:	s./A		Bu/A	lbs	./A
WCSb	1	1	50	80	2	3	140	215	2	3	170	230
WWSSb	2	2	190	140	3	2	150	145	2	2	120	140
OPP	1	2	40	110	2	2	90	110	2	2	150	130

 Table 15a.
 Grain and stover yields for Soybean at Sterling, Stratton and Walsh in English units in 2000.

1. Soybean yield expressed at 13.0% moisture.

			SLOPE POSITION) N								
	SUMMIT						SID	ESLOP	E				TOES	LOPE				
SITE & ROTATION	GRA	AIN NP	STO	VER NP	TO N	TAL	GR	AIN NP	STO	VER NP	TC	DTAL	GR	AIN NP	STO	VER	TO	
ROTATION		INI	IN		IN				IN		IN				IN		IN	INI
STERLING:			kg	/ha					kg/	'na			kg/ha					
WCSb	530	600	335	535	865	1135	255	660	330	545	585	1205	540	500	695	470	1235	970
WWCSb	530	605	475	495	1005	1100	635	700	670	730	1305	1430	590	520	700	720	1290	1240
	N	NP	N	NP	N	NP	N	NP	N	NP	N	NP	N	NP	N	NP	N	NP
STRATTON:			kg	/ha					kg/	'ha					kg/	′ha		
WCSb WWCSb	430 60	800 195	430 105	730 180	860 165	1530 375	305 215	390 220	350 395	410 240	655 610	800 460	665 265	670 640	600 350	1030 785	1265 615	1700 1425
	N	NP	N	NP	N	NP	N	NP	N	NP	N	NP	N	NP	N	NP	N	NP
WALSH:			kg	/ha					kg/	ˈha					kg/	′ha		
WCSb	70	80	50	85	120	165	125	160	145	225	270	385	150	190	175	240	325	430
WWSSB OPP	135 50	130 105	195 40	145 115	330 90	275 220	155 95	150 140	155 90	150 120	310 185	300 260	105 125	110 100	125 155	150 135	230 280	260 235

 Table 15b. Grain and stover yields for Soybean at Sterling, Stratton and Walsh in 2000.

1. Soybean yield expressed at 13.0% moisture.

	your and our	i pootion at			2000.				
YEAR		SLOPE POSITION							
	ROTATION	SUMMIT	SIDE	TOE	MEAN				
			Bi	u/A					
1999	WCSb	10	9	11	10				
	WWCSb	10	12	9	10				
2000	WCSb	9	8	8	8				
	WWCSb	10	10	8	9				
MEAN	WCSb	10	8	10	9				
	WWCSb	10	11	8	10				

Table 16. Soybean yields by rotation at optimum fertility by year and soil postion at STERLING from 1999-2000.

Table 17. Soybean yields by rotation at optimum fertility by vear and soil postion at STRATTON from 1999-2000.

	your und oor	i pootion at	OIIIAIIO		0 2000.					
YEAR		SLOPE POSITION								
	ROTATION	SUMMIT	SIDE	TOE	MEAN					
			Bu	ı/A						
1999	WCSb	14	8	18	13					
	WWCSb	15	10	22	16					
2000	WCSb	10	6	11	9					
	WWCSb	2	4	7	4					
MEAN	WCSb	12	7	14	11					
	WWCSb	8	7	16	10					

Table 18. Soybean yields by rotation at optimum fertility by vear and soil postion at WALSH from 1999-2000.

	year and son	postion at a		1555-2000.					
YEAR	SLOPE POSITION								
	ROTATION	SUMMIT	SIDE	TOE	MEAN				
1999	WCSb	8	11	16	12				
	WWSSb	8	10	14	11				
2000	WCSb	1	2	2	2				
	WWSSb	2	2	2	2				
MEAN	WCSb	4	6	9	7				
	WWSSb	5	6	8	6				

<u>YEAR</u>	CROP	SLOPE POSITION						
		<u>SUMMIT</u>	<u>SIDE</u>	<u>T0E</u>	MEAN			
			Bu/A (or T/A				
1986	Wheat	27	25	28	27			
1987	Corn	46	59	70	58			
1988	Corn	52	60	63	58			
1989	Attempted Hay Millet	0	0	0	0			
1990	Wheat	29	40	42	37			
1991	Corn	57	69	105	77			
1992	Hay Millet	2.35	2.45	3.17	2.66			
1993	Corn	30	37	44	37			
1994	Sunflower	0	0	0	0			
1995	Wheat	25	31	32	29			
1996	Corn	68	72	84	75			
1997	Hay Millet	2.22	1.97	1.98	2			
1998	Wheat	24	24	26	25			
1999	Corn	55	67	66	63			
2000	Austrian winter pea	0.72	0.70	0.00	0.47			
Total	Wheat (4)	105	120	128	118			
Yields	Corn (6)	308	364	432	368			
	Forage (3)	4.57	4.42	5.15	4.71			
	Sunflower (1)	0	0	0	0			
	Austrian winter pea(1)	0.72	0.70	0.00	0.47			

Table 19. Grain and forage yields in the opportunity cropping system at STERLING.

<u>YEAR</u>	<u>CROP</u>	SLOPE POSITION							
		<u>SUMMIT</u>	<u>SIDE</u>	<u>T0E</u>	MEAN				
			Bu/A o	r T/A					
1986	Wheat	32	29	23	28				
1987	Sorghum	31	34	51	39				
1988	Sorghum	30	28	52	37				
1989	Attempted Hay Millet	0	0	0	0				
1990	Wheat	45	32	78	52				
1991	Corn	89	75	114	93				
1992	Hay Millet	2.75	2.52	2.55	2.61				
1993	Corn	47	54	44	48				
1994	Sunflower	0	0	0	0				
1995	Wheat	55	47	50	51				
1996	Corn	110	118	124	117				
1997	Hay Millet	2.37	2.34	1.55	2.09				
1998	Wheat	30	32	40	34				
1999	Corn	93	80	106	93				
2000	Austrian winter pea	2.07	1.56	2.80	2.14				
Total	Wheat (4)	162	140	191	164				
Yields	Corn & Sorghum (6)	400	389	491	427				
	Forage (3)	5.12	4.86	4.10	4.69				
	Sunflower (1)	0	0	0	0				
	Austrian winter pea(1)	2.07	1.56	2.80	2.14				

Table 20.Grain and forage yields in the opportunity cropping system at
STRATTON.

YEAR	CROP	SLOPE POSITION							
		<u>SUMMIT</u>	<u>SIDE</u>	<u>T0E</u>	MEAN				
			Bu/A o	r T/A					
1986	Sorghum	34	25	42	34				
1987	Millet	0	0	0	0				
1988	Forage	0.39	0.32	0.71	0.47				
1989	Sorghum	18	38	82	46				
1990	Sunflower	0	0	0	0				
1991	Wheat	40	38	44	41				
1992	Corn	45	46	56	49				
1993	Fallow	0	0	0	0				
1994	Wheat	32	37	46	38				
1995	Wheat	13	12	18	14				
1996	Fallow	0	0	0	0				
1997	Corn	54	63	83	67				
1998	Sorghum	72	80	84	79				
1999	Corn	49	54	40	48				
2000	Soybean	2	2	2	2				
Total	Wheat (3)	85	87	108	93				
Vielde	Sorghum & Corn (6)	272	306	387	322				
TIElus	Eorage (1)	0.39	0 32	0.71	0.47				
	Sunflower (1)	0.09	0.52	0.71	0.+7 0				
		0	0	0	0				
	Sovbean (1)	2	2	2	2				

Table 21.Grain and forage yields in the opportunity cropping system at
WALSH.

Table 22. Cro	n residue weights on	all plots in WHFAT	during the 1999-2000 crop year ا	
	p residue weights on		auting the 1999-2000 crop year	<u>.</u>

		SLOPE POSITION									
					TOP						
SITE	S		SIDES	DLUPE	TOE	SLUPE					
&	Pre	e-Plant	Pr	e-Plant	P	re-Plant					
ROTATION	<u>NP*</u>	NP	NP*	NP	NP*	NP					
STERLING:	k	g/ha	kg/ha		kg/ha						
WCF	2610	5290	4670	4275	5430	4455					
WCSb	3620	3660	3525	3360	3790	3950					
(W)WCSb	3200	4475	3195	4775	5040	4810					
W(W)CSb	5520	3295	3130	4550	4765	4340					
	NP*	NP	NP*	NP	NP*	NP					
STRATTON:	kg/ha		kg/	′ha	kg/	ha					
WCF	5870	5675	5330	4310	9980	6850					
WCSb	2550	3900	3295	3005	6690	6365					
(W)WCSb	6030	3805	3375	4300	5560	6190					
W(W)CSb	2030	3530	4090	2640	2735	3370					
	NP*	NP	NP*	NP	NP*	NP					
WALSH:	kg/	/ha	kg/	′ha	kg/ha						
WSF	1860	2395	3290	3885	3635	2205					
WCSb	1725	2595	2560	2840	3540	2455					
(W)WSSb	705	1445	1320	2540	2275	2980					
W(W)SSb	3200	3315	2905	2990	3845	2970					

For conversion to lbs/Acre multiply kg/ha by 0.893.
 * Only receives phosphorus in wheat phase of each rotation.

	SLUPE PUSITION							
					-			
	SUN	иміт	SIDES	SLOPE	TOES	_OPE		
SITE &	Pre	-Plant	Pre	Plant	Pre-F	Plant		
ROTATION	NP*	<u>NP</u>	<u>NP*</u>	NP	<u>NP*</u>	NP		
STERLING:	kg	/ha	kg/ha		kg/ha			
WCF	3070	3175	3615	5860	2810	3630		
WCSb	1925	1780	2250	2020	2980	1830		
WWCSb	1235	1060	2200	2060	820	2210		
	NP*	NP	NP*	NP	NP*	NP		
STRATTON:	kg/ha		kg/ha		kç	g/ha		
WCF	2090	2755	3515	3360	3645	2875		
WCSb	1500	2475	1775	2870	1310	2090		
WWCSb	2725	3660	4455	2495	4300	1695		
	NP*	NP	NP*	NP	NP*	NP		
WALSH:	kg	/ha	k	g/ha	kg/ha			
WSF	4310	5360	5800	3845	4590	4395		
WCSb	4710	3235	6020	4590	2675	3555		
WWSSb	5620	5030	6350	3620	4350	4390		
CC (C)	6310	4080	4260	4320	2685	4190		
CC (S)	3300	3335	3690	3485	4350	4355		

For conversion to lbs/Acre multiply kg/ha by 0.893.
 * Only receives phosphorus in wheat phase of each rotation.

[SLOPE POSITION									
[SUN	I MIT	SIDE	SLOPE	TOESL	OPE				
SITE &	Pre	-Plant	Pre	-Plant	Pre-Plant					
ROTATION _	NP*	NP	NP*	NP	<u>NP*</u>	NP				
STERLING:	kg	/ha	kç	g/ha	kg/ha					
WCSb WWCSb	2620 2245	1310 1910	4720 3130	1600 4525	2645 1815	3900 4390				
=	NP*	NP	NP*	NP	NP*	NP				
STRATTON:	kg	/ha	ŀ	‹g/ha	kg	/ha				
WCSb WWCSb	3955 4490	2840 3720	2955 3205	1680 4205	2840 4270	3055 6230				
_	NP*	NP	NP*	NP	NP*	NP				
WALSH:	kg/ha		ł	(g/ha	kg/ha					
WCSb WWSSb	3060 1915	3135 2755	2240 1640	4755 1055	4290 1760	2130 1420				

Table 24. Crop residue weights on all plots in Soybean during the 2000 crop year.

For conversion to lbs/Acre multiply kg/ha by 0.893.
 * Only receives phosphorus in wheat phase of each rotation.

Table 25. Crop residue weights at preplant for all crops at Briggsdale, Akron, and Lamar during the	•
1999 - 2000 crop year.	_

			C =			
SILE&			Gr	ор		
ROTATION	Wheat	Corn/Sorghum	Millet	Sunflower	Soybean	Peas
BRIGGSDALE:			kg/	'ha ¹		
WF	460					
WMF	1330		745			
(W)WCSbSfP	2855	505		985	620	4010
W(W)CSbSfP	3485					
Opportunity					2160	
AKRON:			kg	/ha		
WF	275					
WCF	1230	2230				
WCM	2235	3995	1485			
WCSfF	660	2020		2650		
LAMAR:			kg	/ha		
WF	2465					
WSF	2830	1930				

1. For Conversion to lbs/Acre multiply kg/ha by 0.893.

				SLO	PE POSITI	ON			
SITE &		SUMMIT		S	DESLOPE		Т	OESLOP	E
DEPTH (cm)	Planting	Harvest	Change	Planting	Harvest	Change	Planting	Harvest	Change
STERI ING:		mm/300m			mm/300m			mm/sucm	
15	59	14	45	53	12	41	53	10	43
45	41	5	36	56	5	51	47	1	46
75	39	5	34	41	13	28	53	4	49
105	31	1	30	26	0	26	41	4	37
135	-	-	-	-	-	-	30	3	27
155	-	-	-	-	-	-	25	4	21
TOTAL STRATTON:	170	25	145	176	30	146	249	26	223
15	39	0	39	52	13	39	70	25	45
45	43	1	42	42	2	40	73	23	50
75	40	1	39	48	6	42	82	27	55
105	42	4	38	43	0	43	81	31	50
135	42	9	33	33	3	30	71	9	62
155	41	7	34	39	35	4	80	14	66
TOTAL	247	22	225	257	59	198	457	129	328
WALSH:									
15	10	4	6	2	5	+3	2	11	+9
45	21	8	13	16	14	2	19	20	+1
75	19	6	13	24	13	11	31	14	17
105	21	20	1	38	16	22	34	38	+4
135	17	21	+4	32	18	14	38	13	25
155	0	8	+8	46	35	11	57	46	11
TOTAL	88	67	21	158	101	57	181	142	39
 To convert f () Indicates 	rom millimet a positive c	ers of H ₂ 0/3 hange in av	0 centimeter ailable soil w	s of soil to inc ater.	hes of H ₂ 0/f	oot of soil mu	ultiply by 0.04	l.	

Table 26. Available soil water by soil depth in the WHEAT phase of the WCF rotation at Sterling and Stratton and WSF at Walsh in 2000.

				SLO	PE POSITI	ON				
SITE										
&		SUMMIT			SIDESLOP	E	Т	TOESLOPE		
DEPTH (cm)										
	Planting	Harvest	Change	Planting	Harvest	Change	Planting	Harvest	Change	
STERLING:		mm/30cm			mm/30cm-			-mm/socm-		
15	30	15	15	28	12	16	24	9	15	
45	13	9	4	10	2	8	15	4	11	
75	12	13	(+1)	33	22	11	15	10	5	
105	26	28	(+2)	26	28	(+2)	12	5	7	
135	-	-	-	-	-	-	8	4	4	
155	-	-	-	-	-	-	15	7	8	
TOTAL	81	65	16	97	64	33	89	39	50	
STRATTON:										
15	17	0	17	40	18	22	58	43	15	
45	17	1	16	24	5	19	48	34	14	
75	17	3	14	32	16	16	65	20	45	
105	20	13	7	27	13	14	77	32	45	
135	30	24	6	40	51	(+11)	63	27	36	
155	26	21	5	52	52	0	56	22	34	
TOTAL	127	62	65	215	155	60	367	178	189	
WALSH:										
15	0	0	0	0	0	0	0	0	0	
45	0	0	0	0	0	0	0	0	0	
75	0	0	0	0	0	0	0	0	0	
105	4	0	4	0	4	(+4)	13	10	3	
135	8	20	(+12)	17	4	13	21	2	19	
155	6	46	(+40)	23	26	(+3)	37	34	3	
TOTAL	18	66	(+48)	40	32	6	71	46	25	

 Table 27. Available soil water by soil depth in the WHEAT phase of the WCSb rotation at Sterling, Stratton, and at Walsh in 2000.

		SLOPE POSITION											
SITE		0				-							
č.		SUMMI			SIDESLOP	'E	TOESLOPE Planting Harvest Change						
DEPTH (cm)													
	Planting	Harvest	Change	Planting	Harvest	Change	Planting	Harvest	Change				
STERLING:								-1111/300111					
15	25	8	17	31	10	21	22	8	14				
45	12	6	6	14	5	9	13	4	9				
75	4	1	3	21	20	1	17	12	5				
105	0	2	(+2)	28	26	2	12	8	4				
135	-	-	-	-	-	-	4	5	(+1)				
155	-	-	-	-	-	-	8	8	0				
TOTAL	41	17	24	94	61	33	76	45	31				
STRATTON:	Q	0	Q	23	13	10	72	65	7				
45	8	1	3 7	20	3	10	57	63	(+6)				
75	3 7	3	4	31	12	19	68	32	36				
105	, 16	12	4	29	8	21	74	23	51				
135	25	17	ч 8	25	8	17	58	15	/3				
155	23	16	7	25	10	15	60	30	30				
TOTAL	88	49	39	153	54	99	389	228	154				
WALSH:													
15	0	0	0	0	0	0	0	0	0				
45	1	0	1	0	0	0	0	0	0				
75	0	0	0	0	0	0	3	0	3				
105	0	0	0	9	4	5	9	10	(+1)				
135	6	1	5	15	0	15	23	0	23				
155	0	0	0	18	8	10	31	21	10				
TOTAL	7	1	6	42	12	30	66	31	35				

 Table 28. Available soil water by soil depth in the <u>WHEAT</u> phase of the <u>(W)WCSb</u> rotation at Sterling and Stratton and the <u>WHEAT</u> phase of the <u>(W)WSSb</u> rotation at Walsh in 2000.

		SLOPE POSITION									
SITE						_			_		
&		SUMMIT			SIDESLOPE TOESLOPE						
DEPTH (cm)	-		•					••	•		
	Planting	Harvest	Change	Planting	Harvest	Change	Planting	Harvest	Change		
STERI ING:								-1111/30011-			
15	49	12	37	52	9	43	54	11	43		
45	26	1	25	30	5	25	40	2	38		
75	33	12	21	23	10	13	11	1	10		
105	35	24	11	11	13	(+2)	8	0	8		
135	-	-	-	-	-	-	5	0	5		
155	-	-	-	-	-	-	8	7	1		
TOTAL	94	49	94	116	37	79	126	21	105		
STRATTON:											
15	32	0	32	60	20	40	62	9	53		
45	35	1	34	41	6	35	62	5	57		
75	23	7	16	29	21	8	68	4	64		
105	25	2	23	31	19	12	65	6	59		
135	29	1	28	42	35	7	48	13	35		
155	37	10	27	46	36	10	57	22	35		
TOTAL	181	21	160	249	137	112	362	59	303		
WALSH:											
15	17	4	13	14	0	14	-	0	0		
45	16	1	15	6	0	6	3	0	3		
75	13	0	13 0	1	1 16	U	12	U 12	12 10		
135	27	+ 19	9	6	0	5	38	۱ <u>۲</u>	31		
155	27	16	11	15	16	(+1)	37	24	13		
TOTAL	113	134	69	61	32	`28 [´]	121	43	78		

 Table 29. Available soil water by soil depth in the WHEAT phase of the W(W)CSb rotation at Sterling and Stratton and WHEAT phase of the W(W)SSb rotation at Walsh in 2000.

	SLOPE POSITION										
SITE											
&		SUMMIT		S	IDESLOPE	=	Т	OESLOP	E		
DEPTH (cm)	Planting	Harvest	Change	Planting	Harvest	Change	Planting	Harvest	Change		
STERLING:					11111/000111						
15	46	22	24	40	9	31	68	14	54		
45	60	9	51	58	10	48	47	10	37		
75	43	14	29	48	8	40	48	8	40		
105	27	25	2	22	6	16	45	11	34		
135	-	-	-	-	-	-	17	8	9		
155	-	-	-	-	-	-	23	16	7		
TOTAL STRATTON:	176	70	106	168	33	135	248	67	181		
15	25	9	16	40	15	25	30	45	(+15)		
45	46	12	34	51	6	45	55	46	9		
75	35	5	30	55	18	37	64	29	35		
105	37	10	27	46	10	36	67	31	36		
135	33	18	15	48	18	30	37	19	18		
155	32	28	4	29	23	6	30	20	10		
TOTAL	208	82	126	269	90	179	283	190	93		
WALSH:											
15	0	0	0	0	0	0	0	0	0		
45	22	1	21	21	0	21	22	0	22		
75	23	0	23	32	0	32	27	4	23		
105	22	0	22	38	2	36	29	19	10		
135	40	0	40	14	0	14	25	0	25		
155	26	0	26	32	3	29	38	19	19		
TOTAL	133	1	132	137	5	132	141	42	99		

Table 30. Available soil water by soil depth in the <u>CORN</u> phase of the <u>WCF</u> rotation at Sterling andStratton and the <u>SORGHUM</u> phase of the <u>WSF</u> rotation at Walsh in 2000.

		SLOPE POSITION											
SITE													
&		SUMMIT		S	IDESLOPE		TOESLOPE						
DEPTH (cm)	Planting	Harvost	Change	Planting	Harvoet	Change	Planting	Harvost	Change				
		mm/30cm-	Change		mm/30cm-	Change		-mm/30cm-	Change				
STERLING:													
15	28	25	3	30	18	12	41	25	16				
45	62	11	51	50	4	46	45	5	40				
75	52	6	46	54	8	46	51	10	41				
105	33	21	12	31	3	28	41	9	32				
135	-	-	-	-	-	-	8	2	6				
155	-	-	-	-	-	-	13	12	1				
TOTAL STRATTON:	175	63	112	165	33	132	199	63	136				
15	10	8	2	32	18	14	33	22	11				
45	59	16	43	52	10	42	59	19	40				
75	42	8	34	45	11	34	54	13	41				
105	47	12	35	46	18	28	65	21	44				
135	53	18	71	54	36	18	38	33	5				
155	48	18	30	40	31	9	38	36	2				
TOTAL	259	80	215	269	124	145	287	144	143				
WALSH:													
15	No data	2		No data	0		No data	0					
45		3			0			0					
75		0			12			0					
105		0			0			12					
135		0			0			14					
155		0			0			30					
TOTAL		5			12			56					

Table 31. Available soil water by soil depth in the CORN phase of the WCSbrotation at Sterling andStratton and WCSbrotation at Walsh in 2000.

	SLOPE POSITION										
SITE											
&		SUMMIT		SLOPE POSITION SIDESLOPE TOESLOF Planting Harvest Change Planting Harvest Change 17 5 12 39 15 53 11 42 50 9 58 13 45 46 8 47 12 35 48 10 - - - 36 15 - - - 21 14 175 41 134 240 71 21 11 10 38 22 48 11 37 48 32 53 13 40 73 25 50 13 37 57 44 48 22 26 47 48 55 30 25 28 45 275 100 175 291 216 2 0			E				
DEPTH (cm)	51 (1			D 1 (1					0 1		
	Planting	Harvest	Change	Planting	Harvest	Change	Planting	Harvest	Change		
STERLING:					1111/00011						
15	33	18	15	17	5	12	39	15	24		
45	61	10	51	53	11	42	50	9	41		
75	34	11	33	58	13	45	46	8	38		
105	32	22	10	47	12	35	48	10	38		
135	-	-	-	-	-	-	36	15	21		
155	-	-	-	-	-	-	21	14	7		
TOTAL	160	61	109	175	41	134	240	71	169		
STRATTON:											
15	18	0	18	21	11	10	38	22	16		
45	55	11	44	48	11	37	48	32	16		
75	39	4	35	53	13	40	73	25	48		
105	40	9	31	50	13	37	57	44	13		
135	42	19	23	48	22	26	47	48	(+1)		
155	43	21	22	55	30	25	28	45	(+17)		
TOTAL	237	64	173	275	100	175	291	216	69		
WALSH:											
15	6	0	6	2	0	2	2	0	2		
45	21	0	21	21	0	21	22	0	22		
75	21	0	21	26	0	26	31	0	31		
105	24	0	24	30	10	20	31	11	20		
135	39	0	39	4	0	4	24	2	22		
155	36	0	36	34	7	27	38	30	8		
TOTAL	147	0	147	116	17	99	148	43	105		

Table 32. Available soil water by soil depth in the CORN phase of the WWCSbrotation at Sterling andStratton and the SORGHUM phase of the WWSSbrotation at Walsh in 2000.

		SLOPE POSITION										
SITE												
&		SUMMIT		S	IDESLOPE		Т	OESLOP	E			
DEPTH (cm)			•		,	•			•			
	Planting	Harvest	Change	Planting	Harvest	Change	Planting	Harvest	Change			
STERLING:								-1111/300111-				
15	35	17	18	22	15	7	32	23	9			
45	48	10	38	32	1	31	31	3	28			
75	24	8	16	36	9	27	20	10	10			
105	26	27	(+1)	48	0	48	15	10	5			
135	-	-	-	-	-	-	8	7	1			
155	-	-	-	-	-	-	15	13	2			
TOTAL STRATTON:	133	62	71	138	25	113	121	66	38			
15	24	3	21	37	18	19	40	18	22			
45	48	9	29	46	8	38	66	23	43			
75	31	5	26	33	16	17	72	45	27			
105	29	12	17	33	24	9	53	40	13			
135	38	23	15	43	29	14	42	36	6			
155	43	21	22	46	37	9	25	22	3			
TOTAL	213	73	130	238	132	106	298	184	114			
WALSH:												
15	0	0	0	0	0	0	0	0	0			
45	15	0	15	15	0	15	14	0	14			
75	14	7	7	27	2	25	17	0	17			
105	25	8	17	32	11	21	22	8	14			
135	19	6	13	9	0	9	22	5	17			
155	20	0	20	24	14	10	31	15	16			
TOTAL	93	21	72	107	27	80	106	28	78			

Table 33. Available soil water by soil depth in the SOYBEAN phase of the WCSb rotation at Sterling and
Stratton and Walsh in 2000.

				SLO	PE POSITIO	ON			
SITE									_
&		SUMMIT			SIDESLOPE			IOESLOPI	2
DEPTH (CM)	Planting	Harvest	Change	Planting	Harvest	Change	Planting	Harvest	Change
		mm/30cm			mm/30cm-			mm/30cm	
STERLING:	10	07	10	10	10	(00	40
15	40	27	13	16	19	(+3)	39	20	19
45	48	11	37	46	8	38	40	11	29
75	41	23	18	31	0	31	29	6	23
105	41	35	6	16	0	16	18	8	10
135	-	-	-	-	-	-	21	9	13
155	-	-	-	-	-	-	10	3	7
TOTAL STRATTON:	170	96	74	109	27	82	157	57	101
15	23	9	14	40	18	22	44	28	16
45	39	13	26	40	10	30	75	34	41
75	24	13	11	32	18	14	67	29	38
105	18	16	2	31	21	10	63	39	24
135	18	18	0	29	21	8	47	36	11
155	20	21	(+1)	30	26	4	41	38	3
TOTAL	142	90	52	202	114	88	337	204	133
WALSH:									
15	6	0	6	8	0	8	0	0	0
45	17	0	17	28	0	28	26	0	26
75	21	0	21	21	4	17	5	3	2
105	36	0	33	5	10	(+5)	2	10	(+8)
135	30	3	30	6	0	6	20	32	(+12)
155	19	0	19	14	18	(+4)	26	51	(+25)
TOTAL	129	3	126	82	32	50	79	96	(+17)

Table 34. Available soil water by soil depth in the <u>SOYBEAN</u> phase of the <u>WWCSb</u> rotation at Sterling andStratton and the <u>WWSSb</u> rotation at Walsh in 2000.

		SLOPE POSITION										
SITE												
&		SUMMIT		S	IDESLOPE		1	OESLOP	'E			
DEPTH (cm)												
	Planting	Harvest	Change	Planting	Harvest	Change	Planting	Harvest	Change			
STERLING:		mm/30cm			mm/30cm			-mm/30cm				
15	23	16	7	19	10	9						
45	27	9	18	31	22	9	NO	PEAS				
75	13	14	(+1)	46	41	5						
105	28	23	5	38	34	4						
135	-	-	-	-	-	-						
155	-	-	-	-	-	-						
TOTAL	91	62	29	134	107	27						
STRATTON:												
15	6	1	5	20	18	2	12	14	(+2)			
45	23	10	13	24	10	14	18	7	9			
75	21	12	9	23	15	8	52	32	20			
105	26	23	3	35	31	4	47	32	15			
135	23	20	3	31	30	1	44	42	2			
155	21	20	1	38	34	4	44	40	4			
TOTAL	120	86	34	171	138	33	217	167	48			
WALSH:												
15	2	0	2	0	0	0	0	0	0			
45	16	5	11	27	0	27	19	0	19			
75	29	2	27	26	1	25	7	6	1			
105	37	0	37	6	4	2	23	15	8			
135	31	8	23	0	6	(+6)	10	20	(+10)			
155	30	0	30	14	6	8	34	50	(+16)			
TOTAL	145	15	130	73	17	56	93	91	2			

Table 35. Available soil water by soil depth in the AUSTRIAN WINTER PEA phase of the OPP rotat	ion at
Sterling and Stratton and <u>SOYBEAN</u> in the <u>OPP</u> phase at Walsh in 2000.	

SITE						Rot	ation					
&		WF			WMF		()	V)WCSbSf	WCSbSfP W(W)CSbSfP			
DEPTH	Planting	Harvest	Change	Planting	Harvest	Change	Planting	Harvest	Change	Planting	Harvest	Change
BRIGGSDALE:		%			%			%			%	
15	14.5	7.3	7.2	16.9	6.2	10.7	14.1	4.5	9.6	8.6	10.4	(1.8)
45	15.6	5.6	10.0	16.1	5.4	10.7	13.8	6.1	7.7	9.6	5.7	3.9
75	13.2	4.4	8.8	12.3	4.7	7.6	11.4	5.6	5.8	9.0	4.7	4.3
105	11.9	4.5	7.4	9.7	4.9	4.8	8.7	11.5	(2.8)	11.0	5.5	5.5
135	11.6	2.4	9.2	9.2	5.3	3.9	10.5	7.2	3.3	10.0	4.3	5.7
155	12.4	_	12.4	10.7	-	10.7	11.3	7.2	4.1	10.2	3.2	7.0
MEAN	13.2	4.0	9.2	12.5	4.4	8.1	11.6	7.0	4.6	9.7	5.6	4.1
		WF	WCF			WCM		WCSfF				
	Planting	Harvest	Change	Planting	Harvest	Change	Planting	Harvest	Change	Planting	Harvest	Change
AKRON:		%			%			%			%	
15												
45												
75												
105												
135												
155												
MEAN												
		WF			WSF							
	Planting	Harvest	Change	Planting	Harvest	Change						
LAMAR:		%			%							
15	12.0	6.4	5.6	11.4	6.7	4.7						
45	13.8	6.1	7.7	12.2	6.8	5.4						
75	14.6	7.2	7.4	13.3	6.1	7.2						
105	15.1	8.3	6.8	14.4	7.4	7.0						
135	15.9	7.8	8.1	16.2	8.3	7.9						
155	16.6	6.8	9.8	17.1	6.1	10.0						
MEAN	14.7	7.1	7.6	14.1	7.1	7.0						

Table 36. Total soil water by soil depth in WHEAT at Briggsdale, Akron, and Lamar in 2000.

1. () Indicates a positive change in available soil water.

Table 37.	Total soil water b	v soil depth in SPRING	planted crop	os and PEAS at Briggsdale in 2000.

	Crop (Rotation)									
SITE &	Corr	n (WWCSb	SfP)	Soybe	an (WWCS	bSfP)	Sunflov	Sunflower (WWCSbSfP)		
DEPTH	Planting	Harvest	Change	Planting	Harvest	Change	Planting	Harvest	Change	
BRIGGSDALE:		%			%			%		
15	13.2			13.0			13.4			
45	15.7			10.8			13.1			
75	11.4			6.8			9.3			
105	9.3			6.7			8.5			
135	9.3			7.4			12.0			
155	10.2			7.1			11.4			
MEAN	11.5			8.6			11.3			
	Millet (WMF)		Soybe	an (Opport	unity)	Peas	(WWCSb	SfP)		
	Planting	Harvest	Change	Planting	Harvest	Change	Planting	Harvest	Change	
BRIGGSDALE:		%			%			%		
15	12.7			13.1			12.8	5.0	7.8	
45	14.2			14.2			8.8	5.3	3.5	
75	15.8			9.3			6.9	4.8	2.1	
105	7.3			8.9			5.9	3.9	2.0	
135	6.8			7.7			6.4	4.7	1.7	
155	10.3			7.0			8.0	5.8	2.2	
	10.0									
MEAN	11.2			10.0			8.1	4.9	3.2	

1. () Indicates a positive change in available soil water.

SITE &	Crop (Rotation)									
DEPTH	(Corn (WCF)		C	Corn (WCM)			Corn (WCSfF)		
	Planting	Harvest	Change	Planting	Harvest	Change	Planting	Harvest	Change	
AKRON:		%			%			%		
15										
45										
75										
105										
135										
155										
MEAN										
	Millet (WCM)			Sun	flower (WC	SfF)				
	Planting	Harvest	Change	Planting	Harvest	Change				
AKRON:		%			%					
15										
45										
75										
105										
135										
155										
MEAN										
	So	orghum (WS	F)							
	Planting	Harvest	Change							
LAMAR:		%								
15	19.1	6.7	12.4							
45	20.3	8.1	12.2							
75	15.9	5.3	10.6							
105	14.9	6.2	8.7							
135	15.9	6.1	9.8							
155	14.4	5.0	9.4							
MEAN	16.8	6.2	10.6							

Table 38. Total soil water by soil depth in SPRING planted crop at Akron and Lamar in 2000.

1. () Indicates a positive change in available soil water.

		SLOPE POSITION								
	SUM	MIT	SIDES	LOPE	TOESL	OPE				
SITE										
&	N Side*	NP Side	N Side*	NP Side	N Side*	NP Side				
ROTATION	N	NP	N	NP	N	NP				
STERLING:	C	%		%	%					
WCF	2.54	2.52	2.30	2.06	2.31	2.33				
WCSb	2.83	2.81	2.65	2.57	2.68	2.71				
(W)WCSb	2.88	2.73	2.68	2.39	3.23	3.09				
W(W)CSb	2.51	2.47	2.30	2.12	2.47	2.50				
	N	NP	N	NP	N	NP				
STRATTON:	0	%	q	%	%					
WOF	2.40	0.44	0.01	0.00	2.20	2.92				
	2.40	2.41	2.01	2.03	2.29	2.82				
	2.40	2.40	2.11	2.52	2.40	2.34				
	2.55	2.42	2.33	2.10	2.17	2.34				
W(W)C3D	2.51	2.45	2.07	2.59	2.05	2.00				
WALSH:										
	c	%		%	%					
WSF	2.16	2.16	2.11	2.12	2.00	2.04				
WCSb	2.25	2.26	2.23	2.29	2.31	2.30				
(W)SSb	2.25	2.21	2.27	2.29	2.37	2.52				
W(W)SSb	2.29	2.28	2.36	2.32	2.24	2.28				

Table 39a. Total Nitrogen content of WHEAT GRAIN in the 1999-2000 ci	Table 39a.	9a. Total Nitrogen 🤉	content of WHEAT	GRAIN in the	1999-2000 cro
--	------------	----------------------	------------------	---------------------	---------------

				_			
	SUM	МІТ	SIDESI	LOPE	TOESL	OPE	
SITE							
&	N Side*	NP Side	N Side*	NP Side	N Side*	NP Side	
ROTATION	N	NP	N	NP	N	NP	
STERLING:	%	, 0	%	6	%		
WCF	0.79	0.77	0.47	0.82	0.62	0.51	
WCSb	0.75	0.77	0.56	0.71	0.64	0.67	
(W)WCSb	0.58	0.79	0.73	0.51	0.68	0.92	
W(W)CSb	0.99	0.63	0.49	0.49	0.43	0.53	
	N	NP	N	NP	N	NP	
STRATTON:	%	, 0	%	6	%		
WOF	0.45	0.54	0.44	0.50	0.70	0.74	
WOOL	0.45	0.51	0.44	0.59	0.72	0.74	
WCSD		0.50	0.72	0.50	1.03	0.66	
	0.50	0.50	0.47	0.45	0.39	0.48	
W(W)CSD	0.50	0.67	0.68	0.47	0.94	0.70	
	N	NP	N	NP	Ν	NP	
WALSH:							
	%	, 0		%	%		
WSF	0.53	0.36	0.35	0.53	0.37	0.37	
WSSb	0.47	0.45	0.42	0.44	0.54	0.56	
(W)WSSb	0.50	0.38	0.43	0.47	0.64	0.58	
W(W)SSb	0.50	0.52	0.53	0.92	0.52	0.61	

SLOPE POSITION

Table 39b. Total Nitrogen content of WHEAT STRAW in the 1999-2000 crop.

	SUM	MIF	SIDES	LOPE	TOESL	OPE	
SITE							
&	N Side*	NP Side	N Side*	NP Side	N Side*	NP Side	
ROTATION	N	NP	N	NP	N	NP	
STERLING:	9	%	%	6	%		
WCF	1.86	1.79	1.21	1.69	1.80	1.79	
WCSb	1.83	1.74	1.70	1.79	1.77	1.75	
WWCSb	1.89	1.90	1.81	1.74	1.79	1.77	
	N	NP	N	NP	N	NP	
STRATTON:	%		%	6	%		
WCF	1.59	1.69	1.54	1.56	1.46	1.46	
WCSb	1.62	1.44	1.46	1.60	1.44	1.55	
WWCSb	1.56	1.47	1.53	1.48	1.44	1.59	
	N	NP	N	NP	Ν	NP	
WALSH:							
	0	/		%	%		
		-					
WSF	2.03	1.91	1.89	1.85	1.98	2.07	
WCSb	1.68	1.67	1.72	1.73	No sample		
WWSSb	1.89	1.85	1.91	1.70	2.02	1.92	
Cont. Crop (C)	1.74	1.71	1.71	1.74	No sample		
Cont. Crop (S)	1.90	1.92	1 89	1 99	1.93	2 09	
	1.00	1.02	1.00	1.00	1.00	2.00	

Table 40a. Total Nitrogen content of CORN GRAIN or SORGHUM GRAIN in the 2000 crop.

SLOPE POSITION

				0.00	TOESLODE		
	SUM		SIDESL	-OPE	TOESL	UPE	
SITE							
&	N Side*	NP Side	N Side*	NP Side	N Side*	NP Side	
ROTATION	N	NP	N	NP	N	NP	
STERLING:	%	, 	%	<u>/</u>	%		
		-		-			
WCF	1.37	1.60	1.21	0.97	0.87	0.92	
WCSb	1.14	1.40	0.96	1.28	1.04	1.26	
WWCSh	1 75	2 00	1 30	1 18	1 31	1 70	
	1.70	2.00	1.00	1.10	1.01	1.70	
	N	NP	N	NP	N	NP	
	Ν			NI			
STRATION: 9/		0.	/	0/			
STRATION:	70	0	9	0	/0		
WCE	0 02	0.79	0.00	0.02	1 20	1 10	
	0.02	0.76	0.99	0.93	1.20	1.10	
WCSD	1.03	0.90	1.05	0.86	1.07	1.70	
WWCSb	1.0	1.2	0.90	0.82	0.86	1.03	
	N	NP	N	NP	N	NP	
WALSH:							
	%	, 0	(%	%		
WSF							
W(S)Sb	No sample		No sample		No sample		
WW(S)Sb							
Cont. Crop (C)							
Cont. Crop (S)							
· · · · · · · · · · · · · · · · · · ·							

Table 40b. Total Nitrogen content of CORN STOVER or SORGHUM STOVER in the 2000 crop.

SLOPE POSITION
		SLOPE POSITION				
	SUM	МІТ	SIDESL	OPE	TOESLOPE	
SITE						
&	N Side*	NP Side	N Side*	NP Side	N Side*	NP Side
ROTATION	Ν	NP	N	NP	N	NP
STERLING:	%		%	6	%	, 0
WCSb	5.52	5.89	5.09	5.30	4.63	5.28
WWCSb	6.22	6.06	5.34	5.29	5.29	5.06
					- 1	
	N	NP	N	NP	N	NP
STRATTON:	%)	%	0	%	0
WOOL		5.40	5.00	5.00	5.04	N I I
WCSb	5.41	5.42	5.28	5.60	5.81	No sample
VV VV CSD	5.84	5.50	5.20	5.57	No sample	5.80
	N	NP	N	NP	N	NP
WAISH						
WALON.	%		(%	%	,
		,		/0	,	0
WCSb	No sample		No sample		6.00	6.00
WWSSb	5.60	5.40			5.00	

Table 41. Total Nitrogen content of SOYBEAN GRAIN in the 2000 crop.

* Only receives phosphorus in wheat phase of each rotation.

				Crop			
SITE	Whe	at	Corn/Sorghum	Millet	Sunflower	Soybean	Peas
& ROTATION	Susceptible Variety	Resistant Variety					
BRIGGSDALE:	%		- %	- %	- %	- %	- %
WF	2.8	2.7					
WMF	2.9	2.9		No Yield			
(W)WCSbSfP	2.4	2.5	1.7		1.9	No Yield	No Yield
W(W)CSbSfP	2.8	2.8					
Opportunity						No Yield	
AKRON:	%		- %	- %	- %		
WF							
WCF							
WCM							
WCSfF							
LAMAR:	%		- %				
WF	2.8	2.8					
WSF	3.1	2.8					

Table 42. Total Nitrogen content of Grain for all crops at Briggsdale, Akron, and Lamar in 2000.

				SI	LOPE POSIT	ION			
0:44 8		SUMM			SIDESLOP	'E		TOESLOPE	
Rotation		Crop and Ti	ime		Crop and Time		C	Crop and Time	
	Wheat Fall 99	Corn S00	Sorghum S 00	Wheat Fall 99	Corn S00	Sorghum S 00	Wheat S 99	Corn S00	Sorghum S 00
		-kg NO3-N h	a ⁻¹		kg NO3-N ha	-1	k	g NO3-N ha	-1
STERLING									
WCF	142	80		55	54		72	46	
WCSb		79			73			107	
(W)WCSb		137			103			106	
W(W)CSb	113			40			37		
STRATTON									
WCF	100	54		97	47		80	74	
WCSb		65			60			91	
(W)WCSb		90			104			99	
W(W)CSb	71			76			90		
WALSH									
WSF	50		19	38		26	49		48
WCSb	25	39		53	55		44	62	
(W)WSSb	26		23	28		28	44		55
W(W)SSb	37			44			46		
CC (C)		17			15			31	
CC (S)			22			40			46.5

Table 43. Nitrate-N content of the soil profile at Planting for each crop during 1999-2000 crop year.

SITE &		Сгор							
ROTATION	Wheat	Corn/Sorghu m	Millet	Sunflower					
BRIGGSDALE:	kg NO ₃ -N/ha								
WF	76								
WMF	90		37						
(W)WCSbSfP	15	64		29					
W(W)CSbSfP	50								
Opportunity									
AKRON:	kg NO ₃ -N/ha								
WF	75								
WCF	69	47							
WCM	22	47	62						
WCSfF	187	45		52					
LAMAR:	kg NO ₃ -N/ha	kg NO ₃ -N/ha							
WF (grazed)	31								
WF (ungrazed)	44								
WSF (grazed)	35	39							
WSF (ungrazed)	55	33							

Table 44. Nitrate-N content of the soil profile at planting of each cropduring the 1999-2000 crop year.

Site & Insect	Date (growth stage)				
	28 March (tillering)	26April (jointing)	22 May (boot)		
BRIGGSDALE:					
Army Cutworm (#/5 ft.2)	0.44	0.66	-		
Russian Wheat Aphid (#/50 tillers)	0.06	2.22	22.20		
Other Cerial Aphids (#/50 Tillers)	0.63	2.31	0.16		
Brown Wheat Mite (#/ 1.75 ft.2)	287	54	3		
Banks Grass Mite (#/50 tillers)	0.00	0.31	0.06		
AKRON:					
Army Cutworm (#/5 ft. ²)	0.0	0.0	0.0		
Russian Wheat Aphid (#/50 tillers)	0.02	0.01	0.0		
Other Cerial Aphids (#/50 Tillers)	0.01	0.01	0.01		
Brown Wheat Mite (#/ 1.75 ft.2)	0.01	0.01	0.0		
Banks Grass Mite (#/50 tillers)	0.0	0.0	0.0		
		May 31 (jointing)			
LAMAR:					
Army Cutworm (#/5 ft.2)		0			
Russian Wheat Aphid (#/50 tillers)		58.8			
Other Cerial Aphids (#/50 Tillers)		0			
Brown Wheat Mite (#/ 1.75 ft.2)		0			
Banks Grass Mite (#/50 tillers)		0			

Table 45. Pest insects in wheat by crop stage at Briggsdale, Akron, and Lamar in 2000.

Site & Rotation				Date	(Growth s	tage)	ge)			
	28 N	larch (tilleri	ng)	26	April (jointir	ng)	22	22 May (boot)		
	Lamar	Prowers	Mean	Lamar	Prowers	Mean	Lamar	Powers	Mean	
BRIGGSDALE:		RWA/50 til	lers	RWA/50 tillers			- RWA/50 ti	illers		
WF	0	0	0	1.5	2	1.75	33.5	16.5	25	
WMF	0.5	0	0.25	3.25	1.25	2.25	34.75	31.75	33.25	
(W)WCSbSfP	0	0	0	0.25	2.25	1.25	10.25	5.75	8	
W(W)CSbSfP	0	0	0	2.5	4.75	3.63	33.25	11.75	22.5	
	<u>TAM</u> <u>107</u>	<u>Prairie</u> <u>Red</u>	<u>Mean</u>	<u>TAM</u> <u>107</u>	<u>Prairie</u> <u>Red</u>	<u>Mean</u>	<u>TAM</u> <u>107</u>	<u>Prairie</u> <u>Red</u>	<u>Mean</u>	
AKRON:		RWA/50 til	lers		RWA/50 til	lers		- RWA/50 ti	illers	
WF	2	2	2	2	1	1.5	0	1	0.5	
WCF	7	8	7.5	2	1	1.5	0	0	0	
WCM	3	2	2.5	1	2	1.5	0	0	0	
WCSfF	4	7	5.5	4	3	3.5	1	0	0.5	
		•				•			•	
	Lamar	Prowers	Mean	<u>Lamar</u>	Prowers	<u>Mean</u>	Lamar	Prowers	<u>Mean</u>	
LAMAR:		RWA/50 til	lers		RWA/50 til	lers		- RWA/50 ti	llers	
WF				71.6	30.2	50.9				
WSF				102.8	30.4	66.6				

 Table 46. Russian wheat aphid (RWA) in wheat by day, variety, and rotation at Briggsdale,

 Akron, and Lamar in 2000.

Site & Rotation				Date (Growth st	age)			
	28 N	larch (Tiller	ing)	26	April (jointin	g)	22	2 May (boot	:)
	<u>Lamar</u>	Prowers	<u>Mean</u>	<u>Lamar</u>	Prowers	Mean	<u>Lamar</u>	Powers	Mean
BRIGGSDALE:		#/1.75 ft.2			#/1.75 ft. ²			#/1.75 ft. ² -	
WF	171	406	289	34	63	49	3	4	4
WMF	215	427	321	85	45	65	6	5	6
(W)WCSbSfP	93	95	94	4	11	8	1	1	1
W(W)CSbSfP	368	523	446	108	91	100	2	3	3
	<u>TAM</u> <u>107</u>	<u>Prairie</u> <u>Red</u>	<u>Mean</u>	<u>TAM</u> <u>107</u>	<u>Prairie</u> <u>Red</u>	<u>Mean</u>	<u>TAM</u> <u>107</u>	<u>Prairie</u> <u>Red</u>	<u>Mean</u>
AKRON:		#/1.75 ft.2		#/1.75 ft. ²			#/1.75 ft. ²		
WF	0	8	4	9	1	5	0	0	0
WCF	0	4	2	1	0	0.5	0	0	0
WCM	3	9	6	0	5	2.5	0	0	0
WCSfF	9	7	8	2	12	7	0	0	0
	<u>Lamar</u>	Prowers	Mean	Lamar	Prowers	Mean	Lamar	Prowers	Mean
LAMAR:		#/1.75 ft.2 -			#/1.75 ft. ²			#/1.75 ft. ² -	
WF (Grazed)									
WF (Ungrazed)									
WSF (Grazed)									
WSF (Ungrazed									

Table 47. Brown wheat mite (BWM) in wheat by crop growth stage, variety, and rotation at Briggsdale, Akron, and Lamar in 2000.

Site & Insect	Date (growth stage)						
	28 March (Tillering)	26 April (Jointing)	22 May (Boot)				
BRIGGSDALE:		#/4-30 second count	ts				
Coccinellids	0.34	0.72	6.38				
Lacewing	0	0.03	0				
Mite Destroyers	0	0	0				
Mummies	0	0	0				
Nabids	0	0	0.03				
Pirate Bugs	0	0	0				
Predatory Mites	0	0	0				
Spiders	0	0.19	0.19				
Syrphids	0	0	0.34				

Table 48. Predator insects in wheat by growth stage at Briggsdale, Akron, and Lamar in 2000.

AKRON:		#/4-30 second count	ts
Coccinellids	0	0	3
Lacewing	0	0	0
Mite Destroyers	0	0	0
Mummies	0	0	0
Nabids	0	0	0
Pirate Bugs	0	0	0
Predatory Mites	0	0	0
Spiders	0	1	1
Syrphids	0	0	0

	31 May (Jointing)	
LAMAR:	 #/4-30 second coun	ts
Coccinellids	0.25	
Lacewing	0	
Mite Destroyers	0	
Mummies	0	
Nabids	0	
Pirate Bugs	0	
Predatory Mites	0	
Spiders	0	
Syrphids	0	

APPENDIX I

ANNUAL HERBICIDE PROGRAMS FOR EACH SITE

Crop	Herbicide/Tillage	Rate (English)	Rate (Metric)	Cost	Date Applied
Rotation: Whe	at-Corn-Fallow				
Wheat:	Landmaster BW*	54 oz/A	3.94 l/ha	\$7.48/A	7/27/2000
	Fallowmaster*	44 oz/A	3.21 l/ha	\$6.49/A	9/01/2000
	Atrazine 4L	32 oz/A	2.33 l/ha	\$2.80/A	9/01/2000
Corn (RR):	Fallowmaster*	44 oz/A	3.21 l/ha	\$6.49/A	5/05/2000
	Round-up Ultra*	20 oz/A	1.46 l/ha	\$6.02/A	6/09/2000
Fallow:	Fallowmaster*	44 oz/A	3.21 l/ha	\$6.49/A	5/05/2000
	Fallowmaster*	44 oz/A	3.21 l/ha	\$6.49/A	7/10/2000
	Gromozone Extra	32oz/A	2.33 l/ha	\$8.02/A	8/24/2000
	Landmaster BW*	40 oz/A	2.92 l/ha	\$5.54/A	9/18/2000
Rotation: Whe	at-Corn-Soybean				
Wheat:	Landmaster BW*	54 oz/A	3.94 l/ha	\$7.48/A	7/27/2000
	Fallowmaster*	44 oz/A	3.21 l/ha	\$6.49/A	9/01/2000
	Atrazine 4L	32 oz/A	2.33 l/ha	\$2.80/A	9/01/2000
Corn (RR):	Fallowmaster*	44 oz/A	3.21 l/ha	\$6.49/A	5/05/2000
	Round-up Ultra*	20 oz/A	1.46 l/ha	\$6.02/A	6/09/2000
Soybean:	Round-up Ultra*	32 oz/A	2.33 l/ha	\$9.64/A	5/05/2000
	Round-up Ultra*	20 oz/A	1.46 l/ha	\$6.02/A	6/09/2000
	Landmaster BW*	40 oz/A	2.92 l/ha	\$5.54/A	9/18/2000
Rotation:Whea	t-Wheat-Corn-Soybean				
Wheat:	Landmaster BW *	54 oz/A	3.94 l/ha	\$7.48/A	7/27/2000
	Fallowmaster*	44 oz/A	3.21 l/ha	\$6.49/A	9/01/2000
	Landmaster BW*	40 oz/A	2.92 l/ha	\$5.54/A	9/18/2000
Wheat:	Landmaster BW*	54 oz/A	3.94 l/ha	\$7.48/A	7/27/2000
	Fallowmaster*	44 oz/A	3.21 l/ha	\$6.49/A	9/01/2000
	Atrazine 4L	32 oz/A	2.33 l/ha	\$2.80/A	9/01/2000
Corn (RR):	Fallowmaster*	44 oz/A	3.21 l/ha	\$6.49/A	5/05/2000
	Round-up Ultra*	20 oz/A	1.46 l/ha	\$6.02/A	6/09/2000
Soybean:	Round-up Ultra*	32 oz/A	2.33 l/ha	\$9.64/A	5/05/2000
	Round-up Ultra*	20 oz/A	1.46 l/ha	\$6.02/A	6/09/2000
	Landmaster BW*	40 oz/A	2.92 l/ha	\$5.54/A	9/18/2000
Rotation: Oppo	ortunity				
Forage Pea:	Fallowmaster*	44 oz/A	3.21 l/ha	\$6.49/A	7/10/2000
	Gromozone Extra*	32 oz/A	2.33 l/ha	\$8.02/A	8/24/2000
	Landmaster BW*	40 oz/A	2.92 l/ha	\$5.54/A	9/18/2000
*Applied 1qt. Q	uest/100 gallons water with	Round-up products.			
Note: Atrazine i	s applied at 75 % of the rate	on summit and sideslo	ope soils.		

 Table 1. Weed control methods including herbicide rate, cost and date applied at STERLING in 2000.

Сгор	Herbicide/Tillage	Rate (English)	Rate (Metric)	Cost	Date Applied
Rotation: Whe	at-Corn-Fallow				
Wheat:	2,4-D ester 4#	12 oz/A	0.87 l/ha	\$1.22/A	4/07/2000
	Banvel	4 oz/A	0.29 l/ha	\$2.80/A	4/07/2000
	Fallowmaster*	32 oz/A	2.33 l/ha	\$4.72/A	8/04/2000
	Fallowmaster*	32 oz/A	2.33 l/ha	\$4.72/A	9/12/2000
	Atrazine 4L	32 oz/A	2.33 l/ha	\$2.80/A	9/12/2000
Corn:	Fallowmaster*	44 oz/A	3.21 l/ha	\$6.49/A	5/04/2000
	Atrazine 4L	32 oz/A	2.33 l/ha	\$2.80/A	5/04/2000
	Prowl	32 oz/A	2.33 l/ha	\$5.11/A	5/04/2000
Fallow:	Fallowmaster*	44 oz/A	3.21 l/ha	\$6.49/A	5/04/2000
	Fallowmaster*	32 oz/A	2.33 l/ha	\$4.72/A	6/20/2000
	Fallowmaster*	32 oz/A	2.33 l/ha	\$4.72/A	7/12/2000
	Fallowmaster*	32 oz/A	2.33 l/ha	\$4.72/A	8/04/2000
	Round-up Ultra*	16 oz/A	1.17 l/ha	\$4.82/A	10/02/2000
Rotation: Whe	at-Corn-Soybean				
Wheat:	2,4-D ester 4#	12 oz/A	0.87 l/ha	\$1.22/A	4/07/2000
	Banvel	4 oz/A	0.29 l/ha	\$2.80/A	4/07/2000
	Fallowmaster*	32 oz/A	2.33 l/ha	\$4.72/A	8/04/2000
	Fallowmaster*	32 oz/A	2.33 l/ha	\$4.72/A	9/12/2000
	Atrazine 4L	32 oz/A	2.33 l/ha	\$2.80/A	9/12/2000
Corn:	Fallowmaster*	44 oz/A	3.21 l/ha	\$6.49/A	5/04/2000
	Atrazine 4L	32 oz/A	2.33 l/ha	\$2.80/A	5/04/2000
	Prowl	32 oz/A	2.33 l/ha	\$5.11/A	5/04/2000
Soybean:	Round-up Ultra*	32 oz/A	2.33 l/ha	\$9.64/A	5/04/2000
	Round-up Ultra*	24 oz/A	1.75 l/ha	\$7.23/A	6/20/2000
	Round-up Ultra*	24 oz/A	1.75 l/ha	\$7.23/A	7/12/2000
	Round-up Ultra*	16 oz/A	1.17 l/ha	\$4.82/A	10/02/2000
Rotation: Whe	at-Wheat-Corn-Soybean				
Wheat:	2,4-D ester 4#	12 oz/A	0.87 l/ha	\$1.22/A	4/07/2000
	Banvel	4 oz/A	0.29 l/ha	\$2.80/A	4/07/2000
	Fallowmaster*	32 oz/A	2.33 l/ha	\$4.72/A	8/04/2000
	Landmaster BW*	40 oz/A	2.92 l/ha	\$5.54/A	9/12/2000
	Round-up Ultra*	48 oz/A	3.50 l/ha	\$14.46/A	10/02/2000
Wheat:	2,4-D ester 4#	12 oz/A	0.87 l/ha	\$1.22/A	4/07/2000
	Banvel	4 oz/A	0.29 l/ha	\$2.80/A	4/07/2000
	Fallowmaster*	32 oz/A	2.33 l/ha	\$4.72/A	8/04/2000
	Fallowmaster*	32 oz/A	2.33 l/ha	\$4.72/A	9/12/2000
	Atrazine 4L	32 oz/A	2.33 l/ha	\$2.80/A	9/12/2000
Corn:	Fallowmaster*	44 oz/A	3.21 l/ha	\$6.49/A	5/04/2000
	Atrazine 4L	32 oz/A	2.33 l/ha	\$2.80/A	5/04/2000
	Prowl	32 oz/A	2.33 l/ha	\$5.11/A	5/04/2000
Soybean:	Round-up Ultra*	32 oz/A	2.33 l/ha	\$9.64/A	5/04/2000
	Round-up Ultra*	24 oz/A	1.75 l/ha	\$7.23/A	6/20/2000
	Round-up Ultra*	24 oz/A	1.75 l/ha	\$7.23/A	7/12/2000
	Round-up Ultra*	16 oz/A	1.17 l/ha	\$4.82/A	10/02/2000
Rotation: Oppo	rtunity				
Forage Pea:	Fallowmaster*	44 oz/A	3.21 l/ha	\$6.49/A	7/12/2000
	Fallowmaster*	32 oz/A	2.33 l/ha	\$4.72/A	8/04/2000
	Round-up Ultra*	16 oz/A	1.17 l/ha	\$4.82/A	10/02/2000
*Applied 1qt. Q	uest/100 gallons water				
Note: Atrazine is	s applied at 75 % of the rat	e on the sideslope soils			

Table 2. Weed control methods including herbicide rate, cost and date applied at STRATTON in 2000

Crop Herbicide/Tillage Rate (English) Rate (Metric) Cost **Date Applied Rotation: Wheat-Sorghum-Fallow** Wheat: Ally 2,4-D 0.1 oz/A 7.0 g/ha 0.58 l/ha \$2.30/A 3/13/2000 3/13/2000 8 oz/A \$0.82/A Tillage - Sweeps Round-up Ultra Round-up Ultra Round-up Ultra 4/14/2000 Sorghum: 6/16/2000 16 oz/A 1.17 l/ha \$4.82/A 1.17 l/ha \$4.82/A 7/10/2000 16 oz/A 16 oz/A 1.17 l/ha \$4.82/A 8/09/2000 Fallow: Round-up Ultra 16 oz/A 1.17 l/ha \$4.82/A 3/13/2000 Tillage - Sweeps 4/14/2000 Round-up Ultra 16 oz/A 1.17 l/ha \$4.82/A 8/09/2000 **Rotation: Wheat-Corn-Soybean** Wheat: Ally 2.4-D 0.1 oz/A 7.0 g/ha \$2.30/A 3/13/2000 8 oz/A 0 58 1/ha \$0.82/A 3/13/2000 4/14/2000 6/16/2000 Tillage - Sweeps Round-up Ultra Round-up Ultra Corn: \$4.82/A 1.17 l/ha 16 oz/A 16 oz/A 1.17 l/ha \$4.82/A 7/10/2000 Soybean: Tillage - Sweeps 4/14/2000 Round-up Ultra \$4.82/A 6/16/2000 16 oz/A 1.17 l/ha Round-up Ultra 16 oz/A 1.17 l/ha \$4.82/A 7/10/2000 Round-up Ultra 16 oz/A 1.17 l/ha \$4.82/A 8/09/2000 Rotation: Wheat-Wheat-Sorghum-Soybean 7.0 g/ha 0.58 l/ha \$2.30/A \$0.82/A 3/13/2000 3/13/2000 Wheat: Ally 2,4-D 0.1 oz/A 8 oz/A \$2.30/A 3/13/2000 3/13/2000 Ally 2,4-D 0.1 oz/A Wheat: 7.0 g/ha 0.58 l/ha \$0.82/A 8 oz/ATillage - Sweeps Round-up Ultra Sorghum: 4/14/2000 6/16/2000 7/10/2000 16 oz/A \$4.82/A 1.17 l/ha 0.75 lb a.i./A 4 oz/A \$3.26/A \$2.81/A 53 g a.i./A 0.29 l/A Atrazine Clarity 7/10/2000 2,4-D 8 oz/A 0.58 l/ha \$0.82/A 7/10/2000 Soybean: Tillage - Sweeps 4/14/2000 6/16/2000 7/10/2000 8/09/2000 Round-up Ultra 16 oz/A 1.17 l/ha \$4.82/A Round-up Ultra 1.17 l/ha 1.17 l/ha 16 oz/A \$4.82/A \$4.82/A Round-up Ultra 16 oz/A Opportunity Tillage - Sweeps 4/14/2000 Soybean: Round-up Ultra \$4.82/A 6/16/2000 16 oz/A 1.17 l/ha Round-up Ultra \$4.82/A 16 oz/A 1.17 l/ha 7/10/2000 Round-up Ultra 16 oz/A 1.17 l/ha \$4.82/A 8/09/2000 **Continuous Cropping:** Corn: Tillage - Sweeps 4/14/2000 Round-up Ultra 16 oz/A 1.17 l/ha \$4.82/A 6/16/2000 Round-up Ultra 16 oz/A 1.17 l/ha \$4.82/A 7/10/2000 Tillage - Sweeps Round-up Ultra Round-up Ultra Round-up Ultra 4/14/2000 6/16/2000 7/10/2000 Sorghum: \$4.82/A \$4.82/A 16 oz/A 1.17 l/ha 1.17 l/ha 1.17 l/ha 1.17 l/ha 16 oz/A 16 oz/A \$4.82/A 8/09/2000

Table 3. Weed control methods including herbicide rate, cost and date applied at WALSH in 2000.

Table 4.Weed control methods including herbicide rate, cost and date applied at Briggsdale in 2000 season.								
Сгор	Herbicide/Tillage	Rate (English)	Rate (Metric)	Cost	Date Applied			
Rotation: Wheat-Fallow								
Wheat:	Ally	0.1 oz/A	7.0 g/ha	\$2.30/A	4 May 2000			
	2,4-D ester 4#	8 oz/A	0.58 l/ha	\$0.82/A	4 May 2000			
Fallow:	Fallowmaster*	44 oz/A	3.2 l/ha	\$6.49/A	13 May 2000			
	Fallowmaster*	44 oz/A	3.2 l/ha	\$6.49 /A	21 June 2000			
Rotation: Wheat-Millet-Fallow								
Wheat:	Ally	0.1 oz/A	7.0 g/ha	\$2.30/A	4 May 2000			
	2,4-D ester 4#	8 oz/A	0.58 l/ha	\$0.82/A	4 May 2000			
Millet:	Fallowmaster*	44 oz/A	3.21 l/ha	\$6.49/A	13 May 2000			
	Round-up Ultra*	24 oz/A	1.75 l/ha	\$7.23/ A	21 June 2000			
Fallow:	Fallowmaster*	44 oz/A	3.21 l/ha	\$6.49/A	13 May 2000			
	Fallowmaster*	44 oz/A	3.21 l/ha	\$6.49/A	21 June 2000			
Rotation:Wheat-Wheat-Corn-Soybean-Sunflower-Pea:								
Wheat:	Ally	0.1 oz/A	7.0 g/ha	\$2.30/A	4 May 2000			
	2,4-D ester 4#	8 oz/A	0.58 l/ha	\$0.82/A	4 May 2000			
	Fallomaster*	32 oz/A	2.33 l/ha	\$4.72/A	2 Aug. 2000			
	2,4D ester	8 oz/A	0.58 l/ha	\$0.82 /A	2 Aug. 2000			
Wheat:	Ally	0.1 oz/A	7.0 g/ha	\$2.30/A	4 May 2000			
	2,4-D ester 4#	8 oz/A	0.58 l/ha	\$0.82/A	4 May 2000			
Corn:	Prowl	32 oz/A	2.33 l/ha	\$5.11/A	13 May 2000			
	Atrazine 4L	32 oz/A(1#)	2.33 l/ha(454g)	\$2.80/A	13 May 2000			
	Fallowmaster*	44 oz/A	3.21 l/ha	\$6.49/ A	13 May 2000			
Soybeans:	Round-up Ultra*	32 oz/A	2.33 l/ha	\$9.64/A	13 May 2000			
	Round-up Ultra*	24oz/A	1.75 l/ha	\$7.23/A	22 June 2000			
Sunflowers	Landmaster*	40 oz/A	2.92 l/ha	\$5.54/A	13 May 2000			
:	Prowl	48 oz/A	3.50 l/ha	\$7.66/A	13 May 2000			
Peas	Fallowmaster*	44 oz/A	3.21 l/ha	\$6.49/A	21 June 2000			
	2,4-D ester 4#	8 oz/A	0.58 l/ha	\$0.82/A	21 June 2000			
Rotation: Opportunity								
Soybeans:	Round-up Ultra*	32 oz/A	2.33 l/ha	\$9.64/A	13 May 2000			
	Round-up Ultra*	24oz/A	1.75 l/ha	\$7.23/A	22 June 2000			
*Applied 17 lbs. Ammonium Sulfate/100 gallons water with Round-up products.								

ſ

at Akron in	2000 season.							
Сгор	Herbicide/Tillage	Rate (English)	Rate (Metric)	Cost	Date Applied			
Rotation: Wheat-Fallow								
Wheat:								
Fallow:								
Rotation: Wheat-Corn-Fallow								
Wheat:	Round-up Ultra							
Corn:	Round-up Ultra	32 oz/A	2.33 l/ha	\$9.64/A	12 May 2000			
Fallow:	Round-up Ultra							
Rotation:Whe	eat-Corn-Millet:		1	1				
Wheat:	Round-up Ultra	32 oz/A	2.33 l/ha	\$9.64/A				
Corn:	Round-up Ultra	32 oz/A	2.33 l/ha	\$9.64/A	12 May 2000			
Millet:	Round-up Ultra							
Rotation: Wheat-Corn-Sunflower-Fallow:								
Wheat:	Round-up Ultra							
Corn:	Round-up Ultra	32 oz/A	2.33 l/ha	\$9.64/A	12 May 2000			
Sunflower:	Round-up Ultra							
Fallow:	Round-up Ultra							

Table 6. Weed control methods including herbicide rate, cost and date applied at Lamar in 1999-2000 growing season.							
Сгор	Herbicide/Tillage	Rate (English)	Rate (Metric)	Cost	Date Applied		
Rotation: Wheat-Fallow							
Wheat:	Paramount Landmaster BW* Ally 2,4-D 6#	5.33 oz/A 54 oz/A 0.1 oz/A 8 oz/A	374 g/ha 3.94 l/ha 7.0 g/ha 0.58 l/ha	\$9.21/A \$2.41/A \$1.20/A	9/09/1999 9/09/1999 5/07/2000 5/07/2000		
Fallow:	Tillage - Sweep Fallowmaster* Landmaster BW* Fallowmaster* Landmaster BW*	32 oz/A 32 oz/A 32 oz/A 32 oz/A 32 oz/A	2.33 l/ha 2.33 l/ha 2.33 l/ha 2.33 l/ha 2.33 l/ha	\$4.92/A \$5.53/A \$4.92/A \$5.53/A	6/13/2000 7/21/2000 7/21/2000 8/05/2000 8/05/2000		
Rotation: Wheat-Sorghum-Fallow							
Wheat:	Paramount Landmaster BW* Ally 2,4-D 6#	5.33 oz/A 54 oz/A 0.1 oz/A 8 oz/A	374 g/ha 3.94 l/ha 7.0 g/ha 0.58 l/ha	\$9.21/A \$2.41/A \$1.20/A	9/09/1999 9/09/1999 5/07/2000 5/07/2000		
Sorghum:	Round-up Ultra* Atrazine 4L	20 oz/A 16 oz/A	1.46 l/ha 1.17 l/ha		6/03/2000 6/03/2000		
Fallow:	Tillage - Sweep Fallowmaster* Landmaster BW* Fallowmaster* Landmaster BW*	32 oz/A 32 oz/A 32 oz/A 32 oz/A 32 oz/A	2.33 l/ha 2.33 l/ha 2.33 l/ha 2.33 l/ha 2.33 l/ha	\$4.92/A \$5.53/A \$4.92/A \$5.53/A	6/13/2000 7/21/2000 7/21/2000 8/05/2000 8/05/2000		

APPENDIX II PROJECT PUBLICATIONS

- Papers in Scientific Journals: Kitchen, N. R., L. A. Sherrod, C. W. Wood, G. A. Peterson and D. G. Westfall. 1990. Nitrogen contamination of soils from sampling bags. Agron. J. 82:354-356. Kitchen, N. R., J. L. Havlin and D. G. Westfall. 1990. Soil sampling under no-till banded phosphorus.
- Soil Sci. Soc. Am. J. 54:1661-1665. Wood, C. W., D. G. Westfall, G. A. Peterson and I. C. Burke. 1990. Impacts of cropping intensity on
- carbon and nitrogen mineralization under no-till agroecosystems. Agron. J. 82: 1115-1120. Wood, C. W., D. G. Westfall and G. A. Peterson. 1991. Soil carbon and nitrogen changes upon
- initiation of no-till cropping systems in the West Central Great Plains. Soil Sci. Soc. Am. J. 55:470-476.
- Wood, C. W., G. A. Peterson, D. G. Westfall, C. V. Cole and W. F. Willis. 1991. Nitrogen balance and biomass production of newly established no-till dryland agroecosystems. Agron. J. 83:519-526.
- Moore, I.D., P.E. Gessler, G.A. Nielsen, and G.A. Peterson. 1993. Soil attribute prediction using terrain analysis. Soil Sci. Soc. Am. J. 57:443-452
- Peterson, G.A., D.G. Westfall, and C.V. Cole. 1993. Agroecosystem approach to soil and crop management research. Soil Sci. Soc. Am. J. 57:1354-1360.
- Evans, S.D., Ğ.A. Peterson, D.G. Westfall and E. McGee. 1994. Nitrate leaching in dryland agroecosystems as influenced by soil and climate gradients. J. Environ. Qual. 23:999-1005. Peterson, G.A., A.J. Schlegel, D.L. Tanaka, and O.R. Jones. 1996. Precipitation use efficiency as affected
- by cropping and tillage systems. J. of Prod. Agric. 9:180-186. Westfall, D.G., J.L. Havlin, G.W. Hergert, and W.R. Raun. 1996. Nitrogen management in dryland
- cropping systems. J. of Prod. Agric. 9:192-199. Paustian, K.A., E.T. Elliott, G.A. Peterson, and K. Kendrick. 1996. Modeling climate, CO₂ and
- management impacts on soil carbon in semi-arid agroecosystems. Plant and Soil 187:351-365.
- Kolberg, R.L., N.R. Kitchen, D.G. Westfall, and G.A. Peterson. 1996. Cropping intensity and nitrogen management impact on dryland no-till rotations in the semi-arid western Great Plains. J. Prod. Agric. 9:517-522.
- Agric. 9:517-522.
 Follett, R.F., E.A. Paul, S.W. Leavitt, A.D. Halvorson, D. Lyon, and G.A. Peterson. 1997. Carbon isotope ratios of Great Plains soils in wheat-fallow systems. Soil Sci. Soc. Am. J. 61:1068-1077.
 Paul, E.A., R.F. Follett, S.W. Leavitt, A.D. Halvorson, G.A. Peterson, and D. Lyon. 1997. Carbon isotope ratios of Great Plains soils in wheat-fallow systems. Soil Sci. Soc. Am. J. 61:1058-1067.
 Kolberg R.L., B. Roupett, D.G. Westfall, and G.A. Peterson. 1997. Evaluation of an *in situ* net nitrogen mineralization method in dryland agroecosystems. Soil Sci. Soc. Am. J. 61:504-508.
 McGee, E.A., G.A. Peterson, and D.G. Westfall. 1997. Water storage efficiency in no-till dryland cropping systems. J. Soil and Water Cons. 52:131-136.
 Peterson, G.A. A. D. Halvorson, L. Havlin, O.P. Jones, D.I. Lyon, and D.L. Tanaka. 1998. Reduced

- Peterson, G.A., A.D Halvorson, J.L. Havlin, O.R. Jones, D.J. Lyon, and D.L. Tanaka. 1998. Reduced tillage and increasing cropping intensity in the Great Plains conserves soil carbon. Soil and Tillage Res. 47:207-218.
- Farahani, H.J., G.A. Peterson, D.G. Westfall, and L.R. Ahuja. 1998. Soil water storage in dryland cropping systems: The significance of cropping intensification. Soil Sci. Soc. Am. J. 62:984-991.
- Power, J.F. and G.A. Peterson. 1998. Nitrogen transformations, utilization, and conservation as affected by fallow tillage method. Soil and Tillage Res. 49:37-47.
- Farahani, H.J., G.W. Buchleiter, L.R. Ahuja, G.A. Peterson, and L. Sherrod. 1999. Season evaluation of the root zone water quality model in Colorado. Agron. J. 91:212-219.
- Ma, L., G.A. Peterson, L.R. Ahuja, L. Sherrod, M.J. Shafer, and K.W. Rojas. 1999. Decomposition of surface crop residues in long-term studies of dryland agroecosystems. Agron. J. 91:401-409.
- Frey, S.D., E.T. Elliott, K. Paustian, and G.A. Peterson. 2000. Fungal translocation as a mechanism for soil nitrogen inputs to surface residue decomposition in a no-tillage agroecosystem. Soil Biol. and Biochem. 32:689-698.

Chapters in Books or Monographs:

Peterson, G.A. 1994. Interactions of surface residues with soil and climate. p. 9-12. IN: W.C. Moldenhauer and A.L. Black (eds.) Crop residue management to reduce erosion and improve soil quality: Northern Great Plains, USDA/ARS Cons. Res. Report No. 38. Washington, D.C.

- Westfall, D.G., W.R. Raun, J.L. Havlin, G.V. Johnson, J.E. Matocha, and F.M. Hons. 1994. Fertilizer management. p. 33-36. IN: B.A. Stewart and W.C. Moldenhauer (eds.) Crop residue management to reduce erosion and improve soil quality: Southern Great Plains. USDA/ARS Cons. Res. Report No. 37. Washington, D.C. Metherell, A.K., C.A. Cambardella, W.J. Parton, G.A. Peterson, L.A. Harding, and C.V. Cole. 1995.
- Simulation of soil organic matter dynamics in dryland winter wheat-fallow cropping systems.
- Simulation of son organic matter dynamics in dryland winter wheat-failow cropping systems.
 p.259-270. *IN:* Soil management and greenhouse effect. R. Lal, J. Kimble, E. Levine, and B.A. Stewart. (eds.) Lewis Publishers, Boca Raton, FL.
 Peterson, G.A. and D.G. Westfall. 1997. Management of dryland agroecosystems in the Central Great Plains of Colorado. p.371-380. *IN:* Soil organic matter in temperate agroecosystems. Paul, E.A., K.A. Paustian, E.T. Elliot, and C.V. Cole. (eds.) Lewis Publishers, Boca Raton, FL.
 Halvorson, A.D., M.F. Vigil, G.A. Peterson, and E.T. Elliott. 1997. Long-term tillage and crop residue management study at Alvon Colorado. p. 361–370. *IN:* Soil organic matter in temperate
- management study at Akron, Colorado. p.361-370. IN: Soil organic matter in temperate agroecosystems. Paul, E.A., K.A. Paustian, E.T. Elliot, and C.V. Cole. (eds.) Lewis Publishers, Boca Raton, FL.
- Farahani, H.J., G.A. Peterson, and D.G. Westfall. 1998. Dryland cropping intensification: A fundamental solution to efficient use of precipitation. Advaces in Agron. 64:197-223.
- Bradford, J.M. and G.A. Peterson. 1999. Conservation Tillage. p. G247-G270 IN: M.E. Sumner (ed.) Handbook of Soil Science. CRC Press, Boca Raton, FL.

Publications in Proceedings:

- Peterson, G. A. and D. G. Westfall. 1987. Integrated research in soil and crop management. p. 3-5. IN: Proc. Western Phosphate Conf. March 1987. Corvallis, OR. Kitchen, N. R., D. G. Westfall and G. A. Peterson. 1988. Nitrogen fertilizer use efficiency in dryland
- no-till crop rotations. p. 172-179. IN: 1988 Symposium Proc. Fluid Fertilizer Research as a Basis for Efficient Crop Production. March 15-17, 1988.
- Wood, C. W., D. G. Westfall and J. M. Ward. 1988. Phosphorus placement in dryland winter wheat. IN: Proc. Great Plains Soil Fert. Workshop 2:79-83.
- Peterson, G. A., D. G. Westfall and W. O. Willis. 1988. Systems research: a necessity for the future of agronomic research. p. 739-740. IN: Proc. Int. Conf. Dryland Farming, Aug. 15-19, 1988. Amarillo, TX.
- Kitchen, N. R., D. G. Westfall and G. A. Peterson. 1988. Nitrogen fertilizer use efficiency in dryland no-till crop rotations. p. 223-229. IN: Proc. Fluid Fert. Found. Symp., March, 1988, Scottsdale, AZ.
- Westfall, D. G. and G. A. Peterson. 1989. Long-term dryland cropping systems research for the Central Great Plains. p. 1. IN: Proc. Western Soc. Soil Sci. Bozeman, MT, June 20-22, 1989.
- Peterson, G. A. and D. G. Westfall. 1990. Long-term soil-crop management research for the 21st century. p. 132-136. IN: Proc. Great Plains Soil Fert. Conf., Denver, CO, March 6-7, 1990.
- Kitchen, N. R., D. G. Westfall, G. A. Peterson and J. L. Havlin. 1990. Soil sampling under no-till banded phosphorus fertilizer. p. 159-164. IN: Proc. Great Plains Soil Fert. Conf., Denver, CO, March 6-7, 1990.
- Kitchen, N. R., D. G. Westfall and G. A. Peterson. 1990. Fertilizer use efficiency in dryland no-till crop rotations. p. 218-227. IN: Proc. Fluid Fert. Found., Scottsdale, AZ, March 13-15, 1990.
- Peterson, G. A. and D. G. Westfall. 1990. Dryland cropping systems to enhance water quality. p. 93-104. <u>IN:</u> Proc. Non-point Water Quality Symp., Colorado Springs, CO, March 22-23, 1990. Westfall, D. G. and G. A. Peterson. 1990. Nitrogen efficiency in dryland agroecosystems. p. 155-163.
- <u>IN:</u> Proc. Great Plains Conserv. Tillage Symp. Great Plains Agricultural Council Bulletin No. 131. Bismarck, ND, August 21-23, 1990. Peterson, G. A. and D. G. Westfall. 1990. Sustainable dryland agroecosystems. p. 23-29. <u>IN:</u> Proc.
- Peterson, G. A. and D. G. Westfall. 1990. Sustainable dryland agroecosystems. p. 23-29. <u>IN:</u> Proc. Great Plains Conserv. Tillage Symp. Great Plains Agricultural Council Bulletin No. 131. Bismarck, ND, Aug. 21-23, 1990.
 Peterson, G.A.. 1991. Soil and crop management as a driving variable. p. 255. <u>IN</u>: J.D. Hanson, M.J. Shaffer, D.A. Ball and C.V. Cole (eds.), Sustainable Agriculture for the Great Plains, Symposium Proceedings. USDA-ARS, ARS-89.
 Westfall, D.G. and G.A. Peterson. 1991. Optimum production and nitrogen fertilizer use in dryland notill crop rotations. p.48. <u>IN</u>: Proc. Pacific Div. AAAS, June 23-27, 1991, Logan, UT.
 Westfall, D.G., R.L. Kolberg, N.R. Kitchen, and G.A. Peterson. 1991. Nitrogen fertilizer use efficiency in dryland notill crop rotations. p. 260-270. <u>IN</u>: Proc. Fluid Fert. Found. Symp., March 1991,

Scottsdale, AZ.

- Peterson, G.A., D.G. Westfall, and A.D. Halvorson. 1992. Economics of dryland crop rotations for efficient water and nitrogen use. p. 47-53. IN: Proc. Great Plains Soil Fert. Conf., Denver, CO, March 3-4, 1992.
- Westfall, D.G., R.L. Kolberg, and G.A. Peterson. 1992. Nitrogen fertilizer use efficiency in dryland no-till crop rotations. p. 244-257. <u>IN:</u> Proc. Fluid Fert. Found. Symp., March 1992, Scottsdale, AZ.
 Peterson, G.A., and C.V. Cole. 1993. Productivity of Great Plains soils: Past, present and future. <u>IN:</u> Proceedings of the Great Plains Ecosystems Symposium. Kansas City, MO. 7-9 April 1993.
- Proceedings of the Great Plains Ecosystems Symposium. Kansas City, MO. 7-9 April 1993.
 Moore, I.D., P.E. Gessler, G.A. Nielsen, and G.A. Peterson. 1993. Soil attribute prediction using terrain analysis. p. 27-55. <u>IN:</u> Robert, P.C., et al. (eds.) Proc. of Workshop: Soil Specific Crop Management. Minneapolis, MN. 14-16 April 1992. Am. Soc. of Agron. Madison, WI.
 Westfall, D.G., R.L. Kolberg, and G.A. Peterson. 1993. Nitrogen fertilizer use efficiency in dryland notill crop rotations. p. 153-163. <u>IN:</u> Proc. Fluid Fert. Found. Symp. March 1993. Scottsdale, AZ.
 Westfall, D.G., G.A. Peterson, and R.L. Kolberg. 1994. Fluid systems for dryland agriculture. p. 129-134. <u>IN</u>: Proc. Fluid Fert. Found. Symp. "Research for Tomorrow" February 1994. Scottsdale, AZ.
- AZ.
- Westfall, D.G., R.L. Kolberg, and G.A. Peterson. 1994. Nitrogen management for intensified dryland agroecosystems. p. 12-17. IN: Proc. Great Plains Soil Fertility Conference. 7-9 March 1994. Denver, CO.
- Peterson, G.A., D.G. Westfall, N.E. Toman, and R. E. Anderson. 1994. Sustainable dryland cropping systems: Economic analysis. p. 30-35. IN: Proc. Great Plains Soil Fertility Conference. 7-9 March 1994. Denver, CO.
- Rouppet, B., R.L. Kolberg, R.L. Waskom, D.G. Westfall, and G.A. Peterson. 1994. In-situ soil nitrogen mineralization methodology. p. 30-35. <u>IN</u>: Proc. Great Plains Soil Fertility Conference. 7-9 March 1994. Denver, CO.
- Peterson, G.A. and D.G. Westfall. 1994. Intensified cropping systems: The key to environmental and economic sustainablity in the Great Plains. p. 73-84. IN: Proc. Intensive Wheat Management Conference. 10-11 March 1994. Denver, CO.
- Peterson, G.A. and D.G. Westfall. 1994. Economic and environmental impact of intensive cropping systems - Semiarid region. p. 145-158. <u>IN</u>: Proc. Nutrient Management on Highly Productive Soils Conference. 16-18 May 1994. Atlanta, GA.
- Westfall, D.G., G.A. Peterson, and R.L. Kolberg. 1994. Nitrogen and phosphorus management of dryland cropping systems. p. 35-41. <u>IN</u>: Proc. Great Plains Residue Management Conference. GPAC Bull. No. 150. 15-17 August 1994. Amarillo, TX. Peterson, G.A., D.G. Westfall, and L. Ahuja. 1995. Sustainable dryland agroecosystems for the Great
- Plains. <u>IN</u>: Proc. Planning for a Sustainable Future: The case of the North American Great Plains Symposium. 8-10 May 1995. Lincoln, NE.
 Peterson, G.A., D.G. Westfall, and R.L. Kolberg. 1995. Fertilidad en trigo y otros cultivos en areas secas.
- p. 119-130. <u>IN</u>: Fertilidad de Suelos, Fertilizacion y Siembra Directa. III Jornadas Regionales Symposium. September 1995. Sierra la Ventana, Argentina.
 Westfall, D.G., G.A. Peterson, and R.L. Kolberg. 1995. Fluid systems for dryland agriculture. p. 127-140. <u>IN</u>: 1995 Fluid Forum Proc. Sponsored by Fluid Fertilizer Foundation. February 1995, Statistical Systems for dryland agriculture. J. 1995.
- Scottsdale, AZ.

- Westfall, D.G., G.A. Peterson, and R.L. Kolberg. 1995. Sustainable dryland cropping systems. <u>IN</u>: Proc. Western Nutrient Management Conf. 1:101-105. 9-10 March 1995. Salt Lake City, UT.
 Peterson, G.A. 1996. Nitrogen fertilizer management for Great Plains dryland cropping systems: A review. p.19-25. <u>IN</u>: Proc. Great Plains Soil Fertility Conference. 5-6 March 1996. Denver, CO.
 Westfall, D.G., G.A. Peterson, and R.L. Kolberg. 1996. Fluid systems for dryland agriculture. p.102-112. <u>IN</u>: 1996 Fluid Forum Proc. Sponsored by Fluid Fertilizer Foundation. February 1996, Santtachen A.Z. Scottsdale, AZ.
- Westfall, D.G. and G.A. Peterson. 1996. Post CRP nitrogen management in dryland cropping systems. p.6 <u>IN</u> CRP Conference Proceedings. CRP Conference. Amarillo, TX.
 Ortega, R.A., D.G. Westfall, and G.A. Peterson. 1996. Crop residue distribution and activity in soils as affected by cropping intensity in no-till dryland agroecosystems. p.75-82. <u>IN</u> Proc. Great Plains
- Soil Fertility Conference. 5-6 March 1996. Denver, CO.
 Westfall, D.G., R.L. Kolberg, and G.A. Peterson. 1996. Nitrogen fertilization of intensive cropping systems. p.48-57. <u>IN</u>: 1996 Proc. AgriFuture Farm Technology Expo and Convention Workshop. February 1996. Red Deer, Alberta.
- Westfall, D.G. and G.A. Peterson. 1996. Managing the move to more intensive cropping. p.14-22. IN:

1996 Proc. AgriFuture Farm Technology Expo and Convention Workshop. February 1996. Red Deer. Alberta.

- Peterson, G.A. and D.G. Westfall. 1997. Benefits of zero till and rotations in the North American Great Plains. p. 5-16. IN: Proc. of the 19th Annual Manitoba-North Dakota Zero Tillage Workshop.
- 27-29 Jan. 1997, Brandon, Manitoba, Canada.
 Ortega, R. A., D.G. Westfall, and G.A. Peterson. 1997. Using natural soil variability to calibrate soil tests. p. 14-31. *IN*: 1997 Fluid Forum Proc. Sponsored by the Fluid Fertilizer foundation, February, 23-25, 1997, Scottsdale, AZ.
- Ortega, R. A., D.G. Westfall, and G.A. Peterson. 1997. Spatial variability of soil P and its impact on dryland winter wheat yields. p. 150-159. *IN*: Proc. of the Western Nutrient Management Conf. March 6-7, 1997. Salt Lake City, UT. Peterson, G. A. and D.G. Weatfall. 1997. Crop water extraction patterns across soil types. p. 41-48. *IN*:
- Proc. of the Ninth Ann. Conf. of the Colorado Cons. Tillage Assn. February 4-5, 1997. Sterling, CO.
- Westfall, D.G., M. Amrani, and G.A. Peterson. 1998. Availability of zinc in fertilizers as influenced by water-solubility. p. 7-12. IN: Great Plains Soil Fertility Conference Proceedings. Schlegel, A.J. (Ed.) Great Plains Soil Fertility Conference. March 1998. Denver, CO. Sherrod, A.L., G.A. Peterson, and D.G. Westfall. 1998. No-till rotational residue dynamics across an ET
- gradient. p. 61-66. IN: Great Plains Soil Fertility Conference Proceedings. Schlegel, A.J. (Ed.) Great Plains Soil Fertility Conference. March 1998. Denver, CO.
- Ortega, R.A., D.G. Westfall, and G.A. Peterson. 1998. Using natural soil variability in landscapes: Site specific management of nitrogen on dryland corn. p. 98-113. IN: 1998 Fluid Forum Proc.
- Sponsored by the Fluid Fertilizer foundation, February, 22-25, 1998, Scottsdale, AZ. Westfall, D.G., R.A. Ortega, and G.A. Peterson. 1998. Landscape variability and wheat managment. p. 1-8. *IN*: Proc. Intensive Wheat Mgt. Conf. Mar 4-5, 1998, Denver, CO. Sponsored by The Potash and Phosphate Institute.
- Peterson, G.A. and D.G. Westfall. 1998. Efficient nutrient use in no-till intensively cropped dryland systems. p. 57-66. Proceedings of the 6th Congresso Nacional de AAPRESID. 19-21 August. Mar del Plata, Argentina.
- Westfall, D.G., R.A. Ortega, and G.A. Peterson. 1998. Spatial variability of soil P and its impact on dryland winter wheat yields. V. 1, p. 301. *IN:* Proc 16th World Congress of Soil Science. August 20-26, 1998. Montpellier, France.
- Ortega, R.A., D.G. Westfall, G.A. Peterson, and W.J. Gangloff . 1999. Using natural variability in landscapes to calibrate soil tests. p. 64-77. IN: Proc. Fluid Forum. 21-23 Feb. 1999. Scottsdale, AZ.
- Peterson, G.A. and D.G. Westfall. 1999. Adapt versus adopt: If it works in Saskatchewan why won't it work here?. Proceedings of the 11th Annual Conference of the Colorado Tillage Association. 2-3 February 1999. Sterling, Colorado.
- Sherrod, A.L., G.A. Peterson, D.G. Westfall, and L.R. Ahuja. 2000. Carbon sequestration rates after 12 years under no-till dryland cropping systems rotations. p. 75-81. IN: Great Plains Soil Fertility Conference Proceedings. Schlegel, A.J. (Ed.) Great Plains Soil Fertility Conference. March 2000. Denver, CO.
- Peterson, G.A., D.G. Westfall, L.A. Sherrod, and T.M. Shaver. 2000. Dryland agroecosystem management for the Central Great Plains. Proceedings of Farming and Ranching for Profit, Stewardship, and Community Conference. 7-9 March 2000. Portland, OR.

- <u>Technical bulletins or other reports:</u> Peterson, G. A., D. G. Westfall, W. Wood and S. Ross. 1988. Crop and soil management in dryland agroecosystems. Tech. Bull. LTB88-6. Colorado State University and Agricultural Experiment Station. Ft. Collins, CO.
- Peterson, G. A., D. G. Westfall, C. W. Wood, L. Sherrod and E. McGee. 1989. Crop and soil management in dryland agroecosystems. Tech. Bull. TB89-3. Colorado State University and
- Agricultural Experiment Station. Ft. Collins, CO.
 Peterson, G. A., D. G. Westfall, C. W. Wood, L. Sherrod and E. McGee. 1990. Crop and soil management in dryland agroecosystems. Tech. Bull. TB90-1. Colorado State University and Agricultural Experiment Station. Ft. Collins, CO.
 Peterson, G. A., D. G. Westfall, L. Sherrod, E. McGee and R. Kolberg. 1991. Crop and soil management in dryland agroecosystems. Tech. Bull. TB91-1. Colorado State University and Agricultural Experiment Station. Ft. Collins, CO.
- Agricultural Experiment Station. Ft. Collins, CO.

- Peterson, G.A., D.G. Westfall, L. Sherrod, E. McGee and R. Kolberg. 1992. Crop and soil management in dryland agroecosystems. Tech. Bul.TB92-2. Colorado State University and Agricultural
- Experiment Station. Ft. Collins, CO.
 Croissant, R.L., G.A. Peterson, and D.G. Westfall. 1992. Dryland cropping systems in eastern Colorado. Service in Action No. 516. Cooperative Extension. Colo. State Univ. Fort Collins, CO.
 Peterson, G.A., D.G. Westfall, N.E. Toman, and R.L. Anderson. 1993. Sustainable dryland cropping systems: Economic analysis. Tech. Bul. TB93-3. Colorado State University and Agricultural Experiment Station. Ft. Collins, CO.
- Peterson, G.A., D.G. Westfall, L. Sherrod, R. Kolberg, and B. Rouppet. 1993. Sustainable dryland agroecosystem management. Tech. Bul. TB93-4. Colorado State University and Agricultural Experiment Station. Ft. Collins, CO.
- Kolberg, R.L., D.G. Westfall, G.A. Peterson, N.R. Kitchen, and L. Sherrod. 1993. Nitrogen fertilization of dryland cropping systems. Tech. Bul. TB93-6. Colorado State University and Agricultural Experiment Station. Ft. Collins, CO.
- Peterson, G.A., D.G. Westfall, L. Sherrod, R. Kolberg, and B. Rouppet. 1994. Sustainable dryland agroecosystem management. Tech. Bul. TB94-1. Colorado State University and Agricultural Experiment Station. Ft. Collins, CO.
- Peterson, G.A., D.G. Westfall, L. Sherrod, R. Kolberg, and D. Poss. 1995. Sustainable dryland agroecosystem management. Tech. Bul. TB95-1. Colorado State University and Agricultural Experiment Station. Ft. Collins, CO.
- Peterson, G.A., D.G. Westfall, L. Sherrod, R. Kolberg, and D. Poss. 1996. Sustainable dryland agroecosystem management. Tech. Bul. TB96-1. Colorado State University and Agricultural Experiment Station. Ft. Collins, CO.
- Nielsen, D., G.A. Peterson, R. Anderson, V. Ferreira, W. Shawcroft, and K. Remington. 1996. Estimating corn yields from precipitation records. Cons. Tillage Fact Sheet 2-96. USDA/ARS and USDĂ/NRCS. Akron, CO.
- Peterson, G.A., D.G. Westfall, L. Sherrod, D. Poss, K. Larson, D. Thompson, D. 1997. Sustainable dryland agroecosystem management. Tech. Bull. TB97-3. Colorado State University and Agricultural Experiment Station, Fort Collins, CO.
- Peterson, G.A., D.G. Westfall, L. Sherrod, D. Poss, K. Larson, D. Thompson, and L.R. Ahuja. 1998. Sustainable dryland agroecosystem management. Tech. Bull. TB98-1. Agric. Exp. Stn., Colo. State Univ., Fort Collins, CO.
- Peterson, G.A., D.G. Westfall, F.B. Peairs, L. Sherrod, D. Poss, W. Gangloff, K. Larson, D. Thompson, L.R. Ahuja, M.D. Koch, and C.B. Walker. 1999. Sustainable dryland agroecosystem
- Martin M. B. Roch, and C.B. Walter. 1999. Sustainable dryland agroecosystem
 management. Tech. Bull. TB99-1. Agric. Exp. Stn., Colo. State Univ., Fort Collins, CO.
 Peterson, G.A., D.G. Westfall, F.B. Peairs, L. Sherrod, D. Poss, W. Gangloff, K. Larson, D. Thompson, L.R., Ahuja, M.D. Koch, and C.B. Walker. 2000. Sustainable dryland agroecosystem management. Tech. Bull. TB00-3. Agric. Exp. Stn., Colo. State Univ., Fort Collins, CO.

Published Abstracts:

- Peterson, G. A. and D. G. Westfall. 1987. Integrated research: a necessity for the future of soil and crop management. Agron. Abstracts p. 213. Amer. Soc. of Agron., Madison, WI.
 Peterson, G. A., C. W. Wood and D. G. Westfall. 1988. Building a crop residue base in no-till cropping systems. Agron. Abstracts p. 246. Amer. Soc. of Agron., Madison, WI.
 Kitchen, N. R., D. G. Westfall and G. A. Peterson. 1989. Potential N and C mineralization in dryland the statill group of the program. Abstracts p. 244
- no-till cropping soils as influenced by N fertilization management. Agron. Abstracts p. 244.
- Amer. Soc. of Agron., Madison, WI.
 Peterson, G. A., D. G. Westfall. 1989. Long-term soil-crop management research for the 21st century. Agron. Abstracts p. 249. Amer. Soc. of Agron., Madison, WI.
 Westfall, D. G., N. R. Kitchen and J. L. Havlin. 1989. Soil sampling procedures under no-till banded phosphorus fertility. Agron. Abstracts p. 256. Amer. Soc. of Agron., Madison, WI.
 Wood, C. W., G. A. Peterson and D. G. Westfall. 1989. Potential C and N mineralization in dryland agroecosystems as affected by landscape position and crop rotation. Agron. Abstracts p. 256.
- agroecosystems as affected by landscape position and crop rotation. Agron. Abstracts p. 256.
- Amer. Soc. of Agron., Madison, WI.
 Follett, R. H., G. A. Peterson, C. W. Wood and D. G. Westfall. 1989. Developing a crop residue base to decrease erosion potential. Abstract of the Annual Meeting of the Soil and Water Conservation Society. 30 July 1989. Edmonton, Canada.
- Kitchen, N. R., D. G. Westfall and G. A. Peterson. 1990. Nitrogen fertilization management in no-till dryland cropping systems. Agron. Abstracts p. 272. Amer. Soc. of Agron., Madison, WI.

- Peterson, G. A., C. W. Wood and D. G. Westfall. 1990. Cumulative biomass production and N utilization in no-till dryland agroecosystems. Agron. Abstracts p. 322. Amer. Soc. of Agron., Madison, WI.
- Wood, C. W., D. G. Westfall and G. A. Peterson. 1990. Impact of cropping intensity under no-till on soil C and N. Agron. Abstracts. p. 328. Amer. Soc. of Agron., Madison, WI.
 Evans, S.D., G.A. Peterson, D.G. Westfall, and E.A. McGee. 1991. Nitrate leaching in dryland
- agroecosystems as influenced by soil and climate gradients. Agron. Abstracts. p.330. Amer. Soc. of Agron., Madison, WI.
- McGee, E.A., G.A. Peterson, and D.G. Westfall. 1991. Water-use efficiency of dryland no-till cropping systems in the west central Great Plains. Agron. Abstracts. p.336. Amer. Soc. of Agron., Madison, WI.
- McMaster, G.S., J.A. Morgan, and G.A. Peterson. 1991. Wheat yield components for different cropping systems, climates, and catenas. Agron. Abstracts. p.153. Amer. Soc. of Agron., Madison, WI.
- Peterson, G.A., D.G. Westfall, and E.A. McGee. 1992. Increasing productivity and sustainability of dryland agroecosystems. Abstracts of the First International Crop Science Congress. 14-22 July, 1992. Ames, Iowa. Crop Science Society of America. Madison, WI.
- Westfall, D.G., and G.A. Peterson. 1992. Sustainable dryland agroecosystems. Agron. Abstracts. p. 86. Amer. Soc. of Agron., Madison, WI.
- McGee, E.A., G.A. Peterson, and D.G. Westfall. 1992. Water-use efficiency as affected by cropping intensity, slope, and evaporative gradient in no-till dryland agroecosystems. Agron. Abstracts. p. 331. Amer. Soc. of Agron., Madison, WI.
- Iremonger, C.J., D.G. Westfall, and G.A. Peterson. 1992. Fertilizer phosphorus and cropping intensity effects on P availability. p. 86-92. IN: Proc. Western Phosphorus/Sulfur Workshop. Aug. 6-8, 1992. Anchorage, AK.
- Peterson, G.A., D.G. Westfall, N.E. Toman, and R.L. Anderson. 1993. Sustainable dryland cropping systems: Economic analysis. Agron. Abstracts p. 325. Amer. Soc. of Agron., Madison, WI.
- Kolberg, R.L., B. Rouppet, D.G. Westfall, and G.A. Peterson. 1993. In situ soil nitrogen mineralization methodology. Agron. Abstracts p. 276. Amer. Soc. of Agron., Madison, WI. Halvorson, A.D., G.A. Peterson, and S.E. Hinkle. 1993. Tillage and cropping system effects on dryland
- wheat and corn production. Agron. Abstracts p. 316. Amer. Soc. of Agron., Madison, WI.
- Mrabet, R., A. Bouzza, and G.A. Peterson. 1993. Potential reduction in soil erosion in Morocco using no-till systems. Agron. Abstracts p. 323. Amer. Soc. of Agron., Madison, WI.
- Rouppet, B., D.G. Westfall, and G.A. Peterson. 1994. In-situ nitrogen mineralization in no-till dryland agroecosystems. Agron. Abstracts p. 316. Amer. Soc. of Agron., Madison, WI. Peterson, G.A., A.J. Schlegel, D.L. Tanaka, and O.R. Jones. 1994. Precipitation use efficiency as related
- to cropping systems and tillage. Agron. Abstracts p. 356. Amer. Soc. of Agron., Madison, WI. Ortega, R.A., G.A. Peterson, and D.G. Westfall. 1994. Net nitrogen mineralization as affected by
- cropping systems and residue production. Agron. Abstracts p. 372. Amer. Soc. of Agron., Madison, WI.
- Peterson, G.A., D.G. Westfall, N.E. Toman and R.L. Anderson. 1994. Sustainable dryland cropping systems on the Colorado High Plains: Economic analysis. AAAS-WSSA Meeting Abstract. 20-23 April 1994.
- Sherrod, L., G.A. Peterson, D.G. Westfall, and R.L. Kolberg. 1995. Carbon and nitrogen dynamics as affected by rotation intensity in the Great Plains. Agron. Abstracts p. 25. Amer. Soc. of Agron., Madison, WI.
- Peterson, G.A., A.L. Black, A.D. Halvorson, J.L. Havlin, O.R. Jones, and D.J. Lyon. 1995. North American agricultural soil organic matter network: The American Great Plains. Agron. Abstracts p. 25. Amer. Soc. of Agron., Madison, WI. Ortega, R.A., G.A. Peterson, and D.G. Westfall. 1995. Phosphorus test calibration using spatial
- variability of a landscape in eastern Colorado. Agron. Abstracts p. 268. Amer. Soc. of Agron., Madison, WI.
- Rodriguez, J.B., J.R. Self, G.A. Peterson, and D.G. Westfall. 1995. Sodium bicarbonate-DTPA test for macro and micro nutrients in soils. Agron. Abstracts p. 317. Amer. Soc. of Agron., Madison, WI. Farahani, H.J., L.A. Ahuja, G.W. Buchleiter, and G.A. Peterson. 1995. Mathematical modeling of
- irrigated and dryland corn production in eastern Colorado. Abstract for Clean Water-Clean Environment-21st Century Symposium. March 1995. Kansas City, MO.
- Farahani, H.J., L.A. Ahuja, G.A. Peterson, R. Mrabet, and L. Sherrod. 1995. Root zone water quality model evaluation of dryland/no-till crop production in eastern Colorado. Abstract of International Symposium on Water Quality Modeling. April 1995. Kissimmee, FL.

- Peterson, G.A. and D.G. Westfall. 1995. Post-CRP land use-alternative systems. Abstract of Symposium on Converting CRP-Land to Cropland and Grazing: Conservation Technologies of the Transition. Sponsored by Soil and Water Cons. Soc. of Amer. 6-8 June 1995. Lincoln, NE.
 Sherrod, L., G.A. Peterson, and D.G. Westfall. 1996. No-till rotational residue dynamics across an ET gradient. Agron. Abstracts p. 282. Amer. Soc. of Agron., Madison, WI.
 Poss, D.J, G.A. Peterson, and D.G. Westfall. 1996. Growing annual legumes in dryland agroecosystems in northeastern Colorado. Agron. Abstracts p. 283. Amer. Soc. of Agron., Madison, WI.
 Halvorson, A.D., C.A. Reule, and G.A. Peterson. 1996. Long-term N fertilization effects on soil organic C and N. Agron. Abstracts p. 276. Amer. Soc. of Agron., Madison, WI.
 Kolberg, R.L., D.G. Westfall, and G.A. Peterson. 1996. Influence of cropping intensity and nitrogen fertilizer rates on *In situ* nitrogen mineralization. Agron. Abstracts p. 247. Amer. Soc. of Agron.

- fertilizer rates on In situ nitrogen mineralization. Agron. Abstracts p. 247. Amer. Soc. of Agron., Madison, WI.
- Farahani, H.J., G.A. Peterson, D.G. Westfall, L.A. Sherrod, and L.A. Ahuja. 1996. The inefficiency of summer fallow in dryland no-till cropping systems. Agron. Abstracts p. 295. Amer. Soc. of Agron., Madison, WI.
- Iremonger, C.J., D.G. Westfall, G.A. Peterson, and R.L. Kolberg. 1997. Nitrogen fertilizer induced soil pH drift in a no-till dryland cropping system. Agron. Abs. p.225. Amer. Soc. of Agron., Madison, WI.
- Ortega, R.A., D.G. Westfall, and G.A. Peterson, G.A. 1997. Spatial variability of soil P and its impact on dryland winter wheat yields. Agron. Abs. p.231. Amer. Soc. of Agron., Madison, WI.
- Peterson, G.A., D.G. Westfall, H.J. Farahani, L.A. Sherrod, and L.R. Ahuja. 1997. Enhancing productivity of central Great Plains dryland agroecosystems. Agron. Abs. p.261. Amer. Soc. of Agron., Madison, WI..
- Westfall, D. G., R.A. Ortega, and G.A. Peterson. 1997. Spatial variability of soil properties and wheat yields over landscapes. p. 11-12. IN: Abstracts of 1st European Conf. on Precision Agr. Sept. 7-10, 1997. Warwick University.
- Ortega, R.A., W.J. Gangloff, D.g. Westfall, and G.A. Peterson. 1998. Multivariate approach to nitrogen recommendations for dryland corn in eastern Colorado. Agron. Abs. p.55. Amer. Soc. of Agron., Madison, WI.
- Peterson, G.A., L.A. Sherrod, D.G. Westfall, and L.R. Ahuja. 1998. Intensive dryland cropping systems increase soil organic matter. Agron. Abs. p.276. Amer. Soc. of Agron., Madison, WI.
- Guzman, J., G.A. Peterson, D.G. Westfall, and P.L. Chapman. 1998. Dryland corn yields as a function of weather and soil variables. Agron. Abs. p.277. Amer. Soc. of Agron., Madison, WI.
- Lyon, D.J. and G.A. Peterson. 1999. Three crops in three years with no-till dryland systems in the semiarid Great Plains. Agron. Abs. p.100. Amer. Soc. of Agron., Madison, WI.
- Grant, C.A., G.A. Peterson and C. A. Campbell. 1999. Nutrient considerations for diversified cropping systems in the Northern Great Plains. Agron. Abs. p.101. Amer. Soc. of Agron., Madison, WI.
- Kruger, H.K. G.A. Peterson, and D.G. Westfall. 1999. Below ground dry matter production and nitrogen content of four legumes in dryland agroecosystems. Agron. Abs. p.245. Amer. Soc. of Agron., Madison, WI.
- Poss, D.J., G.A. Peterson, and D.G. Westfall. 1999. Austrian winter pea in dryland systems in
- Northeastern Colorado. Agron. Abs. p.279. Amer. Soc. of Agron., Madison, WI. Sherrod, L.A., G.A. Peterson, D.G. Westfall, and L.R. Ahuja. 1999. Carbon sequestration rates after 12 years under no-till dryland cropping systems rotations. Agron. Abs. p.280. Amer. Soc. of Agron., Madison, WI.
- Shaver, T.M., G.A. Peterson, D.G. Westfall, and L.R. Ahuja. 1999. Surface soil properties after 12 years of dryland no-till management. Agron. Abs. p.280. Amer. Soc. of Agron., Madison, WI.
- Berrada, A. and G.A.Peterson. 2000. Development of a sustainable dryland cropping systems in SW Colorado and SE Utah. Agron. Abs. p.132. Amer. Soc. of Agron., Madison, WI.

- Gangloff, W., D.G. Westfall, and G.A. Peterson. 2000. Availability of organic and inorganic zinc fertilizers. Agron. Abs. p.277. Amer. Soc. of Agron., Madison, WI..
 Gangloff, W., R. Ortega, R.M. Reich, D.G. Westfall, and G.A.Peterson. 2000. Statistical analysis of the management zone concept. Agron. Abs. p.358. Amer. Soc. of Agron., Madison, WI..
 McMaster, G.S., L.A. Deer-Ascough, J.C. Ascough, G.A. Peterson, G. Dunn, C. Palic, M. Shaffer, and M.A. Welz. 2000. Using the GPFARM DDS for evaluating dryland cropping system production and acanomics in the work control Great Plains. Agron. Abs. p.22. Amer. Soc. of Agron. and economics in the west central Great Plains. Agron. Abs. p.22. Amer. Soc. of Agron., Madison, WI.
- Peterson, G.A., D.G. Westfall, L.R. Ahuja, L.A. Sherrod, and D.J. Poss. 2000. Advances in dryland agroecosystems: Results of 15 years of research. Agron. Abs. p.310 Amer. Soc. of Agron.,

Madison. WI..

- Shaver, T.M., G.A. Peterson, D.G. Westfall, L.A, Sherrod, L.R. Ahuja, and G. Dunn. 2000. No-till cropping system effects on organic carbon content of surface soil aggregates, POM, and mineral
- Sherrod, L.A., G. Dunn, G.A. Peterson, and R.L. Kolberg. 2000. Total inorganic carbon analysis by modified pressure calcimeter. Agron. Abs. p.365 Amer. Soc. of Agron., Madison, WI..
 Sorge, G.M., G.A. Peterson, D.G. Westfall, and J.M. Krall. 2000. Incorporating legumes in semiarid,
- no-till agroecosystems: Soil quality effects. Agron. Abs. p.317 Amer. Soc. of Agron., Madison, WI..

- <u>Non-technical papers</u>: Westfall, D. G. and G. A. Peterson. 1990. Improving your dryland performance. Solutions 34(5):32-34 and 49.
- Wood, C. W., G. A. Peterson and D. G. Westfall. 1990. Greater crop management intensity increases soil quality. Better Crops 74(3):20-22.
- Westfall, D.G., G.A. Peterson, and J.L. Sanders. 1992. Phosphorus reduces stress in intensive dryland no-till crop rotations. Better Crops with Plant Food. Vol. 76. Fall 1992. pp. 20-21.
- Westfall, D.G., G.A. Peterson, R.L. Kolberg, and L. Sherrod. 1994. Extra crop is payoff in dryland no-till intensified cropping system. Fluid Journal 2:18-20.
- Peterson, G.A. 1996. Nitrogen: The vital nutrient in the Great Plains. Fluid Journal Vol.4, No.3, p.18-21.
- Peterson, G.A. and D.G. Westfall. 1996. Maximum water conservation after wheat harvest. Cons. Tillage Digest Vol.3. No.5, p.9.
- Ortega, R.A., D.G. Westfall, and G.A. Peterson. 1997. Variability of phosphorus over landscapes and dryland winter wheat yields. Better Crops: 81(2) 24-27.
- Peterson, G.A. and D.G. Westfall. 1998. No-till practices in the Central Great Plains make summer fallow unnecessary. Conservation Tillage Digest 5:(No. 5)14-16.
- Ortega, R.A., D.G. Westfall, G.A. Peterson, and W.J. Gangloff. 1998. Soil variability in landscapes affects nitrogen management. Fluid Journal. Vol. 6: (No. 3) 23-26.